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The Schédinger equation for the rotational states of asymmetric molecules is known to be separable in spheroconal coordinates and inte-
grable in terms of Lara functions. However, the numerical evaluation of the latter has not been developed efficiently, thereby limiting the
practical application of such solutions. In this article, the matrix evaluation of the rotational states is formulated and implemented numerically
for any asymmetric molecule, using the familiar bases of spherical harmonics. The matrix of the Hamiltonian - in a frame of reference fixed
in the molecule and oriented along its principal axes - is constructed in the chosen basis and shown to separate into/blocks of + 1)

and? x ¢, for each value of the angular momentum quantum nundbeFhe diagonalization of the successive blocks leads to accurate
values of eigenenergies and eigenvectors for all values of the asymmetry parameters. The connection between these rotational states al
their Lame function representation is also established, identifying at the same time a common generating function for spherical harmonics
and spheroconal harmonics.

Keywords: Asymmetric molecules; rotation spectra; matrix evaluation; spherical harmonicse fiamtions; spheroconal harmonics;
generating function.

Se sabe que la ecuaci de Schidinger para los estados rotacionales deémughs asiretricas es separable en coordenadas esferoconales
e integrable enérminos de funciones de L@&n Sin embargo, la evaluaci nunérica de ladiltimas no se ha desarrollado eficientemente,
limitando por lo tanto la aplicadh practica de tales soluciones. En estécaifb, la evaluadin matricial de los estados rotacionales se
formula e implementa nuémicamente para cualquier néoula asiratrica, usando la base familiar de @micos eséricos. La matriz del
Hamiltoniano - en un sistema de referencia fijo en laguola y orientado a lo largo de los ejes principales - se construye en la base escogida
y se muestra que se separa en bloque$lde 1) x (¢ + 1) y £ x ¢, para cada valor delimero céntico de momento anguldr La
diagonalizadin de los bloques sucesivos conduce a valores precisos de las eigeaeypdog eigenvalores para todos los valores de los
parametros de asimé&r. Tambén se establece la conérientre estos estados rotacionales y su representexierminos de funciones de
Lamé, identificando al mismo tiempo una fuanigeneradora coim para arranicos eséricos y arndnicos esferoconales.

Descriptores: Moléculas asiratricas; espectro rotacional; evaluatimatricial; arnbnicos esfricos; funciones de Lagp armbnicos esfero-
conales; fundn generadora.

PACS: 33.20Sn; 33.15.Mt; 33.20.-t; 31.15.Hz

1. Introduction The three Euler angles are the familiar variables for writ-
ing and connecting the descriptions of the rotational states in
The investigation and the results reported in this article havéhe body-fixed and inertial frames of reference. However, for
been motivated by and are complementary to the works ifthe states with zero projection along the z-axis in the inertial
Refs. 1to 3, as reflected by a comparison of their respectivRame of reference, the associated angle becomes ignorable
titles. In fact, in the notation of [1, 2] the rotational states ofin Egs. (1) and (2), corresponding to the step from Eq. (32)
asymmetric molecules are described by the common eigeno Eq. (37) in Ref. 2. In such a case, the problem depends

functions of the Sclirdinger equation only on the two other Euler angles, or any two alternative
. . . variables.
1 L} 4 Li/ 4 Lé ¥ — BV Q) Kramers and Ittmann [1] chose the alternative of the sphe-
2| L I, I3 N ’ roconal coordinates because Egs. (1) and (2) become sepa-

rable and integrable in terms the Larfunctions, while the
and the square and z-component of the angular momentumthird Euler angle associated with Eq.(3) becomes ignorable.
Later authors [4—6] kept on working with the spherical Euler

(ﬁi + ﬁfj + Lﬁ) U =h2(+1)T, (2) angles, and the subsequent work followed this usage [7-15].
X While the solution of Ref. 1 is mathematically exact, in prac-
M,V = hmVY, (3) tical terms it was not applied because the numerical eval-

uation of the Largd functions was not implemented. On
whereL; andM; are the components of the angular momen-the other hand, the development of the alternative descrip-
tum in the body-fixed and laboratory fixed, or inertial, framestion [4—15] took the perturbation approach route.
of reference respectively. Notice that our Egs. (1) - (3) corre-  The investigations of Refs. 2 and 3 have retaken the route
spond to Egs. (34)-(35) in Ref. 2. initated by Kramers and Ittmann [1], using spherical coordi-
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nates(r, x1, x2) defined by the transformation equations to and therefore
cartesian coordinates

