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Calculation of temporal spreading of ultrashort pulses
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The chromatic dispersion of optical materials causes an optical pulse to spread as it propagates through the material. The pulse spreading
is produced by the dependence of the group velocity on the frequency. In this paper we evaluate the temporal spreading of a pulse as it
propagates through optical glass. We evaluate the dependence of group velocity on frequency in terms of the dependence of the phase
refractive index of the glass on the wavelength of light. The dependence of the refractive index on the wavelength in glass is well known
through the Sellmeier formula. Results are presented for 50, 80 and 100 fs pulses propagating a distanceL, in BK7, SF14 and Fused Silica
Schott optical glasses and verified by a model of the sum of Gaussian modulated frequencies.
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La dispersíon croḿatica de materialeśopticos ocasiona el ensanchamiento de un pulsoóptico conforme se propaga a través del material.
El ensanchamiento del pulso se produce por la dependencia de la velocidad de grupo con la frecuencia. En este artı́culo evaluamos el
ensanchamiento temporal del pulso conforme se propaga en el vidrioóptico. Evaluamos la dependencia de la velocidad de grupo con la
frecuencia en t́erminos de la dependencia delı́ndice de refracción de fase del vidrio con la longitud de onda de la luz. La dependencia
del ı́ndice de refracción de fase con la longitud de onda en vidrios es bien conocida a través de la f́ormula de Sellmeier. Se presentan
resultados para pulsos de 50, 80 y 100 fs propagándose una distanciaL en vidriosópticos de Schott BK7, SF14 y Silica fundida los cuales
son verificados usando un modelo de suma de frecuencias moduladas por una gaussiana.

Descriptores: Pulsos ultracortos; dispersión de la velocidad de grupo; velocidad de grupo; ensanchamiento temporal.

PACS: 42.65.Re

1. Introduction

Chromatic dispersion is an intrinsic property of practically
all optical materials [1]. The phenomenon is manifested as a
dependence of the phase velocity of a beam of light in a trans-
parent material on the frequency or wavelength of that light.
On the other hand, a wave packet or an optical pulse propa-
gates at the group velocity,vg = c/ng, whereng is called the
group refractive index [2], which depends on the frequency.
Due to the dependence of the group velocity on the frequency,
the pulse spreads as it propagates through the material. There
are two types of spreading: temporal and spatial. In this pa-
per we shall only evaluate the temporal spreading of the pulse
which is produced by the phenomenon termed group velocity
dispersion (GVD) and which is given by

GDV =
d2k

dw2
.

GVD is characterized by a parametera defined as

a ≡ 1
2

d2k

dw2
.

For pulses with a Gaussian profile, the duration of the
pulseτ after propagating a distanceL through the medium
can be expressed in terms of parametera as [3]

τ (L) = τ0

√
1 +

(
8aL ln 2

τ2
0

)2

,

whereτ0 is the initial pulse duration atL = 0.

In the present paper we shall calculate parametera, which
is expressed in terms of the dispersion of the material de-
scribed by the wavelength dependencen (λ) of the index of
refraction. This dependence is well known in optical glasses
through the Sellmeier formula from the UV through the vis-
ible to the IR. Results are presented for 50, 80 and 100 fs
pulses propagating a distanceL, in BK7, SF14 and Fused
Silica Schott optical glasses. These results are verified by a
model of the sum of Gaussian modulated frequencies propa-
gating through the material.

2. Theory

We assume a temporal Gaussian pulse given by [3]

E (z = 0, t) = exp
(−αt2 + iw0t

)
, (1)

whereα is a constant andw0 is the optical carrier frequency.
We consider the case of a slowly varying envelope so that

there are many optical oscillations within the envelope. We
may express the input pulseE (0, t) as a Fourier integral

E (z = 0, t) =
∫

F (Ω) ei(w0+Ω)tdΩ, (2)

whereF (Ω) is the Fourier transform of the Gaussian enve-
lopeexp

(−αt2
)

