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Stability of thermal structures with an internal heating source
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We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at their center. The thermal
conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases
with distance from the source approximately asv exp(—7)/r?, T being the optical depth. We find that the influence of the radiation

source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central
temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the
structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

Keywords: Hydrodynamics; instabilities; interstellar medium.

En este trabajo estudiamos el equilibr@arico y la estabilidad de estructuras iadbas y edfricas que tienen una fuente de radbaci

en su centro. La condudsi termica y las tasas de calentamiento externo y enfriamiento son representadas como leyes de potencia de
la temperatura. El calentamiento interno disminuye con la distancia a la fuegeximadamente come exp(—7)/r?, siendor la
profundidadoptica. Los resultados indican que la influencia de la fuente de radiasiimportante solamente en la tegtentral, pero su

efecto es suficiente para que el sistema se vuélvaitamente inestable por encima de una cierta temperatura umbral en el centro. Esta
temperatura umbral disminuye a medida que la eficiencia del calentamiento interno aumenta, pero por otro lado la misma no depende del
tamdio de la estructura. Nuestros resultados sugieren que una estrella de tipo solar que migeedetnaedio interestelar difuso puede

llegar a desestabilizarlo.

Descriptores: Hidrodinamica; inestabilidades; medio interestelar.

PACS: 47.50.Gj; 95.30.Lz; 98.38.Am

1. Introduction tures are obtained and stability criteria can be derived ana-
lytically [10]. These criteria can be extended analytically up

Most of the structures observed in Astrophysics can be fullyfo the second order [11]. In spite of the simplicity of this
explained only if one takes into account several physicafPProach (many physical processes are not considered) these
processes simultaneously, such as dynamics, self-gravitatiofgSults can be applied successfully to the atomic phase of the
magnetic fields, radiation transfer, thermal conduction, com!SM [12], molecular clouds [13], and the solar corona [14].
plex chemical networks, etc. Since the seminal paper b)usually, it is assumed that the heating mechanisms are “lo-
Field [1], a lot of work has been devoted to the study of thecal” functions, in the sense that they depend only on the local
thermal and mechanical equilibrium of structures under thédhermodynamical state (temperature, density). However, two
action of different physical mechanisms [2]. One of the mo-factors may complicate this picture. On the one hand, the
tivations behind this kind of study has been to explain theh€ating mechanism could be an explicit function of the po-
formation of structures via thermal instabilities. Nowadays Sition in the structure. This situation applies, for example,

it is clearly established that thermal instabilities play a majorif @ heating source is located close to the structure, such as
role in several astrophysical contexts, such as the solar chr@" interstellar region with a nearby star (or star cluster), or
mosphere and corona, interstellar medium (ISM), planetaryhe solar corona heated by the chromosphere. For coronal
nebulae, and intergalactic medium [2—6]. A full modeling of loops, it has been shown that the existence or not of thermal
these systems may be a relatively difficult task requiring largé&duilibrium solutions and their stability is subordinated to the
computational resources.(J. see Refs. 7 to 9). On the other SPatial dependence of the heating [14]. On the other hand, if
hand, the development of simple models including few physthe heating mechanism is associated with radiative processes,
ical processes allows us to clarify the specific role of eacithe opacity adds a non-local character to the heating function,

process, setting up the framework for more realistic models.making it difficult to perform an analytical study. In Ref. 15
. the stability of structures heated by radiative processes was
When only thermal conduction and a net heat-loss func-

tion are considered, a variety of (isobaric) thermal Struc_analyzed. Generally, the results showed that the effect of in-
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creasing the opacity is to increase the stability of the thermatooled by collisions between particles, may be characterized

structures. However, in order to achieve certain analyticaby k = 1/2, m = —1 andn = —3/2[12,18].

results that work was limited to the unrealistic case of a slab- In this work we consider an additional heating mecha-

like configuration irradiated simultaneously on both sides. nism. Let us assume a spherically symmetric region with ra-
In the present paper, our attention is focused on investidius R, that has a radiation source located at its center. The

gating the thermal equilibrium and the stability of sphericalphotons coming from this source can heat the surrounding

structures heated by a radiation source located at their centgyas. In the ISM this heating is mainly because the UV radia-