2
1 1 1
x = rdn(x1, k1)sn(xz, k2) P%(e? +e3+e2) =~ [( - )
3 L b
y = ren(x1, k1)en(xe, k2), (4) ) )
1 1 1 1
z = rsn(x1, k1)dn(xz, k2) + A + L n) | (12)
in terms of Jacobian elliptic functions [16, 17], subject to the
condition By choosing
k2 + k2 =1. (5)
; 62—1—62—1—62:§ (13)
The solutions of Egs. (1) and (2) are separable 1 2Ty
(x1,x2) = Alx1)A(x2), () it follows that
in terms of Lang functions, satisfying the ordinary differen- ) )
tial equations: pro (L L1y (L_1
d2A* 9 11 IQ IQ 13
T — [RO(+ D)sn® (i i) + ha] A = 0. (7) ,
Xi 1 1
The lower order solutions fof = 1,2 and3 are presented + (1-3 B I1> ] - (14

explicitly in Ref. 2, including the respective eigenenergies in
terms of the molecule asymmetry parameters. On the other
hand, [3] includes higher order excited states for the mos&[e
asymmetric molecules only.

It is still valid to say that the numerical evaluation of the

The change of the three parametérso the five param-
rs@Q, P ande;, is subject to the conditions of Egs. (10)
and (13), so that a choice of one of the latter three deter-
tr_nines the other two. The second alternative parametriza-

L_a_me funcfuons of a higher ord_er_ha_s not been develpped ion replaces the parameterswith a single angular parame-
ficiently, with the consequent limitations on the practical AP er 2]

plication of such solutions to characterize the spectra of any
asymmetric molecule. The purpose of our investigation is to
make up for such limitations, via the formulation of an al-
ternative method to solve Eq. (1) - or some of its variations, . o
already included in Ref. 2 - with reliable and accurate nu-€nsuring that Egs. (10) and (13) are satisfied.
merical values for the eigenenergies and eigenfunctions of ~1he Hamiltonian in Eq. (1) takes and leads to the follow-
any order of excitation. ing alternative forms

It is convenient to describe now the two parametrizations

included in Ref. 2, as alternatives to the use of the inverses of

e1 = Cosa, es :cos(af%”), e3 = COoS (UJr%W), (15)

the moments of inertia in Eq. (1). The firstone introducesthe A = lQﬁ + 1p [elﬁi el + e@z] , (16)
decomposition of the diagonal matrix of such inverses into its 2 2
balanced-trace and traceless components [2]: i = % [mﬁi n 62% n 63@} ’ (17)
n 0 0 Q 0 0 o ) )
0 4« O =1 0 @ O H*:f[cosaLi—i—cos(a—%”)Li
0 0 L 00 Q 2
el 00 + cos (0 + %”) IE] . (18)
0 0 e3 The trace component in Eq. (16) corresponds to the
. spherical molecule for which]; = I, = I3, so that
=1/I; an = 0, with the well-known +
It follows directly that _ O=1/I, and P 0. with th 1k B20(0 + 1) /2
Q- LT 1 1 ) energy spectrum and spherical harmaiig, eigenfunctions,
3| I I3 ’ form:E,E—l,...,1,0,—1,...,—(K—l),—éand(%—i—l)-

degeneracy. The traceless components correspond to the

ertertes=0 (10) asymmetric contribution of magnitude, Eq. (14), and dis-
12 1 1 tributions included inH *. By ordering the moments of iner-
Pe; = 3L E AN (11) tiaasl; < IQ. < I3, the asymmetry distribution parameters
o may be restricted so thay < es < e3 and0 < o < 7/3.
(i,4,k) = cye(1,2,3), Prolate symmetric molecules have < I, = I3, e; = 1,
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es = e3 = —1/2, ando = 0. Oblate symmetric molecules matrices of such operators requires the matrix elements of
havel; = I < I3, e1 = ez = 1/2,e3 = —1,ando = 7/3. L2, L2 andL? in the chosen bases. The general familiar ba-
The most asymmetric molecules have= v/3/2 = —e3, sis of angular momentum eigenfunctions

es = 0,ando = 7/6.