F (Ω) =

√
1

4πα
exp

(−Ω2

4α

)
. (3)
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We may view Eq. (2) as an assembly of harmonic fields,
each with its unique frequency(w0 + Ω) and amplitude
F (Ω) dΩ. To obtain the field at an output plane z, each fre-
quency componentF (Ω) dΩexp [i (w0 + Ω) t] in Eq. (2) is
multiplied by its propagation phase delay factor,

exp [−ikz] , (4)

wherek is a function of(w0 + Ω), that is,k (w0 + Ω).
The result is

E (z, t) =
∫

F (Ω) exp [i (w0 + Ω) t− k (w0 + Ω) z]. (5)

We can expandk (w0 + Ω) near the center of the optical
frequencyw0 in a Taylor series

k (w0+Ω)=k (w0)

+
dk

dw

∣∣∣∣
w=w0

Ω +
1
2

d2k

dw2

∣∣∣∣
w=w0

Ω2+ . . . (6)

where

k (w0) ≡ k0 (7)

dk

dw

∣∣∣∣
w=w0

=
1
vg

=
1

Group velocity
(8)

a ≡ 1
2

d2k

dw2

∣∣∣∣
w=w0

=
1
2

d

dw

(
1
vg

)
= − 1

2v2
g

dvg

dw
. (9)

After substituting Eqs. (3), (7), (8) and (9), Eq. (5) be-
comes

(z, t) = exp [i (ω0t− k0z)]

∞∫

−∞
dΩF (Ω)

× exp
{

i

[
Ωt− Ωz

vg
− 1

2
d

dω

(
1
vg

)
Ω2z

]}

≡ exp [i (ω0t− k0z)] E (z, t)

where (z, t) is the envelope of the field given by

(z, t) =

√
1

4πα

∞∫

−∞

× exp
{
−

[
Ω2

(
1
4α

+ iaz

)
− i

(
t− z

vg

)
Ω

]}
dΩ. (10)

The integration is carried out explicitly using “Siegman’s
lemma”, namely,

∞∫

−∞
e−AΩ2−2BΩdΩ ≡

√
π

A
eB2/A, Re [A] > 0, (11)

whereA = (1/4α) + iaz andB = −(i/2)
(
t− z

vg

)
.

Carrying out the integration, the envelope of the electric
field of a pulse after propagating a distance z through the
medium is given by,

(z, t) =
1√

1 + i4aαz
exp

(
− (t− z/vg)

2

1/α + 16a2z2α

)

× exp

(
i
4az (t− z/vg)

2

1/α2 + 16a2z2

)
. (12)

The intensity of the pulse is given by the pulse envelope
squared so that

I (z, t) =
1√

1 + 16a2α2z2
exp


−

2
(
t− z

vg

)2

1
α + 16a2z2α


 . (13)

The pulse durationτ at z can be taken as the separation
between the two times when the intensity is reduced by a fac-
tor of 1/2 from its peak value (the so called FWHM), that is,

τ (z) =
√

2 ln 2

√
1
α

+ 16a2z2α , (14)

The initial pulse width is

τ0 = τ (0) =

√
2 ln 2

α
(15)

so that the pulse width after propagating a distanceL can be
expressed as

τ (L) = τ0

√
1 +

(
8aL ln 2

τ2
0

)2

. (16)

3. Calculation of parametera

The angular frequency of light is given by

w =
2πc

λ0
, (17)

whereλ0 is the wavelength of light in vacuum. Therefore,

dλ0

dw
= −2πc

w2
= − λ2

0

2πc
. (18)

Using the chain rule, the first derivative with respect to
frequency is given by

d

dw
=

d

dλ0

(
dλ0

dw

)
=

(
dλ0

dw

)
d

dλ0
= − λ2

0

2πc

d

dλ0
. (19)

From Eq. (19), the first derivative of the group velocity
with respect to frequency is given by

dvg

dw
= − λ2

0

2πc

dvg

dλ0
(20)

where

vg =
c

ng
=

c

n− λ0
dn
dλ0

, (21)
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andn is the phase refractive index,n = c/v, wherev is the
phase velocity.

