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It is shown that the Hamiltonian of a particle in a uniform gravitational field which possesses a constant of motion not related to transforma-
tions in the configuration space, can be expressed in a system of canonical coordinates such that a maximal set of independent constants
motion follows from the existence of ignorable coordinates.
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Se muestra que la hamiltoniana de unaipata en un campo gravitacional uniforme, la cual posee una constante de movimiento no rela-
cionada con transformaciones en el espacio de configurgouede expresarse en un sistema de coordenadasc@tal que un conjunto
maximo de constantes de movimiento sigue de la existencia de coordenadas ignorables.

Descriptores: Simetiias ocultas; formalismo hamiltoniano.

PACS: 45.20.Jj; 03.65.-w; 02.20.Qs

1. Introduction which the existence of two constants of motion, in addition to

_ _ _ _ the Hamiltonian, follows from the obvious symmetries of the
The invariance of the Lagrangian of a mechanical system un-amiltonian. This coordinate system is obtained by looking
der continuous transformations of the configuration space akor the orbits of the transformations generated by the con-
lows one to readily find constants of motion. However, instants of motion in the phase space. A similar procedure
some cases, there exist constants of motion not related an be applied in other examples to make the hidden sym-
symmetries in the configuration space. Two well-known ex-metries obvious. The main results of this paper are presented

amples are the isotropic harmonic oscillator and the Keplemn Sec. 2, and in Sec. 3 we show how the new coordinates are
problem; in both cases, in addition to the angular momengbtained.

tum, whose conservation follows from the invariance of the
standard Lagrangian under rotations about the center of forc

there exist constants of motion that are not associated witft" The canonical transformation

symmetries of the Lagrangian. . . The usual Lagrangian for a particle in a uniform gravitational
It may be remarked that, for a given set of equations ofig|q, written in Cartesian coordinates, is given by
motion, the Lagrangian is not unique (seeg, Ref. 1) and

m, . .
the symmetries of a Lagrangian may not be shared by the L= 5(962 +9°%) — mgy, 1)
alternative Lagrangians. For example, the equations of mo- ) ) i
tion# = 0, j — —g, considered in this paper, can be ob- wherem is the mass of the particle ands the acceleration
tained from the Euler—Lagrange equations making use of th8f 9ravity. Since the coordinateis ignorable p, = mi is

usual Lagrangian, given by Eq. (1) below, or the functioncOnserved. Making use of the equation of motjpr= —g,
L' = miy — mga; in this case one Lagrangian does not@ straightforward computation shows thaj + gz is also
depend on: and the other does not dependson conserved, but the fact that this constant of motion is not a

On the other hand, in the Hamiltonian formalism, ev- homogeneous function of degree 1 in the components of the

ery constant of motion is associated with a symmetry of théinear momentum implies that its existence is not associated
Hamiltonian function; in fact, each constant of motisrthe with the invariance of the Lagrangian (1) under a continuous

Lo ; f transformations on the configuration space (eag
infinitesimal generator of a one-parameter group of canonise. © ) ) .
g P group efs. 2 and 3). In other words, besides the obvious invari-

cal transformations that leave the Hamiltonian invariant. Thé? ¢ under t lai | theaxis. L
corresponding symmetry of the Hamiltonian may not be ob2MNCe OIL under transiations along theaxis, L possesses a

vious since these transformations may mix coordinates anaIdden s_ymmetry. I .
Turning to the Hamiltonian formalism, the standard pro-

momenta. . ) .
) . L . . cedure applied to the Lagrangian (1) leads to the Hamiltonian
In this paper we consider a particle in a uniform gravi- .
. ; S . ., function
tational field, which is an example of a system with a hid- P2 +p§

den symmetry. We find a set of canonical coordinates for H =———= +mgy. (2
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It can be readily verified that the coordinate transformation can show that, for each value of the parametgrthe ex-
pressionp(y + p2 /2m?2g) e*P=/" appearing in the integral

z=z+ %, Pz = Da, in Eq. (7), is a solution to the Sabdinger equation (6). In
29 effect, making use of the chain rule, one finds that
Py
w=y+ s Pw =Dy (3) 9% 02 .
2mg (8:1@2 + 6y2> Sy + p3/2m*g) &P/l

is canonical; in fact, making use of Egs. (3) one finds that

2
Pz i\ Lizps/h
~(Bor o) @
. 2
]Zggdp”” * n];;gdpy) ( '
On the other hand, Eq. (5) yields

p.dz + ppdw = p, (dx + -

Pz
+ (dy + de> 2m
Y m2g ¢N|w:y+p§/2ng = - 72 [E —mg(y +pi/2m2g)] o,
2
= podz + pydy + d <pw§y) , which, substituted into Eq. (8), shows that the function
m=g oy + p2/2m2g)er=/" satisfies the Scbdinger equa-

