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Making hidden symmetries obvious
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It is shown that the Hamiltonian of a particle in a uniform gravitational field which possesses a constant of motion not related to transforma-
tions in the configuration space, can be expressed in a system of canonical coordinates such that a maximal set of independent constants of
motion follows from the existence of ignorable coordinates.
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Se muestra que la hamiltoniana de una partı́cula en un campo gravitacional uniforme, la cual posee una constante de movimiento no rela-
cionada con transformaciones en el espacio de configuración, puede expresarse en un sistema de coordenadas canónicas tal que un conjunto
máximo de constantes de movimiento sigue de la existencia de coordenadas ignorables.
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1. Introduction

The invariance of the Lagrangian of a mechanical system un-
der continuous transformations of the configuration space al-
lows one to readily find constants of motion. However, in
some cases, there exist constants of motion not related to
symmetries in the configuration space. Two well-known ex-
amples are the isotropic harmonic oscillator and the Kepler
problem; in both cases, in addition to the angular momen-
tum, whose conservation follows from the invariance of the
standard Lagrangian under rotations about the center of force,
there exist constants of motion that are not associated with
symmetries of the Lagrangian.

It may be remarked that, for a given set of equations of
motion, the Lagrangian is not unique (see,e.g., Ref. 1) and
the symmetries of a Lagrangian may not be shared by the
alternative Lagrangians. For example, the equations of mo-
tion ẍ = 0, ÿ = −g, considered in this paper, can be ob-
tained from the Euler–Lagrange equations making use of the
usual Lagrangian, given by Eq. (1) below, or the function
L′ = mẋẏ − mgx; in this case one Lagrangian does not
depend onx and the other does not depend ony.

On the other hand, in the Hamiltonian formalism, ev-
ery constant of motion is associated with a symmetry of the
Hamiltonian function; in fact, each constant of motionis the
infinitesimal generator of a one-parameter group of canoni-
cal transformations that leave the Hamiltonian invariant. The
corresponding symmetry of the Hamiltonian may not be ob-
vious since these transformations may mix coordinates and
momenta.

In this paper we consider a particle in a uniform gravi-
tational field, which is an example of a system with a hid-
den symmetry. We find a set of canonical coordinates for

which the existence of two constants of motion, in addition to
the Hamiltonian, follows from the obvious symmetries of the
Hamiltonian. This coordinate system is obtained by looking
for the orbits of the transformations generated by the con-
stants of motion in the phase space. A similar procedure
can be applied in other examples to make the hidden sym-
metries obvious. The main results of this paper are presented
in Sec. 2, and in Sec. 3 we show how the new coordinates are
obtained.

2. The canonical transformation

The usual Lagrangian for a particle in a uniform gravitational
field, written in Cartesian coordinates, is given by

L =
m

2
(ẋ2 + ẏ2)−mgy, (1)

wherem is the mass of the particle andg is the acceleration
of gravity. Since the coordinatex is ignorable,px = mẋ is
conserved. Making use of the equation of motionÿ = −g,
a straightforward computation shows thatẋẏ + gx is also
conserved, but the fact that this constant of motion is not a
homogeneous function of degree 1 in the components of the
linear momentum implies that its existence is not associated
with the invariance of the Lagrangian (1) under a continuous
set of transformations on the configuration space (see,e.g.,
Refs. 2 and 3). In other words, besides the obvious invari-
ance ofL under translations along thex-axis,L possesses a
hidden symmetry.

Turning to the Hamiltonian formalism, the standard pro-
cedure applied to the Lagrangian (1) leads to the Hamiltonian
function

H =
p2

x + p2
y

2m
+ mgy. (2)
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It can be readily verified that the coordinate transformation

z = x +
pxpy

m2g
, pz = px,

w = y +
p2

x

2m2g
, pw = py (3)

is canonical; in fact, making use of Eqs. (3) one finds that

pzdz + pwdw = px

(
dx +

py

m2g
dpx +

px

m2g
dpy

)

+ py

(
dy +

px

m2g
dpx

)

= pxdx + pydy + d
(

p2
xpy

m2g

)
.

In terms of the new coordinates, the Hamiltonian (2) takes
the form

H =
p2

w

2m
+ mgw, (4)

which is a function ofw andpw only; hence,z andpz are
constants of motion. Thus, the conservation ofpx andẋẏ+gx
becomes an immediate consequence of the fact thatz andpz

are ignorable coordinates in expression (4). It may be noticed
that Eq. (4) corresponds to a particle in a uniform gravita-
tional field inonedimension.

Making use of the conservationH, z, andpz, one readily
shows that the orbits in thexy-plane are parabolas.

Quantum version

Following the standard rules, from the Hamiltonian func-
tion (4) one obtains the time-independent Schrödinger equa-
tion

− ~
2

2m

∂2φ

∂w2
+ mgwφ = Eφ, (5)

whose solution can be expressed in terms of Airy functions
or, equivalently, of Bessel functions of order±1/3 (see,e.g.,
Ref. 4). The question now is, given a solutionφ(w) of
Eq. (5), how can we obtain a wave function depending on
the original coordinatesx, y?

