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Stability of thermal structures with an internal heating source
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We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at their center. The thermal
conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases
with distance from the sourcer approximately as∼ exp(−τ)/r2, τ being the optical depth. We find that the influence of the radiation
source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central
temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the
structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.
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En este trabajo estudiamos el equilibrio térmico y la estabilidad de estructuras isobáricas y esf́ericas que tienen una fuente de radiación
en su centro. La conducción t́ermica y las tasas de calentamiento externo y enfriamiento son representadas como leyes de potencia de
la temperatura. El calentamiento interno disminuye con la distancia a la fuenter aproximadamente como∼ exp(−τ)/r2, siendoτ la
profundidadóptica. Los resultados indican que la influencia de la fuente de radiación es importante solamente en la región central, pero su
efecto es suficiente para que el sistema se vuelva térmicamente inestable por encima de una cierta temperatura umbral en el centro. Esta
temperatura umbral disminuye a medida que la eficiencia del calentamiento interno aumenta, pero por otro lado la misma no depende del
tamãno de la estructura. Nuestros resultados sugieren que una estrella de tipo solar que migre a través del medio interestelar difuso puede
llegar a desestabilizarlo.

Descriptores: Hidrodinámica; inestabilidades; medio interestelar.

PACS: 47.50.Gj; 95.30.Lz; 98.38.Am

1. Introduction

Most of the structures observed in Astrophysics can be fully
explained only if one takes into account several physical
processes simultaneously, such as dynamics, self-gravitation,
magnetic fields, radiation transfer, thermal conduction, com-
plex chemical networks, etc. Since the seminal paper by
Field [1], a lot of work has been devoted to the study of the
thermal and mechanical equilibrium of structures under the
action of different physical mechanisms [2]. One of the mo-
tivations behind this kind of study has been to explain the
formation of structures via thermal instabilities. Nowadays,
it is clearly established that thermal instabilities play a major
role in several astrophysical contexts, such as the solar chro-
mosphere and corona, interstellar medium (ISM), planetary
nebulae, and intergalactic medium [2–6]. A full modeling of
these systems may be a relatively difficult task requiring large
computational resources (e.g.see Refs. 7 to 9). On the other
hand, the development of simple models including few phys-
ical processes allows us to clarify the specific role of each
process, setting up the framework for more realistic models.

When only thermal conduction and a net heat-loss func-
tion are considered, a variety of (isobaric) thermal struc-

tures are obtained and stability criteria can be derived ana-
lytically [10]. These criteria can be extended analytically up
to the second order [11]. In spite of the simplicity of this
approach (many physical processes are not considered) these
results can be applied successfully to the atomic phase of the
ISM [12], molecular clouds [13], and the solar corona [14].
Usually, it is assumed that the heating mechanisms are “lo-
cal” functions, in the sense that they depend only on the local
thermodynamical state (temperature, density). However, two
factors may complicate this picture. On the one hand, the
heating mechanism could be an explicit function of the po-
sition in the structure. This situation applies, for example,
if a heating source is located close to the structure, such as
an interstellar region with a nearby star (or star cluster), or
the solar corona heated by the chromosphere. For coronal
loops, it has been shown that the existence or not of thermal
equilibrium solutions and their stability is subordinated to the
spatial dependence of the heating [14]. On the other hand, if
the heating mechanism is associated with radiative processes,
the opacity adds a non-local character to the heating function,
making it difficult to perform an analytical study. In Ref. 15
the stability of structures heated by radiative processes was
analyzed. Generally, the results showed that the effect of in-
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creasing the opacity is to increase the stability of the thermal
structures. However, in order to achieve certain analytical
results that work was limited to the unrealistic case of a slab-
like configuration irradiated simultaneously on both sides.