Evaluating the first derivative of the group velocity with
respect to the wavelength in a vacuum in Eq. (21), we have

dvg

dλ0
= −v2

g

c
λ0

d2n

dλ2
0

. (22)

Substituting Eq. (22) into (20) and then into Eq. (9), pa-
rametera is given by

a = − 1
2v2

g

dvg

dw
=

λ3
0

4πc2

d2n

dλ2
0

. (23)

The second derivative of the refractive index can be cal-
culated from the Sellmeier formula, where the constants can
be found in optical glass catalogs. If the Sellmeier equation is
used, the units for the second derivative ofn with wavelength,
λ0, areµm−2. The wavelengthλ0 of the carrier frequency,
and the velocity of light in vacuum,c, are most conveniently

given in microns and microns/fs respectively, so parametera
is expressed infs2µm−1.

4. The Sellmeier equation for optical glasses

From classical dispersion theory, the phase refractive index
as a function of wavelength in a vacuum can be calculated
using the Sellmeier formula [5], which is suitable for describ-
ing the dispersion curve in the wavelength range from the UV
through the visible to the IR, that is, from 0.36 to 2.3µm:

n2 (λ0)− 1 =
B1λ

2
0

λ2
0 − C1

+
B2λ

2
0

λ2
0 − C2

+
B3λ

2
0

λ2
0 − C3

, (24)

where λ0 is the wavelength in a vacuum in microns and
B1, B2, B3, C1, C2, C3 are constants which are calculated
for each optical glass and can be found in optical glass cata-
logs such as the Schott catalog.

The second derivative of the refractive index is given by:

d2n

dλ2
0

=

(
− 2B1λ3

0

(−C1+λ2
0)

2 + 2B1λ0
−C1+λ2

0
− 2B2λ3

0

(−C2+λ2
0)

2 + 2B2λ0
−C2+λ2

0
− 2B3λ3

0

(−C3+λ2
0)

2 + 2B3λ0
−C3+λ2

0

)2

4
(
1 + B1λ2

0
−C1+λ2

0
+ B2λ2

0
−C2+λ2

0
+ B3λ2

0
−C3+λ2

0

)3/2

+

8B1λ4
0

(−C1+λ2
0)

3− 10B1λ2
0

(−C1+λ2
0)

2 + 2B1
−C1+λ2

0
+ 8B2λ4

0

(−C2+λ2
0)

3− 10B2λ2
0

(−C2+λ2
0)

2 + 2B2
−C2+λ2

0
+ 8B3λ4

0

(−C3+λ2
0)

3− 10B3λ2
0

(−C3+λ2
0)

2 + 2B3
−C3+λ2

0

2
√

1+ B1λ2
0

−C1+λ2
0
+ B2λ2

0
−C2+λ2

0
+ B3λ2

0
−C3+λ2

0

. (25)

TABLE I. Sellmeier coefficients for the dispersion formula.

Glass B1 B2 B3 C1 C2 C3

BK7 1.03961212 2.31792344×10−1 1.01046945 6.00069867×10−3 2.00179144×10−2 1.03560653×102

SF14 1.69182538 2.85919934×10−1 1.12595145 1.33151542×10−2 6.12647445×10−2 1.18405242×102

Fused Silica 6.69422575×10−1 4.34583937×10−1 8.71694723×10−1 4.48011239×10−3 1.32847049×10−2 9.5341482×101

TABLE II. Pulse width after propagating a distance L through different glasses. Initial pulse width,τ0 = 50fs andλ0 = 800nm.

L (mm) Glass BK7τ (L)(fs) Glass SF14τ (L)(fs) Fused Silicaτ (L)(fs)

Theory Model Theory Model Theory Model

0 50.00 50.50± 0.5 50.00 50.84± 0.5 50.00 50.37± 0.5

1 50.06 50.56± 0.5 50.97 50.76± 0.5 50.04 50.12± 0.5

2 50.24 50.13± 0.5 53.77 53.35± 0.5 50.16 50.76± 0.5

3 50.55 50.61± 0.5 58.18 54.85± 0.5 50.36 50.94± 0.5

4 50.97 50.76± 0.5 63.75 61.22± 0.6 50.64 50.76± 0.5

5 51.51 51.95± 0.5 70.31 70.36± 0.7 50.99 50.44± 0.5

10 55.78 54.85± 0.5 110.78 110.52± 1.1 53.87 52.42± 0.5

50 133.36 132.20± 1.3 496.80 498.80± 5.0 111.99 111.99± 1.1

100 252.26 253.32± 2.5 989.81 999.10± 9.9 206.56 202.75± 4.0
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TABLE III. Pulse width after propagating a distance L through different glasses. Initial pulse width,τ0 = 80f sandλ0 = 800nm.