In Sec. 2, the matrix evaluation of the eigenenergies and 2 [tmy,) = h2£(£ +1) [fmy) (19)
eigenfunctions of any of the equivalent Hamiltonians describ- .
ing asymmetric molecules is formulated using the familiar L [bmi) = himy [0my,) (20)

bases of spherical harmonics. In Sec. 3 illustrative numerical . .

results are reported for the energy spectra and eigenfunctiomsvolves only diagonal elements fae andL,,. For the other
of different orders of excitation, for the different values of the componentsL; andL;, (i, j, k) = cyc(z, y, z), we use their
molecule asymmetry parameters. Section 4 compares the scennections with the raising and lowering operators:
lutions of the eigenvalue problem of asymmetric molecules

developed in this work using spherical harmonics and that of L= %(Lr + ﬁ_),
Ref. 2 in terms of spheroconal harmonics. Consequently, the . v . (21)
Coulomb potential and the addition theorem are identified as Lj =5 (Ly = L),

common generating functions for both types of spherical har- )

monics and spheroconal harmonics. The discussion in th@nd their effects on thigm,,) state:

final section emphasizes the exact nature of the matrix so- )

lution implemented in this work, for any asymmetry of the Ly [my) = hCx (€, my,) [fmy, £ 1), (22)
molecules, leading to accurate and reliable results for any or-

der of excitation. Ca(6m) = v/ (EF m) (€ £ my + 1). (23)

. . . Correspondingly, their squares become
2. Matrix evaluation of asymmetric molecule P i a

rotational spectra using bases of spherical
harmonics

?

=1 (LL +L L +L L+ Ji,ﬁ,) . (24)
r2 _ 1 roo7 ro7 roT FoT

The common feature of the operators in Egs. (1), (2) Li=13 <_L+L+ + Lyl +L-Ly —L,L,), (25)

and (16) - (18) is their quadratic dependence on the compo-

nents of the angular momentum. Their differences and conand their effects ofYm;,) follows from the successive appli-

nections appear through the respective coefficients, as alreagg@tions of Egs. (22) - (23). The first terms raisg by 2, the

established in Sec. 1. Consequently, the construction of theext two terms leave: the same and the last terms lowey
by 2. We illustrate the explicit form of the matrix elements of

| H* for the specific cases &f = z, y andz:

A h2
(em’ ) H* |fm,,) =5 { {elmi e I €3 (Cr(l,my —1)C_(€,my) + C_(€,my + 1)C (4, mm))} Ome, meg

€2 — €3

T

I:C+(‘€7 my + 1)C+(1€, mx)ém;’mz+2 +C_ (ﬁ, My — ].)C, (f, mm)ém;’m172] } R (26)

1| fr* hz ez +e
(el | E* 0, 2{[e2m5+ o 1<c+<e,my1)0_<e,my>+c_<e7my+1>c+<e,my>>} -

Yy

€3 — €1
4

[c+ (€,my + 1)C (£,11y)bm1 2 + C— (6,my, — 1)O_ (L, my)am;ﬂmy,g] } . (@7

~ h2
(ém’| H* |[tm.) =5 { {egmg + a 162 (CL(l,m, —1)C_(L,m,) +C_(L,m, + 1)C’+(€,mz))} O m.

I % [C+ (6, me + 1)CL(6,m2)0m, m. 42 + C—(£ms — 1)C— (£,m2)6 s ,mzz]}. (28)

Several conclusions can be drawn immediately. The se-
lection rulesm), = my, + 2, my, my, — 2 separate the matrix
of order(2¢ + 1) x (2¢ 4 1) into two tridiagonal blocks, one  dimensiong? + 1) x (¢ + 1) and/ x ¢ for ¢ even, and the
for even values ofn;, and the other for odd values ofy, of  other way around fof odd. SinceH* is Hermitian, its ma-
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trices are symmetric with respect to the main diagonal. They The reader can ascertain the presence/of 1 energy

are also symmetric with respect to the other diagonal, on adevels for each value of. In particular, for the prolate and
count of Eq. (23) begins substituted in Egs. (26) - (28), leadoblate symmetric molecules represented at the left and right
ing to combinations$?, m;) & |¢, —my) with definite parities.  end of each frame, respectively, the energies from Egs. (26)
Notice that both operators in Egs. (1) - (2) are invariant un-and (28) become

der the individual parity transformations— —x, y — —y )

andz — —z, accounting for the classification of the rota- By, (0=0°) = h (3m2 — 6+ 1)), (31)

tional states of asymmetric molecules of two kindsyen 4

and odd), each one with four species of parity eigenstates . . K2 )
{1,yz,zz, xzy} and{x, y, z, zyz}, respectively [2, 16]. Efp. (0 =60°) = vy (3m2 —£(+1)). (32)
Any of Egs. (26) - (28) upon diagonalization may lead to
the eigenenergieB* and normalized eigenvectors The double degeneracy of the energy levels with + 1,
+2, ..., £/ is shared in both cases. Their reversed or-
Ugep =Y om, |0m), (29)  ders of excitation, starting and ending with the = 0
my, state, respectively, involving the energiegi?¢(¢ + 1)/4,