Besides the pure academic interest of generalizing the previion field is able to photoeject electrons from atoms and dust

ous results [10-13, 15] by including an internal heat sourcewhich subsequently thermalize through collisions [3]. The

this kind of study could be very useful because this is a comenergy absorbed per unit volume is [19]:

mon configuration, in particular in Astrophysics. We try to

keep the approach as general as possible and, therefore, our Ls(r) =yonF(r), (3)

results can in principle be directly applied to any situation in ) o .

which an isobaric, spherical structure has an internal radiahere £'(r) is the radiation flux comw;g from the central

tion source. However, we use values for constants and pararg@urcen is the number of atoms pern®, o is the photon

eters that are appropriate for typical interstellar conditions be€a@Pture cross section, and the efficiency parameterthe

cause in the future we plan to generalize this work in ordeffaction of incident energy which is actually absorbed by the
for it to be applicable to interstellar regions in the Galaxy. t92S- The raoélatlon flux decreases with distance from the cen-
is known, for example, that the diffuse ISM is linearly ther- (€7 (*) as1/7*. In order to avoid dealing with divergences at
mally stable but nonlinearly unstable.¢. Ref. 16). More- " = 0 When integrating Eq. 1, we impose a spatial smoothing

over, it is expected that stars systematically pass through thF@le£%s. Thus, the radiation flux can be represented in the

ISM. Thus, it is relevant to study whether these stars can suf®™ [20]: F(0) exp (—7)

ficiently perturb an interstellar region as to induce thermal in- F(r)= =P _Tl/ , 4)
stability. Obviously, many more physical mechanisms have (L+ (r/Rs)2e)""

to be considered to describe this situation adequately but, agherer is the total optical depth from the central source to
mentioned before, in a first approximation this study can help-:

r

to understand the role played by this type of realistic heating.
In Sec. 2 we present the basic equations, and in Sec. 3 we T= /‘mdr : ®)
briefly explain the stability criterion we are using. The effect 0

of the internal source on the stability is discussed in Sec. 4he value of the arbitrary constamtietermines how quickly
and, finally, the main conclusions are summarized in Sec.5.the behavior changes from F(0) whenr < R, to ~ 1/7?
whenr > R;. We have kept. unchangedd = 10), but sev-
eral tests showed that our results do not depend as long
as the conditiom?, < R, remains fulfilled. The flux at the

The equation of energy conservation for a static, thermallyt€nter can be calculated by assuming emission from a black
conducting fluid, with pressure constant in timet can be  body of effective temperaturg:

written in the form [17]:
FO) =7 [ BTy, ®)

0 50 = (. TIVT] + T, T) + A(p.T) . () v

2. Basic equations

B, being the Planck’s function. The integration is done in
the far ultraviolet 00 — 1100 /Dl) because this is the range in
which photons heat the ISM efficiently [21, 22].

With these considerations, Eq. 1 can be rewritten as

whereT is the temperature, the density,, the specific heat
per unit mass, and(p, T is the thermal conduction coeffi-
cient. The function®'(p, T') andA(p, T') represent the heat-
ing and cooling rates per unit volume, respectively. In many
astrophysical situations the quantitiesI" and A can be ap- T 1 o
proximated as being proportional to power laws of the form P ar ~ 2 or <
~ p®TP [18]. Under the assumption of isobaricity, we can

eliminate the density as an independent variable and write 4 YonF(0) exp(—7) @)

(14 (r/Ry)2)/*

This is the integro-differential equation whose stationary so-
where the constantsy, I'g, Ag and the indices:, m and Ilutions (and their stability) we want to study in this work. It
n are given by the physical processes involved. For indis convenient, however, to express it in terms of some non-
stance, a typical interstellar region in the range of temperadimensional quantities. 11, is the temperature to which
ture 102 < T < 10* K with thermal conduction by neu- T' = A, i.e:
tral particles, with heating proportional to the density, and Teqg = (Do /Ag)/ (v=m) | (8)

oT
T2/€0Tk> +ToT™ — AgT™
or

k=roTF, D =TgT", A= AT", (2)
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then we can define a non-dimensional temperature as: We write down explicitly this condition (fixed temperature)
atz = 1 only to be consistent with the previous papers, but
0=T/Te . (9)  actually a fixed value at any other position would be equally