L (mm) Glass BK7τ (L)(fs) Glass SF14τ (L)(fs) Fused Silicaτ (L)(fs)

Theory Model Theory Model Theory Model

0 80.00 80.03± 0.8 80.00 80.03± 0.8 80.00 80.92± 0.8

1 80.01 80.64± 0.8 80.24 80.12± 0.8 80.01 80.32± 0.8

2 80.06 80.03± 0.8 80.95 80.94± 0.8 80.04 80.21± 0.8

3 80.13 80.07± 0.8 82.12 82.27± 0.8 80.09 80.48± 0.8

4 80.24 80.03± 0.8 83.73 82.60± 0.8 80.16 80.12± 0.8

5 80.37 80.81± 0.8 85.75 84.51± 0.8 80.24 80.32± 0.8

10 81.48 80.32± 0.8 101.08 98.87± 1.0 80.97 81.38± 0.8

50 111.22 110.60± 1.1 319.11 317.97± 3.2 101.6 98.83± 1.0

100 174.02 172.72± 1.7 623.00 619.82± 6.2 148.63 149.21± 1.5

TABLE IV. Pulse width after propagating a distance L through different glasses. Initial pulse width,τ0 = 100fs andλ0 = 800nm.

L (mm) Glass BK7τ (L)(fs) Glass SF14τ (L)(fs) Fused Silicaτ (L)(fs)

Theory Model Theory Model Theory Model

0 100.00 100.08± 1.0 100.00 100.08± 1.0 100.00 100.44± 1.0

1 100.00 100.89± 1.0 100.12 99.90± 1.0 100.00 99.91± 1.0

2 100.03 99.90± 1.0 100.49 99.55± 1.0 100.02 100.26± 1.0

3 100.07 100.23± 1.0 101.09 99.91± 1.0 100.05 99.74± 1.0

4 100.12 99.90± 1.0 101.94 101.38± 1.0 100.08 100.61± 1.0

5 100.19 100.22± 1.0 103.01 102.65± 1.0 100.13 100.07± 1.0

10 100.76 100.50± 1.0 111.55 111.71± 1.1 100.50 100.99± 1.0

50 117.56 117.53± 1.2 266.60 265.33± 2.6 111.85 111.71± 1.1

100 159.01 158.70± 1.6 504.29 504.02± 5.0 141.60 140.06± 1.4

FIGURE 1. Temporal spreading for pulses with an initial width of
25fs, 50fs and 100 fs after propagating 1cm in Fused Silica.

The units for the second derivative of the refractive index
with respect to wavelength areµm−2.

In Table I the constants for the dispersion formula are
given for Schott optical glasses BK7, SF14 and Fused Sil-
ica, which were used to evaluate the temporal spreading of
the pulse.

5. Results

The temporal spreading of the pulse after propagating a dis-
tanceL through a transparent and homogeneous material can
be evaluated with Eqs. (16), (23) and (25).

The results are presented in Tables II, III and IV in the
column labelled theory, for pulses of 50, 80 and 100 fs, re-
spectively, andλ0 = 800nm. BK7 is a low dispersive inex-
pensive glass widely used in lenses; Fused Silica is also a low
dispersive glass widely used when working in the near IR or
UV regions. SF14 is a high dispersive heavy flint glass which
is sometimes used in the arrangement of pairs of prisms that
can produce negative group velocity dispersion [4].

As we can see from the tables, the effect of the group
dispersion velocity on the temporal spreading of the pulse
becomes more important for shorter pulses.