. _ _ FR2[(6+1)—3]/4, ..., Fh?(£—20%) /4 of the same magni-
of H* for any asymmetry. Of course, certain choices mayt}{lde but opposite signs, should be noticed. For the asymmet-

IEead (;%)Tsoiﬁcatrr?;];ﬁ?urec)nncg flc?r C(:cr)tgtg Za;eriet:i—(r:]?ntc)ﬁ]eocl:ﬁfeg ¢ molecules, the removal of the degeneracy is appreciated as
4. . orp y . =7 0 takes increasing values fro@3 or decreasing values from
with e; = e, since the non-diagonal terms vanish. Likewise

. . '60°. Si i t t i [, iti
for the oblate symmetric case with — ¢, Eq. (28) takes 60°. Sincemy, is not a good quantum number in general, it is

the diagonal form. For the most asymmetric case, studied irr]nore meaningful to designate the energy levelgaswhere
) ’ = 1,2,...,2¢ + 1 characterize the ordering of the ener-
Ref. 2 and more recently [3f; = 0, ¢; = —e3 = V/3/2, " 12y S0 g

} gies. The symmetries of the Hamiltonian described at the
Eq. (27) becomes: end of the previous section explain the connection between
<gm;| i+ tm,) = the energies of molecules with “complementary” asymme-
tries and state&’;, (o1) = Ej,, (02) for o1 + o2 = 60° and

n1 +ng = 2€+ 1, including the case of the most asymmetric
molecule for whichEy, _, ;(30°) = 0.

Reference 2 presented the analytical forms for the lowest
energy levels witlf = 1,2, 3. Here we quote only

V3
_ hQT {C+(£, my =+ 1)C+(€, my)é’m;ﬁm?ﬁg

+ C_ (f, my — 1)0-(& my)am,;,my—2} . (30)

Even though the diagonal terms drop out, the diagonalization

effort is the same. 72
Ef,=——en for n=123,
’ 2
3. lllustrative numerical results 352 352
;,1 = _73 E;,5 = Ta (33)
The diagonalization of Eqgs. (26) - (28) was performed using
Bunge’s “Fast eigensolver for dense real-symmetric matri- . 3n? I _
» on = ——€n-1 or n=2,3,4.
ces” [18]. ' 2

This section contains numerical and graphical results il- This allows Us to recoanize the cosine variations of the
lustrating the energy eigenvalues and eigenfunctions of ex- recog
cited rotational states of molecules with different asymmetryenergy levels, acqordlng to Egs. (15), as the asymmetry pa-
distributions. The presentation of these results is accompa{:dmeter changes in the frames for 1 and2.
nied by comments on their variations with the order of ex-
citation for each type of molecule defined by a fixed value3-2-  Eigenfunctions of rotational states
of its asymmetry parameter = [0°, 60°], and also on their

variations as the asymmetry changes. The diagonalizations of the matrices in Egs. (26) - (28) also

lead to accurate values of the eigenvectgys, in the respec-
3.1. Energy eigenvalues tive bases folk = z,y,2. The complete eigenfunctions in
Eqg. (29)V g+ are the same in the three bases, as constructed
Accurate and consistent values of the eigenenerfiigfgr)  and illustrated in Fig. 2 for the specific caselot 4. The
were obtained from the independent diagonalizations of théorty-five entries are in correspondence with the energy levels
matrices in Egs. (26) - (28), for the set of valuesrof= 0°,  in the associated part of Table | and Fig. 1.
15°, 30°, 45°, 60° and the respective values af Eq. (15). For the prolate and oblate symmetric molecules, the
Figure 1 presents the energy levels for the successive vagigenfunctions are directly the real and imaginary parts of re-
ues of¢ = 1,2,...,7,10,20 and30 including their interpo-  spective spherical harmonitsn,+) and|¢m.=+). They can
lations for all values of the asymmetry parameter be identified forn = 0,1, 2, 3,4 in ascending and decreasing
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order in the left and right hand columns, respectively, recogtries of the Hamiltonian are reflected in the “antisymmetry”

nizing the same shapes and the different orientations. Thein the energy-asymmetry parameter table relative to the most

circular-conical and meridian-plane nodes can be graphicallpgsymmetric moleculee = ¢ + 1 state, and also in the in-

identified. variance of the energy levels in the respective frames under
Explicit numerical values of the energy eigenvaluesa 180° degree rotation around the & 30°, E7, _,,, = 0)