. . . . . valid as long as the integration overcan be performed. In
Given the (external) heating and cooling mechanisfig/s fact, we are assuming a fixed central temperature and the in-

a constant representing the temperature at the thermal equi-~" . : .
librium when there exists no internal heatirig, (= 0). We egration of Eqg. 12 is performed outwards from this central

also write the position normalized to the region size: position (see Sec. 4). This is equivalent to converting the two
' point boundary value problem (which requires considerably

z=71/Ry,2s = Ry/Ry . (10)  more numerical effort) into an initial value problem. In prac-
tice there is no difference between both approaches because
We have kept the smoothing length fixed at the arbitrary valughe result of interest for this work is the entire family of so-
z, = 1078, but, as mentioned before, our results do not dedutions rather than a single solution and, therefore, we have
pend on the exact; value as long ag; < 1 is satisfied. to span the whole range of possible central (and boundary)
The total optical depth from the center to the boundary fotemperatures.
the particular casg' = 7., = constant is:

_ o(p/kB)Ry

To
T ’

(11) 3. Stability criterion

where the ideal gas equation of stajép = nT (kg being  Whenn = 0 (no internal heating source) Eq. 12 reduces to
the Boltzmann’s constant) has been used. Therefore, includhe case studied in Ref. 10. In spite of the simplicity of the
ing Egs. 9 to 11 and normalizing the flux at the center to thecasen = 0, its study has already led to a better understand-
equilibrium flux,i.e. F = F(0)/F., whereF., is the black  ing of the general problem of stability of structures, even al-

body flux calculated usin@ = T.,, we see that the station- lowing to extend the study analytically up to the second or-

ary solutions of Eq. 7 are the solutions of: der [11]. We see that for the cage= 0 the trivial solution
6 = 1, i.e. the thermal equilibrium solutiof” = T,, is a
14d <Z29kda> +A0™ —0™) + solution to Eq. 12. It has been shown that this solution is
2% dz dz linearly unstable if\ fulfills the condition [10]:

n Fexp [—T() foz(l/G)dz]

=0, (12) w2
0(1+ (2/z)%)"" A> Ay = ——. (17)
where
N = Lo R? 13 The dimensionless parametgr(Eq. 13) measures the ra-
- KOqu—m-‘rl ) (13) tio between heating (or cooling) at equilibrium and thermal
and ) diffusion through the scale lengtR,. Moreover, thermal

o(p/kp)FeqyR2 diffusion is a stabilizing factor because it tends to diminish
= %T—éfjg (14) any temperature fluctuation. Thus, physically, the condition

. A > A, means that the generation of heat is so large that
To solve Eq. 12 we need two boundary conditions for the cannot be removed efficiently by thermal difussion, and

temperature. This paper is aimed at quantifying the effecty, o efore a thermal instability develops. The analysis of the
of an internal heat source on the stability of the steady StruGzag; of the stationary solutions (different from the trivial one)

ture§.tak|n_g as reference the previous papers for which thgznnot be done analytically but the stability can be inferred
stability criteria are known. Then, for convenience, we aS$rom the position on the curvé, vs. 6,. In Fig. 1 we show

sume exactly the same boundary conditions as those used jgq plot resulting from integrating Eq. 12 with= 0. The

Refs. 10, 13, 15, and 18: trivial solution, = 6, = 1 (shown as a filled circle) is lo-

do cated on the positive slope branch of thevs. 8, curve for

dz 0at z=0, (15) the case\ < A..;. This case corresponds to the stable solu-

tion according to Eqg. 17. On the other hand, the trivial solu-

0=0, at z=1. (18)  tionis on the negative slope branch for the case \.,; (un-
The first condition follows from the symmetry of the configu- stable solution). Moreover, fox = \..; (marginally stable
ration: the resulting temperature distribution from the centesolution) the trivial solution separates the positive and neg-
z = 0 to thez = +1 side should be identical to the= —1  ative slope branches. According to Ref. 10 (see also Refs.
side. This is the only condition compatible with this prop- 17, 18, and 23), the positive slope branch can be identified
erty if we impose the additional physically motivated require-as the stable branch. Therefostationary solutions located
ments that both the temperature and its derivative exist andn the positive (negative) slopes branches are expected to be
be finite. The second conditione. fixed boundary tempera- linearly stable (unstable) This is the stability criterion we
tured,, is necessary in order to integrate the energy equatiorare using in this work.