In the present paper, our attention is focused on investi-
gating the thermal equilibrium and the stability of spherical
structures heated by a radiation source located at their center.
Besides the pure academic interest of generalizing the previ-
ous results [10–13, 15] by including an internal heat source,
this kind of study could be very useful because this is a com-
mon configuration, in particular in Astrophysics. We try to
keep the approach as general as possible and, therefore, our
results can in principle be directly applied to any situation in
which an isobaric, spherical structure has an internal radia-
tion source. However, we use values for constants and param-
eters that are appropriate for typical interstellar conditions be-
cause in the future we plan to generalize this work in order
for it to be applicable to interstellar regions in the Galaxy. It
is known, for example, that the diffuse ISM is linearly ther-
mally stable but nonlinearly unstable (e.g. Ref. 16). More-
over, it is expected that stars systematically pass through the
ISM. Thus, it is relevant to study whether these stars can suf-
ficiently perturb an interstellar region as to induce thermal in-
stability. Obviously, many more physical mechanisms have
to be considered to describe this situation adequately but, as
mentioned before, in a first approximation this study can help
to understand the role played by this type of realistic heating.
In Sec. 2 we present the basic equations, and in Sec. 3 we
briefly explain the stability criterion we are using. The effect
of the internal source on the stability is discussed in Sec. 4
and, finally, the main conclusions are summarized in Sec.5.

2. Basic equations

The equation of energy conservation for a static, thermally
conducting fluid, with pressurep constant in timet can be
written in the form [17]:

ρcp
∂T

∂t
= ∇ · [κ(ρ, T )∇T ] + Γ(ρ, T ) + Λ(ρ, T ) , (1)

whereT is the temperature,ρ the density,cp the specific heat
per unit mass, andκ(ρ, T ) is the thermal conduction coeffi-
cient. The functionsΓ(ρ, T ) andΛ(ρ, T ) represent the heat-
ing and cooling rates per unit volume, respectively. In many
astrophysical situations the quantitiesκ, Γ andΛ can be ap-
proximated as being proportional to power laws of the form
∼ ραT β [18]. Under the assumption of isobaricity, we can
eliminate the density as an independent variable and write

κ = κ0T
k , Γ = Γ0T

m , Λ = Λ0T
n , (2)

where the constantsκ0, Γ0, Λ0 and the indicesk, m and
n are given by the physical processes involved. For in-
stance, a typical interstellar region in the range of tempera-
ture 102 ≤ T ≤ 104 K with thermal conduction by neu-
tral particles, with heating proportional to the density, and

cooled by collisions between particles, may be characterized
by k = 1/2, m = −1 andn = −3/2 [12,18].

In this work we consider an additional heating mecha-
nism. Let us assume a spherically symmetric region with ra-
diusRb that has a radiation source located at its center. The
photons coming from this source can heat the surrounding
gas. In the ISM this heating is mainly because the UV radia-
tion field is able to photoeject electrons from atoms and dust
which subsequently thermalize through collisions [3]. The
energy absorbed per unit volume is [19]:

Γs(r) = γσnF (r) , (3)

where F (r) is the radiation flux coming from the central
source,n is the number of atoms percm3, σ is the photon
capture cross section, and the efficiency parameterγ is the
fraction of incident energy which is actually absorbed by the
gas. The radiation flux decreases with distance from the cen-
ter (r) as1/r2. In order to avoid dealing with divergences at
r = 0 when integrating Eq. 1, we impose a spatial smoothing
scaleRs. Thus, the radiation flux can be represented in the
form [20]:

F (r) =
F (0) exp (−τ)

(1 + (r/Rs)2a)1/a
, (4)

whereτ is the total optical depth from the central source to
r:

τ =

r∫

0

σndr . (5)

The value of the arbitrary constanta determines how quickly
the behavior changes from∼ F (0) whenr ¿ Rs to∼ 1/r2

whenr À Rs. We have kepta unchanged (a = 10), but sev-
eral tests showed that our results do not depend ona as long
as the conditionRs ¿ Rb remains fulfilled. The flux at the
center can be calculated by assuming emission from a black
body of effective temperatureT0:

F (0) = π

∫

UV

Bν(T0)dν , (6)

Bν being the Planck’s function. The integration is done in
the far ultraviolet (900− 1100 Å) because this is the range in
which photons heat the ISM efficiently [21,22].