E;. (o) areincluded in Table Il for the specific casegef 4  center in the same plane. The evaluation of eigenenergies for

and5, in order to illustrate the accuracy in their evaluation, ashigher values of well beyond those included in Refs. 2 and 3

well as their variations and connections as functions ahd  can be done accurately and reliably.

o, as already discussed in the previous sections. The symme-

FIGURE 1. Energy spectra for states with= 0, 1, ..., 10, 20, 30 and successive orders of excitation= 1, 2, ...,2¢ + 1, of molecules
with different asymmetries = [0°,60°].

Rev. Mex. . 54 (1) (2008) 6977
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FIGURE 2. Eigenfunctions of rotational states with= 4 and successive orders of excitation= 1, 2, ..., 9 (from bottom to top) of
molecules with asymmetries = 0°, 15°, ..., 60°. The entries on the left column describe the parity species of the respective wave
functions in each row.
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TABLE |. Energy eigenvalueE;, /A2, for £ = 4 and successive orders of excitatior= 1, 2, ..., 9 of molecules with different asymmetries
o =0°15°...,60°.

o 0° 15° 30° 45° 60°
£=4

1 -5 -5.47325098638820 -6.24499799839840 -6.80266075251004 -7

2 -4.25 -5.33848116723779 -6.22708271177908 -6.80174863502247 -7

3 -4.25 -3.14800932210267 -2.29128784747792 -1.85391409659007 -1.75

4 -2 -1.97211950357713 -1.89695569285688 -1.80294726130505 -1.75

5 -2 -1.32940976612184 0 1.32940976612184 2

6 1.75 1.80294726130506 1.89695569285688 1.97211950357713 2

7 1.75 1.85391409659007 2.29128784747792 3.14800932210267 4.25

8 7 6.80174863502247 6.22708271177908 5.33848116723779 4.25

9 7 6.80266075251004 6.24499799839840 5.47325098638820 5
TABLE Il. Energy eigenvalueg;, /A2, for £ = 5 and successive orders of excitatien= 1, 2, ..., 11 of molecules with different
asymmetries = 0°, 15°,...,60°.

o 0° 15° 30° 45° 60°

{=5n

1 -7.5 -8.53609003391197 -9.95422298349734 -10.9157869390600 -11.25

2 -6.75 -8.47438204173658 -9.94987437106620 -10.9156870109073 -11.25

3 -6.75 -5.30330085889910 -4.64443406791265 -4.50804116692859 -4.5

4 -4.5 -4.5 -4.5 -4.5 -4.5

5 -4.5 -3.21639483018463 -1.18540161279861 0.309185221261808 0.75

6 -0.75 -0.500162130901852 0 0.500162130901855 0.75

7 -0.75 -0.309185221261801 1.18540161279861 3.21639483018464 4.5

8 4.5 4.5 4.5 4.5 4.5

9 4.5 4.50804116692860 4.64443406791266 5.30330085889911 6.75

10 11.25 10.9156870109073 9.94987437106620 8.47438204173658 6.75

11 11.25 10.9157869390600 9.95422298349735 8.53609003391198 7.5

The eigenfunctions for the most asymmetric moleculesorresponding behavior for the eigenfunctions for the nega-