In terms of the original coordinates one has the time-
independent Schrödinger equation [see Eq. (2)]:

− ~
2

2m

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ mgyψ = Eψ. (6)

Taking into account that the wave functionφ depends on the
variablew, which is a mixture ofy andpx, one may guess
that a solutionψ(x, y) to Eq. (6) can be obtained fromφ(w)
by means of a partial Fourier transform

ψ(x, y) =
1√
2π~

∞∫

−∞
φ(y + p2

x/2m2g) eixpx/~dpx, (7)

where we have replaced the variablew by its equivalent ex-
pression in terms ofy andpx given by Eqs. (3). In fact, we

can show that, for each value of the parameterpx, the ex-
pressionφ(y + p2

x/2m2g) eixpx/~, appearing in the integral
in Eq. (7), is a solution to the Schrödinger equation (6). In
effect, making use of the chain rule, one finds that

(
∂2

∂x2
+

∂2

∂y2

)
φ(y + p2

x/2m2g) eixpx/~

=
(
−p2

x

~2
φ + φ′′

)
eixpx/~. (8)

On the other hand, Eq. (5) yields

φ′′|w=y+p2
x/2m2g = −2m

~2

[
E −mg(y + p2

x/2m2g)
]
φ,

which, substituted into Eq. (8), shows that the function
φ(y + p2

x/2m2g) eixpx/~ satisfies the Schrödinger equa-
tion (6). This function contains the parameterpx in addition
to the parameterE contained inφ.

3. Derivation

Each (differentiable) function,f , defined on the phase space
of a mechanical system withn degrees of freedom gives rise
to a linear partial differential operator (or vector field),Xf ,
given by

Xf =
n∑

i=1

(
∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi

)
(9)

in an arbitrary system of canonical coordinatesqi, pi. Then,
the Poisson bracket can be expressed, or defined, by

{f, g} = Xfg. (10)

Furthermore, for any pair of differentiable functions,f , g,

[Xf , Xg] = X{f,g}. (11)

SinceXff = 0, the vector fieldXf is tangent to the hyper-
surfacesf = const.

If f = f(qi, pi) is a constant of motion (that does not
depend explicitly on time), the Poisson bracket{f,H} van-
ishes or, equivalently,XfH = 0, which means thatXf is
also tangent to the hypersurfacesH = const.

As pointed out above, in the specific case of the Hamil-
tonian (2), the functionspx and A ≡ x + pxpy/m2g are
constants of motion; the vector fields associated with them
are [see Eq. (9)]

Xpx = − ∂

∂x
, XA =

∂

∂px
− py

m2g

∂

∂x
− px

m2g

∂

∂y
(12)

and a straightforward computation shows that

[Xpx , XA] = 0. (13)

(which also follows from Eq. (11), noting that
{px, A} = XpxA = −1). According to Frobenius’ the-
orem, Eq. (13) implies that the phase space is foliated
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by two-dimensional surfaces characterized by the fact that
Xpx andXA are tangent to them (see,e.g., Ref. 5). Since
Xpx

H = 0 = XAH, the Hamiltonian is constant on these
two-dimensional surfaces.

Looking for the simultaneous solutions to the linear par-
tial differential equationsXpx

f = 0 andXAf = 0, one read-
ily finds that the above-mentioned surfaces are also given by

py = const., 1
2p2

x + m2gy = const. (14)

Hence, the Hamiltonian must be a function ofpy and

1
2
p2

x + m2gy

only; in fact, one finds that

H = p2
y/2m +

(
1
2
p2

x + m2gy

)
/m.

Since
{

1
2p2

x + m2gy, py

}
= m2g,

the functions

w ≡ y +
p2

x

2m2g
, pw ≡ py, (15)

are conjugate variables and can be part of a set of canonical
coordinates, and

H =
p2

w

2m
+ mgw. (16)

The remaining two canonical coordinates,z andpz, say,
will not appear in the expression forH and must be constants
of motion, which implies thatz andpz must be functions of

px andA, such that{z, pz} = 1. Since{A, px} = 1, we can
choose

z ≡ x +
pxpy

m2g
, pz ≡ px. (17)

As shown in the preceding section, Eqs. (15) and (17) define
a canonical transformation.

4. Concluding remarks

As pointed out above, the constants of motionA andpx sat-
isfy the relation{A, px} = 1, and the corresponding vector
fields XA andXpx

commute [see Eq. (13)]; thus, the sym-
metry group generated byXA andXpx

in the phase space is
Abelian and its action consists of translations alongz andpz.

In the quantized system,A andpx are operators that do
not commute with each other, and the symmetry group gener-
ated byA, px, and 1 is the Heisenberg group; the states with
a given energy form a representation space for this group.
Specifically, the time-independent Schrödinger equation (6)
admits separable solutions of the form

eikxfE,k(y), (18)

wherefE,k(y) depends parametrically onE andk. As is well
known (and can be readily verified), the effect of the operator
eiapx/~, with a ∈ R, on function (18) amounts to replacing
x by x + a and, as one can show, the operatoreibA/~, with
b ∈ R, applied to function (18) yields another function of the
same form withk replaced byk + b/~.
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