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The solutions of the Schrödinger equation describing rotational states of asymmetric molecules are known to be separable as products of
Lamé functions in spheroconal coordinates. However, the numerical evaluation of such solutions has not been implemented in efficient and
practical ways. This paper overcomes this deficiency by presenting a matrix method for evaluating the needed Lamé functions, in their two
kinds and eight species, to obtain accurate energy eigenvalues and eigenfunctions for the rotational states of molecules with any asymmetry.
A generating function for these eigenfunctions, including its series expansions for any asymmetry, is also presented.
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generating function.

Se sabe que las soluciones de la ecuación de Schr̈odinger que describen estados rotacionales de moléculas asiḿetricas son separables como
productos de funciones de Lamé en coordenadas esferoconales. Sin embargo, la evaluación nuḿerica de tales soluciones no ha sido imple-
mentada en formas eficientes y prácticas. Este trabajo elimina tal deficiencia presentando un método matricial para evaluar las funciones de
Lamé necesarias, en sus dos tipos y ocho especies, para obtener valores precisos de los eigenvalores de la energı́a y de las eigenfunciones
para los estados rotacionales de moléculas con cualquier asimetrı́a. Tambíen se presenta una función generadora para tales eigenfunciones
incluyendo su desarrollo en serie para cualquier asimetrı́a.

Descriptores: Moléculas asiḿetricas; espectro rotacional; evaluación matricial; arḿonicos esf́ericos; funciones de Laḿe; arḿonicos esfero-
conales; funcíon generadora.

PACS: 33.20Sn; 33.15.Mt: 33.20.-t; 31.15.Hz

1. Introduction

This is a companion and complementary article of Ref. 1,
concerning the accurate evaluation of rotational spectra of
asymmetric molecules [2–5]. While [1] is based on the use
of spherical harmonics to evaluate the energy eigenvalues and
the intrinsic eigenfunctions of the rotational states of asym-
metric molecules, the present investigation is focused on the
numerical evaluation of the corresponding exact and separa-
ble Laḿe function solutions. Indeed, Kramers and Ittmann
introduced and analyzed such solutions [2], but their ap-
proach was not implemented in practice because the numer-
ical methods for evaluating Laḿe functions were not devel-
oped efficiently. On the other hand, the line of work pio-
neered by [3,4], using the basis of eigenfunctions of symmet-
ric molecules later known as the WignerD functions, became
a practical tool for interpreting rotational spectra within the
limiting framework of perturbation theory [7–17]. Recently,
the investigations in Refs. 5 and 6 started the revisiting of
Ref. 2, but the numerical results of the former are still lim-
ited to the lower excited states, while the later - focused on the
most asymmetric molecules - still aims at taking the latter as a
reference to do perturbation theory extensions for molecules
with neighboring asymmetries.

Our revisiting of Refs. 2, 5, and 6 targets the construc-
tion of the exact and separable Lamé function solutions for
molecules with any asymmetry and states of any excitation,

providing spectroscopically accurate numerical results. Sec-
tion 2 reviews the simultaneous separation of the Schrödinger
equation and the square of the angular momentum equation,
in spheroconal coordinates, into two Lamé ordinary differ-
ential equations. We follow the notation of Refs. 5 and 6,
including in the Appendix the details about the coordinates
and operators for completeness sake. The separation con-
stants are identified as well defined linear combinations of
the eigenvalues of the energyE∗ and the square of the an-
gular momentum̀(` + 1). Section 3 studies the solutions to
the Laḿe differential equation, characterizing them by their
parity and singularity properties, which lie behind their clas-
sification into two kinds, each with four species. Conse-
quently, the Laḿe functions can be expressed as the prod-
uct of a singularity-removing factor and a series expansion
in even powers ofsn(χ, k). The expansion coefficients are
found to satisfy three-term recurrence relations, which can
be rewritten in a single square tridiagonal matrix of finite
dimension, for each kind and species of Lamé function and
each value of̀ . The diagonalization of such matrices yields
accurate numerical values of the expansion coefficients and
the separation constants for each Lamé function. Section 4
explains how to assemble the eigenfunctions of the rotational
states of the asymmetric molecule, as products of matching
Lamé functions according to kind and species, and also ac-
cording to matching separation constantsh1 andh2, which
also yield accurate eigenenergies for the chosen value of`.
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The eigenfunctions turn out to be also of two kinds and four
species. Numerical results for the respective functions and
eigenvalues are illustrated in both Secs. 3 and 4. The discus-
sion in Sec. 5 centers around the identification of generating
functions for spheroconal harmonics, and their applications
in quantum mechanics beyond the rotations of asymmetric
molecules.