n
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STABILITY OF THERMAL STRUCTURES WITH AN INTERNAL HEATING SOURCE 89

temperature perturbations (we use gaussian, exponential, and
sinusoidal profiles) around randomly chosen positions in the
structure. What we did was to check ti#8f /0t changes its

sign exactly at the turning point, in such a way that on the
positive slope branch the sign is opposite to the perturbation
(stable branch) and viceversa. We performed many tests with
different combinations of parameters and the results obtained
were the same. Although this is not a demonstration, these
tests allow us to be much more confident about the validity
of the stability criterion for the case under consideration.

8

08

4. Effect of the internal heating

0.6

L
0.8 0.9

To numerically solve Eqg. (12) with the boundary condi-
FIGURE 1. The central temperaturéd) as a function of the bound-  tions (15-16) we use the Runge-Kutta method of order 4 with
ary temperaturet) with k = 1/2, m = —1,n = —3/2,forthe  adaptive step size control [24]. The distinctive feature of
casen = 0 and the labeled values af Eg. 12 is the fact that to evaluate the internal heating term

we need to know the solution we are looking for. Density

For the more general casg ¢ 0) we see that = 1 s |inked to temperature (because of the isobaric assumption)
is not a stationary solution of Eq. 12. Both the spatial de-ang therefore the integral in Eq. 5 ultimately depends on the
pendence of the internal heating and its non-local characteemperature distribution from the source (as we have indi-
(i.e, the local heating depends on the material state at otheizted explicitly in Eq. 12). Thus, we have to proceed by suc-
points through the optical depth) complicate the mathematizessively iterating Eq. 12 until(r) converges to the station-
cal treatment in such a way that it prevents us from finding anyry distribution. Then, given a central temperatéiyein the
analytical stationary solution. Thus, a stability analysis is nofjrst step we assume an initial distributi6z) = 6, to obtain
possible but nevertheless we expect the above stability crign injtial estimate of the optical depttiz). Then we use this
terion to remain valid. The argument for this claim comesyagy|t to numerically integrate Eq. 12 and obtain a new tem-
from the relative behaviors of thermal conduction and netyerature profile. Now this temperature distribution is used to
heating/cooling with respect to the temperature. When tW@ecalculater(z), and so on. The initial conditions are always
stationary solutions are obtained for a given boundary temsatisfied, thus the central temperature remains constant dur-
perature (for example whefy > 1 for the case\ = A.r; IN ing these steps. The procedure is then repeated until a con-
Fig. 1), only one of them is stable (see Refs. 17 and 23). Lefergence criterion is satisfied. In particular, we require that
us assume, for example, that both thermal condud6fi)  temperature values computed at two successive steps differ
and net heating raté(T’) are increasing functions of tem- |ess than a prefixed small tolerance. Furthermore, we require
perature. Two stationary solutions means tQat= L at  thjs condition to be met at several points inside the structure.
two temperature values/'(= T.,). Necessarily, we have The final resultis the whole temperature distribution from the
dQ/dT > dL/dT at one point and the opposite at the other.center to the boundary. The central temperature can then be
The point at whichiQ/dT" > dL/dT is stable because any changed to search for other solutions with their correspond-
small temperature variation will be eventually damped inng boundary temperatures.
thermal conduction. On the other hand, if the heating rate in-  The coefficients\ andn are determined by the physical
creases with temperature faster than the thermal conductiqﬂocesseS involved (pressure, external heating, cooling, ther-
then any small temperature rise will grow. This argumentmga| conduction, chemical composition, etc.). Here we con-
should remain true as long as the temperature dependencgger typical ISM conditions. The mean pressure of the warm
remain the same. For a fixed positionthe dependence of g5s in the ISM ig/kp ~ 103 K cm~3 [25], which is heated
the internal heating offf is the same as in the previous papersmainly (in the absence of nearby stars) by the galactic radia-
(~T~', i.e. proportional to density). This is the reason why tion field. Under these conditions, we havyg= 2.7x 1023,
we expect the stability criterion to be valid for the case undery, — 1021,y = —1, andn = —1.5 [3,26] (in this work
study. I" andA are in units of erg cm® s™1). This yields an equi-