In terms of the new coordinates, the Hamiltonian (2) takedion (6). This function contains the paramegerin addition

the form to the parameteF contained inp.
2

H =2 4 mgw, (4)
2m

which is a function ofw andp,, only; hence,z andp, are
constants of motion. Thus, the conservatiopolndiy+gx  Each (differentiable) functionf, defined on the phase space
becomes an immediate consequence of the factthatlp,  of a mechanical system with degrees of freedom gives rise
are ignorable coordinates in expression (4). It may be noticetb a linear partial differential operator (or vector fieldjy,
that Eq. (4) corresponds to a particle in a uniform gravita-given by
tional field inonedimension. N

Making use of the conservatidi, z, andp., one readily X, = Z <0f o of 9 ) ©)
shows that the orbits in they-plane are parabolas. 0q; Opi  Opi Jq;

3. Derivation

i=1

Quantum version in an arbitrary system of canonical coordinaggsp;. Then,
the Poisson bracket can be expressed, or defined, by
Following the standard rules, from the Hamiltonian func-

tion (4) one obtains the time-independent $cfinger equa- {f.9} = Xyg. (10)
tion h? 02%¢ Furthermore, for any pair of differentiable functiorfs,g,
T om D02 +mgwo = E¢, ()
(X5 Xgl = Xi1,93- (11)

whose solution can be expressed in terms of Airy functions

or, equivalently, of Bessel functions of ordet /3 (seee.g,  SinceX;f = 0, the vector fieldX; is tangent to the hyper-
Ref. 4). The question now is, given a solutigifw) of surfacesf = const.

Eq. (5), how can we obtain a wave function depending on If f = f(q;,p;) is a constant of motion (that does not

the original coordinates, y? depend explicitly on time), the Poisson brackgt H} van-
In terms of the original coordinates one has the time-shes or, equivalentlyX ; 7 = 0, which means thai; is
independent Scbdinger equation [see Eq. (2)]: also tangent to the hypersurfadds= const.
ooty 8% As pointed out above, in the specific case of the Hamil-
v <2 + 2) + mgy = Ev. (6)  tonian (2), the functiong,, and A = z + p,p,/m3g are
2m \ Ox dy constants of motion; the vector fields associated with them

Taking into account that the wave functigrdepends on the are [see Eq. (9)]
variablew, which is a mixture ofy andp,,, one may guess o o
that a solution)(z, y) to Eq. (6) can be obtained from{w) Xpe = =g Xa=o =~ o5, (12
by means of a partial Fourier transform
and a straightforward computation shows that

1 r 2 2 i h
T,y) = —— + p2/2m2g) e*Pe/Mdp, (7 X,.,X4]=0. 13
Vo) = o= [ oyt /2 p () X, X (3)
o (which also follows from Eq. (11), noting that
where we have replaced the variabledy its equivalent ex- {p,, A} = X, A = —1). According to Frobenius’ the-

pression in terms of andp, given by Egs. (3). In fact, we orem, Eq. (13) implies that the phase space is foliated
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by two-dimensional surfaces characterized by the fact that, and A, such thaf{z,p,} = 1. Since{A,p,} = 1, we can

Xp, and X4 are tangent to them (see,g, Ref. 5). Since choose

Xp, H = 0 = X, H, the Hamiltonian is constant on these z=x+ M, Ps = Pu- a7

two-dimensional surfaces.
Looking for the simultaneous solutions to the linear par-As shown in the preceding section, Eqgs. (15) and (17) define

tial differential equationsy,,, f = 0 andX 4 f = 0, one read- & canonical transformation.

ily finds that the above-mentioned surfaces are also given by

py=comst, 1% £ migy=const.  (14) 4. Concluding remarks

As pointed out above, the constants of motibandp, sat-
isfy the relation{ A, p,} = 1, and the corresponding vector
1, ) fields X4 and X,,, commute [see Eq. (13)]; thus, the sym-
9Pz +m gy metry group generated by 4 and X, in the phase space is
Abelian and its action consists of translations aleramndp. .

In the quantized system andp, are operators that do

Hence, the Hamiltonian must be a functiorpgfand

only; in fact, one finds that

1 not commute with each other, and the symmetry group gener-
H = pf,/?m + <2pi + ngy) /m. ated byA, p., and 1 is the Heisenberg group; the states with
a given energy form a representation space for this group.
Since Specifically, the time-independent Sédinger equation (6)
admits separable solutions of the form
{32 + m?gy,p,} = m?g, 4
, e fk(y), (18)
the functions
9 wherefg i (y) depends parametrically diandk. As is well
w=y+ Ps DPw = Dy, (15)  known (and can be readily verified), the effect of the operator

2,4’ .
2m*g eler=/" with ¢ € R, on function (18) amounts to replacing
are conjugate variables and can be part of a set of canonicalby = + a and, as one can show, the operatér/", with
coordinates, and b € R, applied to function (18) yields another function of the

) same form withk replaced byt + b/A.

H="2v mguw. (16)
2m
The remaining two canonical coordinatesandp., say,
will not appear in the expression féf and must be constants The authors wish to thank Dr. M. Montesinos for useful dis-
of motion, which implies that andp, must be functions of cussions.
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