are represented in the middle column. The fifth one at theive parity states of specigs- + +), (+ — +), (+ + —),
center has paritiest- + +), which it shares with its compan- (— — —).
ions in the first and ninth rows, from top to bottom. The other
states with paritie$+ — —), (— + —), and(— — +) corre-
spond to the second and sixth, third and seventh, and fourth. Lamé functions, spheroconal harmonics
and eighth rows, respectively. and generating function
The changes in the eigenfunctions of each species and ex-
citation as the distribution of the asymmetry of the moleculeThe rotational eigenenergies and eigenstates of asymmet-
changes can be followed by moving within each row. Noticeric molecules - evaluated by the matrix method developed
that complementary row&:; + no = 9) exhibit the same in Sec. 2, and illustrated by the Tables and Figures of
shapes with different orientations when moving in oppositeSec. 3 - are eigensolutions of the squares of the angular mo-
directions. This behavior can be appreciated at the numermentum, Eq. (2), and the related Hamiltonian operators of
cal level in Table I, giving the normalized eigenvectors in theEgs. (16) - (18).
basis|¢m,,). The eigenfunctions of Eq. (29) can also be identified with
For the sake of space, the numerical results of Table Ithe Larré functions of Eq. (6), while the eigenvalues/aind
for £ = 5 are not presented graphically, but they illustrate theE™* may serve to evaluate the separation constanendhs
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associated with the respective Ladifferential Eqs. (7) ex- Then it is straightforward to prove the addition theorem
pressed by the linear combinations [2]: in terms of the spheroconal harmonics
(€ + 1)es 2F* Py ) = 4
hy = - 34 o 77) =
! e1 — e3 h2(e; —e3)’ (34) 20+1
0+ 1)ey 2" XYY AL (WAL ()AL (x)AL (x2), (43)
hy = — + . (35) I
e1 — e3 h%(e; — e3) B s1os2

. . . for{evenAB =1, yz,zz, zy; and for{ odd,AB = z, vy, z,

In particular, the nodal surfaces of the wavefunctions il- : : ;

lustrated in Fig. 2 can be identified as the elliptical cones’V?r USINg orthonormality of the transformations of Eqs. (29)
with an axis along the z-axis or along the x-axis, defined byand (42).
the fixed values ok or x2, respectively. More specifically, _ )
we make the explicit identification of the eigenfunctions in5.  Discussion

Eq. (29) with Their Larg function product form: , . )
This work provides a reliable and accurate method for eval-

U(x1,x2) = A2 (x1)AZ (xa), (36)  uating the exact rotational eigenenergies and eigenstates of
molecules with any asymmetry, using the matrix representa-

where . d L2 . .
tion of the corresponding Hamiltonian in a basis of spheri-
A =1 d ¢ s cs ds de dcs cal harmonics Egs. (26) - (28). This approach can be con-
B =1 s ¢ d cd sd sc scd trasted with the traditional treatments of the same problem
AB = 1 = y z yz xz xy ayz using perturbation methods starting from the known results

describe the classification of the parity eigenstates, consistefar prolate and oblate symmetric molecules [7-15]. A re-
with Egs. (4), ands; ands, count the number of nodes in the cent work has investigated the rotational states of the most
respective spheroconal angles, in such a waysthats, = ¢.  asymmetric molecule obtaining very accurate numerical val-
The spherical harmonics are eigenfunctions of the angudes, but still with the idea of making perturbation extensions
lar momentum op(:;ratoré2 andL;. The rotatiopal states of from that case [3]. The method introduced in the present in-
the asymmetric molecules are eigenfunctiong.dfind H*. vestigation supersedes in practice the need for perturbation
The spherical harmonics are solutions of the Laplace equdreatments, providing accurate exact results for any asymme-

tion try and any order of excitation, as illustrated in section 3..
) Section 4 puts the spherical harmonics and the sphero-
VZg(r,0,0) =0, (37)  conal harmonics on an equal footing. Both are useful in the
with complementary radial solutions description of rotations: the spherical ones when there is an
axis of rotational symmetry, and the spherconal ones when
R(r) = Ar* + Br—=1. (38)  there is no such an axis. Their harmonic nature also makes it

The Laplace equation is also separable into spheroconQPSSible to identify common generating functions for both of
coordinates. with solutions them. Here we have limited the discussion to the Coulomb

potential, Eq. (40), and the addition theorem, Eqs. (41)
®(r, x1,x2) = R(r)¥e-e(x1, X2), (39)  and (43).
. . . . The connection with the Laenfunctions has also been
involving the same radial solutions of Eq. (38) and the Sphefdentified, including the accurate determination of the sepa-
roconal harmonics of Eq. (36).

The inverse of the distance between two points is knowry2lion constanté, andh, Eqs. (34) - (35), which in turn

to be the generating function of the Legendre polynomials permits the evaluation of the functions themselves. While
" doing this work, we have formulated an alternative and inde-

1 ot pE 40 pendent matrix method to evaluate the lé&afunctions per se,
=7 e>+1 o (7). (40) and also identified other generating functions [19]. The cor-
=0

o - responding results will be reported in a companion article.
Inturn, the Legendre polynomial via the addition theorem

generates the spherical harmonics
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