In any case, we performed some numerical tests in orlibrium temperaturd,, ~ 1370 K. Under these conditions,
der to check the validity of this criterion for the more gen- the thermal conduction is mainly due to neutral particles and
eral and complicated case of a non-local heating mechanisnthereforesg = 2.5x 10% andk = 1/2 [27]. The cross section
For a given set of free parameters &ndn) we first find  is assumed to be = 6.3 x 1078 cn? [3]. We keep as con-
numerically the corresponding stationary solutions for censtants these fiducial values whereas the region giggdnd
tral temperatures around the “turning point temperature”’, the internal heating efficiencyy] are treated as free parame-
around the central temperature value that separates the potrs. From Egs. (13) and (17) we get that the case in which the
tive and negative slope branches. Then we impose differeritivial solution is marginally stable corresponds to structures
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with radiusR.,; = ()\m- Ko qu—””“ /1“0)1/ >~ 012 pc. contrary to the expected behavior becafise 1 = constant
The total optical depth (in thermal equilibrium) would be is not a solution of the energy equation. But, as mentioned
7o ~ 1.7. As mentioned before)\ measures the ratio be- before, at central temperatures arould= 1 the internal
tween net external heating at equilibrium and thermal conheating can be neglected and the situation is equivalent to the
duction through the structure. The trivial solution is stablecasey = 0. According to the stability criterion (Sec. 3.),
when\ < \.-; because thermal conduction smooths the enthe solutions located on the positive slope branch are stable,
ergy gradient more efficiently in relatively small structuresand viceversa. For the cage= 0 we recover the solutions
(R, < R..;). On the other hand, gives in some way the studied in Ref. 10, where the trivial solution is marginally
relative importance of the internal heating and thermal constable and the other solutions with > 1 are stable. For
duction terms. Thus, given three different mechanisms of enthe casesy # 0 we observe that there exists a maximum
ergy transport (thermal conduction, net external heating, angentral temperature (hereinafty....x) above which the so-
internal heating) there are only two free parametésdnd  lutions become thermally unstable. For the case 1073

7, related to\ andn through Egs. (13) and (14)] determining this threshold occurs & . ~ 3.9, but clearlyfy . de-

the relative importance among them. creases as increases.

The temperature distributions inside the structure for the In Fig. 4 we have fixed the internal heating efficiency
caseR, = R..; and~y = 1073 [19] are shown in Fig. 2. (v = 10—3) and we have varied the radiu,. At low cen-
Each line in this figure is one solutiaf(z) of Eq. 12 for a  tral temperatures the behavior is similar to the case 0,
given value of central temperatuig and, therefore, of inter- 1., the trivial solution is stable foR, < R.,; and unstable
nal heating. We see that there are no solutions with bound-
ary temperatured,) below 1, so that all the solutions with )
Ay < 1 have positive temperature gradients. As we will see ?
later, these solutions are thermally unstable. #pr> 1, a5
we have that), increases a8, increases, but fof, = 4
this behavior changes notoriously. For the highest central
temperature shown, we can see a sign change in the tem 2s
perature gradient around ~ 0.55. To understand this be-
havior, we have calculated the relative contribution of each ©
term in Eq. 12 and we have seen that at central tempera- s
turesfy < 2 the internal heating is always much smaller

~

than the (external)heating/cooling term. Thus, the situation =
is almost the same as-f= 0, i.e., (external)heating/cooling 0s % ___________
balanced only by thermal conduction. In contrast, at higher

