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On the decay of an accelerated proton
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We compute the decay rate width of the strong decayp → n + π+ for a linearly accelerated proton in both the inertial frame and in the
coaccelerated proton frame. In this last reference system we use the Unruh effect, where the proton sees a bath of thermal particles at the
temperatureT = a/2π, wherea is proton’s acceleration. Analytical results agree, thus giving a simpler example where the Unruh effect is
necessary to keep the consistency between inertial and Rindler frame calculations of a physical observable.
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It is known that the lifetime of a particle can be manipulated
by exposing it to a large acceleration. For instance, among
the various decays studied in the literature, the most interest-
ing is the weak decay of a proton with accelerationa,

p → n + e+ + νe, (1)

which is forbidden for an inertial proton. This problem was
first considered by M̈uller in a toy model [1], assuming all
particles involved are scalars. Then, Matsas and Vanzella [2],
within a semiclassical approach in a two-dimensional space-
time, took thee± and

(−)
ν e as Dirac particles, and thep and

n as a classical current . This last assumption is suitable as
far the nucleons are energetic enough to have a well defined
trajectory. Besides doing this they computed the total decay
rate in the coaccelerated proton frame, where according to
the Unruh effect [3] the Minkowski vacuum corresponds to
a thermal state of Rindler particles at the Unruh temperature
T = a/2π, from where the particlese− andνe (or both)
are absorbed by the proton to transform into a neutron and
emitting aνe ande+ (or none), respectively. The decay rates
in both reference frames were shown to agree by a numerical
computation. Later, Suzuki and Yamada [4] did the same cal-
culation analytically and in a 4-dimensional spacetime, con-
firming the result in [2].

Another interesting decay for an accelerated proton are
the strong processes

p → p + π0,

p → n + π+ (2)

when the proton is in the presence of a very intense magnetic
field [5], or in circular motion under the influence of gravita-
tional fields [5]. In these works the emphasis was the study
of emission of cosmic and gamma rays from compact stellar
objects associated with strong magnetic fields.

In the present work we revisited the strong decayp →
n + π+ for a linearly uniformly accelerated proton, under

the same set of assumptions as in [2]: (i) the nucleons con-
stitute a two level quantum system described by a semiclas-
sical current, (ii) the neutron velocity does not change with
respect to the proton, the so-called no-recoil condition, and
(iii) that proton accelerationa ¿ M1, M2,whereM1andM2

are proton and neutron masses, respectively. We calculate
the life-time of the proton in the inertial system of reference
and in the non-inertial proton reference system, and we will
show that the life-time is the same in both frames. The cal-
culation turns out to be simpler than the one in [2], since no
Dirac spinors andγ−matrices in curved spacetime are in-
volved. The only ingredient required is the solution of the
Klein-Gordon equation in the accelerated frame. In what fol-
lows we present our calculations, first in the inertial frame
and then in the non-inertial one, where the proton can absorb
a pion present in the thermal bath [6]. We follow the proce-
dure developed in [2] and [4].

We consider motion in one spatial dimension and con-
stant acceleration in the z-direction. In terms of the Rindler
coordinates, the path of the proton is given by

u = 1/a (3)

The participation of a scalar particle requires to take as a
semiclassical baryonic current the expression

j(x) = q̂(τ)δ(u− a−1) (4)

where q̂(τ) is an Hermitian operator [7], witĥq(τ) =
eiĤ0τq0e

−iĤ0τ , and Ĥ0 the proper Hamiltonian of the
proton-neutron system. This current is suitable for describ-
ing the strong conversion of a proton into a neutron, assum-
ing that the back reaction on the neutron is negligible. In this
sense the model consider the pair of nucleons as excited and
unexcited states of the nucleon two-level system. They are
eigenstates of the Hamiltonian̂H0 with eigenvaluesM1 and
M2, the masses of the proton and neutron, respectively. The
corresponding interaction is given by

SI =
∫

j(x)[Φ†(x) + Φ(x)]d2x (5)
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where the scalar fieldΦ(x) is described by annihilation̂ak

and creation̂ck operators

Φ(x) =
∫

d3k[âkφ
(+ω)
k (x) + ĉkφ

(−ω)
−k (x) (6)

Then, the transition amplitude, from proton state|p1〉 to
neutron state|p2〉, is

Ak = 〈p2 |∗〈gk|SI |0〉∗| p1〉 (7)

and the differential transition rate is given as

dP

dk
= |Ak|2 (8)

After substitution of (5) and (6) into (7) we obtain

Ak = gefa

∞∫

−∞
dt

∞∫

−∞
dz

ei∆Mτ

√
1 + a2t2

× 〈gk | Φ(x) | 0〉δ(z −
√

1 + a2t2)

where∆M = M1 −M2, andτ is proper time of the proton,
andgef = |〈p |q̂(0)|n〉| is the effective strong coupling con-
stant. The integral overz is immediate, and usingdt = γdτ ,
where

γ = (1− v2)−1/2 (9)

with v being proton’s velocity

v =
at√

1 + a2t2
, (10)

we obtain

Ak =
gef

(2π)1/2
√

2ω

∞∫

−∞
dτei∆Mτ+ik·x (11)

In terms of the other Rindler coordinatev = aτ , we write
k · x = ω̃ sinh v − k̃ cosh v, whereω̃ = ω/a andk̃ = k/a;
then (8) is given by

dP

dk
= |Ak|2 =

g2
ef

2π

1
2ωa2

∞∫

−∞
dv

∞∫

−∞
dv′

× ei∆M̃(v−v′)+i[ω̃(sinh v−sinh v′)−k̃(cosh v−cosh v′)] (12)

where∆M̃ = (M1 − M2)/a. A change in the integration
variables gives

dP

dk̃
=

g2
ef

2π

1
ω̃

∞∫

−∞
dσ

∞∫

−∞
ds

× ei∆M̃σ+2i(ω̃ cosh s−k̃ sinh s′) sinh σ (13)