With these considerations, Eq. 1 can be rewritten as

ρcp
∂T

∂t
=

1
r2

∂

∂r

(
r2κ0T

k ∂T

∂r

)
+ Γ0T

m − Λ0T
n

+
γσnF (0) exp(−τ)

(1 + (r/Rs)2a)1/a
. (7)

This is the integro-differential equation whose stationary so-
lutions (and their stability) we want to study in this work. It
is convenient, however, to express it in terms of some non-
dimensional quantities. IfTeq is the temperature to which
Γ = Λ, i.e.:

Teq = (Γ0/Λ0)1/(n−m) , (8)
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then we can define a non-dimensional temperature as:

θ = T/Teq . (9)

Given the (external) heating and cooling mechanisms,Teq is
a constant representing the temperature at the thermal equi-
librium when there exists no internal heating (Γs = 0). We
also write the position normalized to the region size:

z = r/Rb , zs = Rs/Rb . (10)

We have kept the smoothing length fixed at the arbitrary value
zs = 10−8, but, as mentioned before, our results do not de-
pend on the exactzs value as long aszs ¿ 1 is satisfied.
The total optical depth from the center to the boundary for
the particular caseT = Teq = constant is:

τ0 =
σ(p/kB)Rb

Teq
, (11)

where the ideal gas equation of statep/kB = nT (kB being
the Boltzmann’s constant) has been used. Therefore, includ-
ing Eqs. 9 to 11 and normalizing the flux at the center to the
equilibrium flux, i.e. F̃ = F (0)/Feq whereFeq is the black
body flux calculated usingT = Teq, we see that the station-
ary solutions of Eq. 7 are the solutions of:

1
z2

d

dz

(
z2θk dθ

dz

)
+ λ (θm − θn)+

η F̃ exp
[−τ0

∫ z

0
(1/θ)dz

]

θ (1 + (z/zs)2a)1/a
= 0 , (12)

where

λ =
Γ0R

2
b

κ0T
k−m+1
eq

, (13)

and

η =
σ(p/kB)FeqγR2

b

κ0T
k+2
eq

. (14)

To solve Eq. 12 we need two boundary conditions for the
temperature. This paper is aimed at quantifying the effects
of an internal heat source on the stability of the steady struc-
tures taking as reference the previous papers for which the
stability criteria are known. Then, for convenience, we as-
sume exactly the same boundary conditions as those used in
Refs. 10, 13, 15, and 18:

dθ

dz
= 0 at z = 0 , (15)

θ = θb at z = 1 . (16)

The first condition follows from the symmetry of the configu-
ration: the resulting temperature distribution from the center
z = 0 to thez = +1 side should be identical to thez = −1
side. This is the only condition compatible with this prop-
erty if we impose the additional physically motivated require-
ments that both the temperature and its derivative exist and
be finite. The second condition,i.e. fixed boundary tempera-
tureθb, is necessary in order to integrate the energy equation.

We write down explicitly this condition (fixed temperature)
at z = 1 only to be consistent with the previous papers, but
actually a fixed value at any other position would be equally
valid as long as the integration overz can be performed. In
fact, we are assuming a fixed central temperature and the in-
tegration of Eq. 12 is performed outwards from this central
position (see Sec. 4). This is equivalent to converting the two
point boundary value problem (which requires considerably
more numerical effort) into an initial value problem. In prac-
tice there is no difference between both approaches because
the result of interest for this work is the entire family of so-
lutions rather than a single solution and, therefore, we have
to span the whole range of possible central (and boundary)
temperatures.

3. Stability criterion

Whenη = 0 (no internal heating source) Eq. 12 reduces to
the case studied in Ref. 10. In spite of the simplicity of the
caseη = 0, its study has already led to a better understand-
ing of the general problem of stability of structures, even al-
lowing to extend the study analytically up to the second or-
der [11]. We see that for the caseη = 0 the trivial solution
θ = 1, i.e. the thermal equilibrium solutionT = Teq, is a
solution to Eq. 12. It has been shown that this solution is
linearly unstable ifλ fulfills the condition [10]:

λ > λcri =
π2

m− n
. (17)

The dimensionless parameterλ (Eq. 13) measures the ra-
tio between heating (or cooling) at equilibrium and thermal
diffusion through the scale lengthRb. Moreover, thermal
diffusion is a stabilizing factor because it tends to diminish
any temperature fluctuation. Thus, physically, the condition
λ > λcri means that the generation of heat is so large that
it cannot be removed efficiently by thermal difussion, and
therefore a thermal instability develops. The analysis of the
rest of the stationary solutions (different from the trivial one)
cannot be done analytically but the stability can be inferred
from the position on the curveθ0 vs. θb. In Fig. 1 we show
the plot resulting from integrating Eq. 12 withη = 0. The
trivial solutionθ0 = θb = 1 (shown as a filled circle) is lo-
cated on the positive slope branch of theθ0 vs. θb curve for
the caseλ < λcri. This case corresponds to the stable solu-
tion according to Eq. 17. On the other hand, the trivial solu-
tion is on the negative slope branch for the caseλ > λcri (un-
stable solution). Moreover, forλ = λcri (marginally stable
solution) the trivial solution separates the positive and neg-
ative slope branches. According to Ref. 10 (see also Refs.
17, 18, and 23), the positive slope branch can be identified
as the stable branch. Therefore,stationary solutions located
on the positive (negative) slopes branches are expected to be
linearly stable (unstable). This is the stability criterion we
are using in this work.
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FIGURE 1. The central temperature (θ0) as a function of the bound-
ary temperature (θb) with k = 1/2, m = −1, n = −3/2, for the
caseη = 0 and the labeled values ofλ.