0, values the internal heating dominates over the (exter- ‘o 02 0 0s 03 1
nal)heating/cooling, but this internal heating decreases ver o ]
quickly with the distance from the center and then a chang(ié'GURE 2. The distributions of temperature with = 1/2,
in regime occurs at some point (depending on the central. ~ —1,n = —3/2, for the caseity = Her; andy = 10"
. Dashed line corresponds to the highest central temperature shown

temperature). For the highest central temperature shown |{b0 — 4.4).
Fig. 2, this change in regime occurs precisely at 0.55.
We will see in the next figure that this central temperature s
is very close to the maximum central temperature for which
there exists a solution. Above this maximum, the temper-
ature gradient becomes so large that the temperature goe 4}
down to unphysical negative valueise( there is no physi- sl
cal solution). For central temperatures betweef and this
maximum temperature the internal heating term always dom- ¢
inates atz < 0.5. Therefore, the influence of the radiation 251
source seems to be important only around the central regior ,|
(for the values of constants and parameters considered here
but its effect can be enough to make the system unstable, a:
we will show next. r

The 6, vs. 6, diagram forR, = R..; and various values . . ‘ ‘ . . ‘ .
of v are shown in Fig. 3. Each point in this figure repre- R
sents one solution of Eq. 12€, one line in Fig. 2), and each g gyre 3. The central temperaturéq) as a function of the bound-
line represents a family of possible solutions for each pair okyry temperaturesg) with k = —1/2, m = —1,n = —3/2, for the
values Ry, v). Note that all curves cross through the triv- caseR, = R..,:; and the labeled values of The thermal equilib-
ial solution ¢y = 6, = 1, shown as a filled circle). This is rium solution is indicated by a filled circle.

j/////////////

45
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results suggest that a solar-like star with surface temperature
~ 5300 K may possibly destabilize the medium in its vecin-
ity, almost independently of the region size. After this, the
surrounding medium will undergo a transition to another state
(or phase). Differences in the chemical composition and/or
the amount of dust from region to region in the Galaxy (or
in other galaxies) may change the valueydfl9], and con-
sequently the maximum central temperature. Here we obtain
00 max = 3.6 for y = 1072 andfy yax = 3.2 for y = 1071,

If stars eventually migrate into interstellar regions, then
thermal instabilities caused by these stars may play a non-
o ‘ ‘ . . ‘ . negligible role in stimulating phase transitions in the ISM.
08 1 14 2 & 3 as 4 45 However, the present model is clearly too simple to be di-

rectly applicable to the ISM. The strongest restriction is per-
haps isobaricity, which is a difficult condition to be fulfilled
even in the diffuse ISM [25]. Notwithstanding these limita-
tions, our results suggest that thermal instabilities driven by

stars could be a key mechanism in the ISM.

for R, > R..;. Atrelatively high central temperatures, we
obtain that the threshold temperatikgy,.x for thermal in-
stability (indicated as open circles in Fig. 4) is approximately

constant. Thisinterestin_g result isao_lirect consequence oftl\ﬁ/e have studied the equilibrium and stability of isobaric,
“chal” character of the |_nternall heatlng: this he‘ji.t".]g mech’spherical structures with an internal radiation source located
anism decreases so quickly withthat its Qestablhzmg € at their center. We find that there exists a threshold central
fect does not depend on Fhe structure size. It can be See[@mperature above which the structure becomes thermally un-
that therfz6|s a small "?‘”a“"” l.%’ma" for the extreme case stable, and this temperature decreases as the internal heating
Rb ~ 1075 Rer;, but _th|s V"?"‘_’e IS S0 sm_al}\( 5Ftsun for our efficiency increases. Interestingly, the threshold temperature
fiducial values) thai its validity is questionable. does not depend on the region size, because the destabilizing

In the case of a sta_r that migrates into a diffuse Nt echanism has only a local effect. We have shown that ther-
stellar region, the quantit§ .x Would represent the pho-

mal instability triggered by an embedded source may have
tospheric (effective) temperature of a star above which th y nag y y

, X ?nteresting consequences in the ISM evolution which should
surrounding medium becomes thermally unstable. We haVBe addressed in future, more complete, studies

to point out that this simple interpretation is possible only

if the time-scale for thermal conduction is shorter than any

other time scaleg(.g. the dynamical time) that could be in- Acknowledgments
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FIGURE 4. As in Fig. 3 but for the case = 1072 and the la-
beled values of?;,. The thermal equilibrium solution is marked by
a filled circle, and the open circles indicate the threshold solution
0= 90,max-

5. Conclusions
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