Next, we perform a rotation

ω̃′ = ω̃ cosh s− k̃ sinh s,

k̃ = −ω̃ sinh s− k̃ cosh s (14)

which gives

1
T

dP

dk̃′
=

g2
ef

2π

1
ω̃′a2

∞∫

−∞
dσ

× e2i(∆M̃σ+ω̃′ sinh σ) (15)

and

T =

∞∫

−∞
ds

is the total proper time of proton. At this point the integral
can be evaluated giving

1
T

dP

dk̃′
=

g2
ef

2πa2
e−π∆M̃ 1

ω̃′
K

2i∆M̃
(2ω̃′). (16)

HereK
2i∆M̃

(2ω̃′) is the modified Bessel function of in-
dex2i∆M̃ . Total transition rate is obtained integrating, using
the Mathematica program, over pion energy,

Γ =
g2

ef

2πa2
e−π∆M̃

∞∫

m̃

√
ω̃′2 − m̃2K

2i∆M̃
(2ω̃′)dω̃′

=
g2

ef m̃

8π1/2a2
e−π∆M̃G3,0

1,3

×
(

m̃2 |
0

− 1
2 ,− 1

2 + i∆M̃,− 1
2 − i∆M̃

)
(17)

wherem̃ = m/a, with m the mass of the pion. An identity
for the Meijer functionG3,0

1,3 in terms of the modified Bassel
function [8] gives

Γ =
g2

ef

4πa2
e−π∆M̃

[
K

i∆M̃
(ω̃)

]2
(19)

Now, from the point of view of a uniformly accelerating
particle, empty space contains a gas of particles at a temper-
ature proportional to acceleration. In the accelerated proton
reference system, the decay process is seen as one in which
the proton captures, from the particle bath he sees, a pion
and then turning into a neutron:p + π− → n. The neces-
sary temperature for having pions in the bath is greater than
1012K, corresponding to an accelerationa of order1031g,
whereg is the standard gravitational acceleration, and since
proton massmp is equivalent to an acceleration of1032g, we
still havea/mp < 1.

The transition rate is computed in the following way.
First, amplitude is given by

Ak = gef

∫
d2xei∆Mτφω

k (x0, x3). (20)
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Here φω
k (x0, x3) is the pion function, solution of the

Klein-Gordon equation in the accelerated frame of reference
(by using the equivalence principle: a uniform acceleration
is equivalent to a constant gravitational field, where the com-
ponents of the metric tensor are given in terms of proton’s
acceleration [9]),

φω
k (x0, x3) =

1√
2π

a−1/2e−iωτ

× sinh1/2(πω̃)Kiω̃(m̃). (18)

whereKiω̃(m̃) is the modified Bessel function of indexiω̃
and argument̃m = m/a, with m the mass of the pion. Then,

Ak =
gef√

2πa3/2
sinh1/2(πω̃)Kiω̃(m̃)δ(ω̃ −∆M̃) (19)

The differential transition rate is given by

1
T

dP

dω̃
= |Ak|2 nB(ω). (20)

wherenB(ω) is the bosonic thermal factor associated with
the thermal bath and, as before,T is the proton proper time.
According to Unruh [7], bath temperature, in units where
Boltzmann constantkB , reduced Planck constanth/ and speed
of light c all take value one, is

T =
a

2π
(21)

Substitution ofnB(ω) = (eω/T − 1)−1 with this temper-
ature, gives

1
T

dP

dω̃
=

g2
ef

4πa2
e−πω̃ |Kiω̃(m̃)|2 δ(ω̃ −∆M̃) (22)

Now, we integrate over pion energy to obtain finally the
transition rate in the non-inertial reference frame

Γni =
g2

ef

4πa2

∞∫

m̃

e−πω̃ |Kiω̃(m̃)|2 δ(ω̃ −∆M̃)dω̃

=
g2

ef

4πa2
e−π∆M̃

∣∣K
i∆M̃

(m̃)
∣∣2 . (23)

In summary, we have computed the transition width for
the strong decayp → n + π+, for the uniformly accelerated
proton, in an inertial frame and in proton’s frame. The ana-
lytical results Eq. (19) and Eq. (26) respectively, shows ex-
plicitly that they agree, providing a further theoretical check
for the Unruh effect. The point of view in this work, fol-
lowing [2], is that the Unruh effect is essential to obtain the
proper decay rate in the uniformly accelerated frame.

The result in Eq. (19) can be compared to the calculation
made by Ren and Weinberg [10] for emission from an accel-
erated scalar source. In this case∆M̃ = 0, then Eq. (19)
reduces to

Γ =
g2

ef

4πa2
[K0(ω̃)]2

which is of the same form than their result (3.17) for the total
emission probability, with the effective couplinggef replaced
by the corresponding coupling constantq and recalling that
we work in a two-dimensional spacetime.

Another interesting case is the same decay for protons in
circular motion under the influence of an intense gravitational
field, as the one considered by Fregolenteet al [11]. How-
ever, as was demonstrated by Letaw and Pfautsch [12] the
spectrum of vacuum fluctuations in the non-inertial frame, is
composed by a thermal energy plus a non-thermal contribu-
tion arising from the observer’s acceleration, which make the
calculation quite complicated. This latter task is under cur-
rent investigation.
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