For the more general case (η 6= 0) we see thatθ = 1
is not a stationary solution of Eq. 12. Both the spatial de-
pendence of the internal heating and its non-local character
(i.e., the local heating depends on the material state at other
points through the optical depth) complicate the mathemati-
cal treatment in such a way that it prevents us from finding an
analytical stationary solution. Thus, a stability analysis is not
possible but nevertheless we expect the above stability cri-
terion to remain valid. The argument for this claim comes
from the relative behaviors of thermal conduction and net
heating/cooling with respect to the temperature. When two
stationary solutions are obtained for a given boundary tem-
perature (for example whenθb > 1 for the caseλ = λcri in
Fig. 1), only one of them is stable (see Refs. 17 and 23). Let
us assume, for example, that both thermal conductionQ(T )
and net heating rateL(T ) are increasing functions of tem-
perature. Two stationary solutions means thatQ = L at
two temperature values (T = Teq). Necessarily, we have
dQ/dT > dL/dT at one point and the opposite at the other.
The point at whichdQ/dT > dL/dT is stable because any
small temperature variation will be eventually damped by
thermal conduction. On the other hand, if the heating rate in-
creases with temperature faster than the thermal conduction
then any small temperature rise will grow. This argument
should remain true as long as the temperature dependences
remain the same. For a fixed positionr, the dependence of
the internal heating onT is the same as in the previous papers
(∼ T−1, i.e. proportional to density). This is the reason why
we expect the stability criterion to be valid for the case under
study.

In any case, we performed some numerical tests in or-
der to check the validity of this criterion for the more gen-
eral and complicated case of a non-local heating mechanism.
For a given set of free parameters (λ and η) we first find
numerically the corresponding stationary solutions for cen-
tral temperatures around the “turning point temperature”,i.e.
around the central temperature value that separates the posi-
tive and negative slope branches. Then we impose different

temperature perturbations (we use gaussian, exponential, and
sinusoidal profiles) around randomly chosen positions in the
structure. What we did was to check that∂T/∂t changes its
sign exactly at the turning point, in such a way that on the
positive slope branch the sign is opposite to the perturbation
(stable branch) and viceversa. We performed many tests with
different combinations of parameters and the results obtained
were the same. Although this is not a demonstration, these
tests allow us to be much more confident about the validity
of the stability criterion for the case under consideration.

4. Effect of the internal heating

To numerically solve Eq. (12) with the boundary condi-
tions (15-16) we use the Runge-Kutta method of order 4 with
adaptive step size control [24]. The distinctive feature of
Eq. 12 is the fact that to evaluate the internal heating term
we need to know the solution we are looking for. Density
is linked to temperature (because of the isobaric assumption)
and therefore the integral in Eq. 5 ultimately depends on the
temperature distribution from the source (as we have indi-
cated explicitly in Eq. 12). Thus, we have to proceed by suc-
cessively iterating Eq. 12 untilθ(r) converges to the station-
ary distribution. Then, given a central temperatureθ0, in the
first step we assume an initial distributionθ(z) = θ0 to obtain
an initial estimate of the optical depthτ(z). Then we use this
result to numerically integrate Eq. 12 and obtain a new tem-
perature profile. Now this temperature distribution is used to
recalculateτ(z), and so on. The initial conditions are always
satisfied, thus the central temperature remains constant dur-
ing these steps. The procedure is then repeated until a con-
vergence criterion is satisfied. In particular, we require that
temperature values computed at two successive steps differ
less than a prefixed small tolerance. Furthermore, we require
this condition to be met at several points inside the structure.
The final result is the whole temperature distribution from the
center to the boundary. The central temperature can then be
changed to search for other solutions with their correspond-
ing boundary temperatures.