In Fig. 1 the temporal width difference between the ini-
tial pulse,τ0, and the pulse widthτafter propagating a dis-
tanceL through the material is plotted as a function of the
wavelength between 0.246 and 2.3 microns for Fused Silica
and after propagating 1cm in the material. The curves are
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presented for an initial pulse temporal width of 25, 50, and
100 fs. In Fig. 1 we can see that the group velocity dis-

persion is negligible, around 1.3 microns, and increases from
this wavelength towards the IR and towards the UV regions.

FIGURE 2. Temporal pulse spreading as it propagates through glass. The initial temporal pulse width is 50fs.

Rev. Mex. F́ıs. 54 (2) (2008) 141–148



146 M. ROSETE-AGUILAR, F.C. ESTRADA-SILVA, N.C. BRUCE, C.J. ROḾAN-MORENO, AND R. ORTEGA-MART́INEZ

FIGURE 3. Temporal pulse spreading as it propagates through glass. The initial temporal pulse width is 80fs.

6. Generation of pulses with a Gaussian pro-
file

The theoretical results were verified by directly calculating
the electric field for a Gaussian pulse given by Eq. (5). The
calculation of the electric field given by Eq. (5) was exact,

i.e., there is no approximation in the wave number. The nor-
malized squared of the real electric field was plotted using
the Mathematica software as a function of time, that is,

I (L, t) =
{Re{E (L, t)}}2
{Re{E (0, 0)}}2 . (26)
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FIGURE 4. Temporal pulse spreading as it propagates through glass. The initial temporal pulse width is 100fs.

In Figs. 2 and 3 we present the pulses as they propagate
through the glass after a distanceL. The pulses are gener-
ated assuming that the wavelength of the carrier frequency is
λ0 = 800nm and an initial pulse width ofτ0 = 50fs (Fig. 2)
andτ0 = 100fs (Fig. 3). The center of the abscissa is at the

peak of the pulse located atL/vg, wherevg is the group ve-
locity given by Eq. (20). The abscissa covers a full range
of 1000 fs. As we can see, the effect of the spreading after
traveling 5 mm in the glass is almost negligible for pulses
of 100 fs, but becomes more important for pulses of 50 fs
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in high dispersive materials such as SF14. In Tables II, III
and IV, in the columns labelled Model, we give the temporal
width of the 50, 80 and 100 fs pulses measured directly from
Figs. 2, 3 and 4. The temporal width values of the pulses
were estimated by measuring directly from the figures when
the peak intensity falls to half. The values in the tables are a
mean of several measurements of the pulse widths. The er-
ror was calculated as the RMS of the measured values and is
below 2%.

7. Conclusions

In the present work we have derived the necessary equations
for evaluating parametera, in order to calculate the temporal
spreading of a pulse as it propagates through optical glass.
The theoretical model presented in Sec. 3 shows that the tem-
poral spreading of the pulse depends on the initial duration of
the pulse, the dispersion of the material and the distance that
the pulse propagates through the material. The dispersion of
the material is wavelength dependent and therefore the tem-

poral spreading is also wavelength dependent. We presented
a plot of temporal spreading as a function of wavelength to
show this effect. In this plot we can see that at around 1.3 mi-
crons, the group velocity dispersion is negligible so there is
no pulse temporal spreading at this wavelength, but increases
towards the UV and IR regions. By using the equations de-
rived in Secs. 3 and 4, the temporal spreading was evaluated
for 50, 80 and 100 fs pulses propagating through BK7, SF14
and Fused Silica Schott glasses. The results show that the
temporal spreading of the pulses increases for high dispersive
materials, long propagating distances inside the material, and
shorter pulses. For 100 fs pulses propagating 1 cm in BK7,
the temporal spreading is less than 1fs, so pulses of 100 fs
passing through single thin lenses made with glass of low dis-
persive materials will not modify the temporal width of these
pulses. This is not the case for shorter pulses. The theoreti-
cal results were verified by a model of the sum of Gaussian
modulated frequencies. The temporal width of the pulses was
measured directly from the graphs and agrees with the theo-
retical results.
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