The coefficientsλ andη are determined by the physical
processes involved (pressure, external heating, cooling, ther-
mal conduction, chemical composition, etc.). Here we con-
sider typical ISM conditions. The mean pressure of the warm
gas in the ISM isp/kB ' 103 K cm−3 [25], which is heated
mainly (in the absence of nearby stars) by the galactic radia-
tion field. Under these conditions, we haveΓ0 = 2.7×10−23,
Λ0 = 10−21, m = −1, andn = −1.5 [3, 26] (in this work
Γ andΛ are in units of erg cm−3 s−1). This yields an equi-
librium temperatureTeq ' 1370 K. Under these conditions,
the thermal conduction is mainly due to neutral particles and
thereforeκ0 = 2.5×103 andk = 1/2 [27]. The cross section
is assumed to beσ = 6.3× 10−18 cm2 [3]. We keep as con-
stants these fiducial values whereas the region size (Rb) and
the internal heating efficiency (γ) are treated as free parame-
ters. From Eqs. (13) and (17) we get that the case in which the
trivial solution is marginally stable corresponds to structures

Rev. Mex. F́ıs. 54 (2) (2008) 86–92
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with radiusRcri ≡
(
λcri κ0 T k−m+1

eq /Γ0

)1/2 ' 0.12 pc.
The total optical depth (in thermal equilibrium) would be
τ0 ' 1.7. As mentioned before,λ measures the ratio be-
tween net external heating at equilibrium and thermal con-
duction through the structure. The trivial solution is stable
whenλ < λcri because thermal conduction smooths the en-
ergy gradient more efficiently in relatively small structures
(Rb < Rcri). On the other hand,η gives in some way the
relative importance of the internal heating and thermal con-
duction terms. Thus, given three different mechanisms of en-
ergy transport (thermal conduction, net external heating, and
internal heating) there are only two free parameters [Rb and
γ, related toλ andη through Eqs. (13) and (14)] determining
the relative importance among them.

The temperature distributions inside the structure for the
caseRb = Rcri andγ = 10−3 [19] are shown in Fig. 2.
Each line in this figure is one solutionθ(z) of Eq. 12 for a
given value of central temperatureθ0 and, therefore, of inter-
nal heating. We see that there are no solutions with bound-
ary temperature (θb) below 1, so that all the solutions with
θ0 < 1 have positive temperature gradients. As we will see
later, these solutions are thermally unstable. Forθ0 > 1,
we have thatθ0 increases asθb increases, but forθ0 & 4
this behavior changes notoriously. For the highest central
temperature shown, we can see a sign change in the tem-
perature gradient aroundz ' 0.55. To understand this be-
havior, we have calculated the relative contribution of each
term in Eq. 12 and we have seen that at central tempera-
turesθ0 . 2 the internal heating is always much smaller
than the (external)heating/cooling term. Thus, the situation
is almost the same as ifγ = 0, i.e., (external)heating/cooling
balanced only by thermal conduction. In contrast, at higher
θ0 values the internal heating dominates over the (exter-
nal)heating/cooling, but this internal heating decreases very
quickly with the distance from the center and then a change
in regime occurs at some point (depending on the central
temperature). For the highest central temperature shown in
Fig. 2, this change in regime occurs precisely atz ' 0.55.
We will see in the next figure that this central temperature
is very close to the maximum central temperature for which
there exists a solution. Above this maximum, the temper-
ature gradient becomes so large that the temperature goes
down to unphysical negative values (i.e. there is no physi-
cal solution). For central temperatures between∼ 2 and this
maximum temperature the internal heating term always dom-
inates atz . 0.5. Therefore, the influence of the radiation
source seems to be important only around the central region
(for the values of constants and parameters considered here),
but its effect can be enough to make the system unstable, as
we will show next.

Theθ0 vs. θb diagram forRb = Rcri and various values
of γ are shown in Fig. 3. Each point in this figure repre-
sents one solution of Eq. 12 (i.e., one line in Fig. 2), and each
line represents a family of possible solutions for each pair of
values (Rb, γ). Note that all curves cross through the triv-
ial solution (θ0 = θb = 1, shown as a filled circle). This is

contrary to the expected behavior becauseθ = 1 = constant
is not a solution of the energy equation. But, as mentioned
before, at central temperatures aroundθ0 = 1 the internal
heating can be neglected and the situation is equivalent to the
caseγ = 0. According to the stability criterion (Sec. 3.),
the solutions located on the positive slope branch are stable,
and viceversa. For the caseγ = 0 we recover the solutions
studied in Ref. 10, where the trivial solution is marginally
stable and the other solutions withθ0 > 1 are stable. For
the casesγ 6= 0 we observe that there exists a maximum
central temperature (hereinafterθ0,max) above which the so-
lutions become thermally unstable. For the caseγ = 10−3

this threshold occurs atθ0,max ' 3.9, but clearlyθ0,max de-
creases asγ increases.

In Fig. 4 we have fixed the internal heating efficiency
(γ = 10−3) and we have varied the radiusRb. At low cen-
tral temperatures the behavior is similar to the caseγ = 0,
i.e., the trivial solution is stable forRb < Rcri and unstable

FIGURE 2. The distributions of temperature withk = 1/2,
m = −1, n = −3/2, for the caseRb = Rcri andγ = 10−3.
Dashed line corresponds to the highest central temperature shown
(θ0 = 4.4).

FIGURE 3. The central temperature (θ0) as a function of the bound-
ary temperature (θb) with k = −1/2, m = −1, n = −3/2, for the
caseRb = Rcri and the labeled values ofγ. The thermal equilib-
rium solution is indicated by a filled circle.
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FIGURE 4. As in Fig. 3 but for the caseγ = 10−3 and the la-
beled values ofRb. The thermal equilibrium solution is marked by
a filled circle, and the open circles indicate the threshold solution
θ = θ0,max.

for Rb > Rcri. At relatively high central temperatures, we
obtain that the threshold temperatureθ0,max for thermal in-
stability (indicated as open circles in Fig. 4) is approximately
constant. This interesting result is a direct consequence of the
“local” character of the internal heating: this heating mech-
anism decreases so quickly withz that its destabilizing ef-
fect does not depend on the structure size. It can be seen
that there is a small variation inθ0,max for the extreme case
Rb = 10−6Rcri, but this value is so small (∼ 5Rsun for our
fiducial values) that its validity is questionable.

In the case of a star that migrates into a diffuse inter-
stellar region, the quantityθ0,max would represent the pho-
tospheric (effective) temperature of a star above which the
surrounding medium becomes thermally unstable. We have
to point out that this simple interpretation is possible only
if the time-scale for thermal conduction is shorter than any
other time scale (e.g. the dynamical time) that could be in-
volved in the problem. For our fiducial case withγ = 10−3

and Rb = Rcri ' 0.12 pc we obtainθ0,max ' 3.9. An
interesting result is thatθ0,max does not depend on, or de-
pends very weakly on,Rb (at least under the conditions and
assumptions considered in this work). In other words, our

results suggest that a solar-like star with surface temperature
∼ 5300 K may possibly destabilize the medium in its vecin-
ity, almost independently of the region size. After this, the
surrounding medium will undergo a transition to another state
(or phase). Differences in the chemical composition and/or
the amount of dust from region to region in the Galaxy (or
in other galaxies) may change the value ofγ [19], and con-
sequently the maximum central temperature. Here we obtain
θ0,max = 3.6 for γ = 10−2 andθ0,max = 3.2 for γ = 10−1.

If stars eventually migrate into interstellar regions, then
thermal instabilities caused by these stars may play a non-
negligible role in stimulating phase transitions in the ISM.
However, the present model is clearly too simple to be di-
rectly applicable to the ISM. The strongest restriction is per-
haps isobaricity, which is a difficult condition to be fulfilled
even in the diffuse ISM [25]. Notwithstanding these limita-
tions, our results suggest that thermal instabilities driven by
stars could be a key mechanism in the ISM.

5. Conclusions

We have studied the equilibrium and stability of isobaric,
spherical structures with an internal radiation source located
at their center. We find that there exists a threshold central
temperature above which the structure becomes thermally un-
stable, and this temperature decreases as the internal heating
efficiency increases. Interestingly, the threshold temperature
does not depend on the region size, because the destabilizing
mechanism has only a local effect. We have shown that ther-
mal instability triggered by an embedded source may have
interesting consequences in the ISM evolution which should
be addressed in future, more complete, studies.
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