2. Separation of the Schr̈odinger equation and
the square of the angular momentum eigen-
value equation into Lamé ordinary differ-
ential equations

The rotational states of an asymmetric molecule are deter-
mined by the common eigenfunctions of the Hamiltonian,
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L̂2
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]
Ψ = EΨ, (1)

whereI1, I2, I3 are the moments of inertia and̂Lx, L̂y, L̂z are
the angular momentum components in the reference frame
fixed in the body and oriented along the principal axes; of the
square of the angular momentum,

(
L̂2

x + L̂2
y + L̂2

z

)
Ψ = ~2`(` + 1)Ψ; (2)

and of the z-component of the angular momentum in the lab-
oratory, or inertial, reference frame,

M̂zΨ = ~mΨ, (3)

borrowing Eqs. (34) and (35) of [5]. ThêLi andM̂i oper-
ators, wherei = x, y, z, are expressed in terms of the three
familiar Euler angles, Eqs. (32) and (33) of [5], but the eigen-
valuesE and`(` + 1) do not depend onm because the angle
defining the orientation of the free molecule in the laboratory
is ignorable. References 1 and 5 choose to describe the states
with m = 0, for which theL̂i become the familiar angular
momentum operators depending on the other two Euler an-
gles, Eq. (37) of Ref. 5.

For completeness, we also review the alternative
parametrizations of the Hamiltonian, described by Eqs. (46)
and (47) in Ref. 5:
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1
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where the matrix of the inverses of the moments of inertia is
separated into its trace and traceless contributions. Indeed,
Eqs. (40)-(44) of Ref. 5 provide the relationships between
the respective sets of parameters:
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The parameterQ is the average trace of the matrix and
provides the spherical top contribution~2Q`(` + 1) to the
energy eigenvalue in Eq. (4). The parameterP is a measure
of the magnitude of the asymmetry of the molecule, while
e1, e2, e3 quantify the distribution of the asymmetry in the
directions of the principal axes. The three asymmetry distri-
bution parameters in Eqs. (8) and (9) can also be replaced by
one single angular parameter,0 ≤ σ ≤ π/3, of Eq. (45) in
Ref. 5:

e1 = cos σ, e2 = cos(σ − 2π
3 ), e3 = cos(σ + 2π

3 ), (11)

the symmetric prolate and oblate molecules correspond to
σ = 0 andσ = π/3, respectively, while the most asymmetric
molecules haveσ = π/6. In summary, the three moments of
inertia are replaced by the three independent parametersQ, P
and oneei. By choosingI1 ≤ I2 ≤ I3, the complete equali-
ties lead toQ = 1/I1 andP = 0, for the spherical molecule;
the partial equalityI1 < I2 = I3 corresponds to the symmet-
ric prolate molecule withe1 = 1, e2 = e3 = −1/2 and rota-
tional invariance around the x-axis; the other partial equality
I1 = I2 < I3 describes the symmetric oblate molecule with
e1 = e2 = 1/2, e3 = −1 and rotational invariance around
the z-axis; and the most asymmetric molecule is character-
ized bye1 = −e3 =

√
3/2, e2 = 0.

It is convenient to illustrate at once numerically, the cor-
responding values of the alternative asymmetry distribution
parametersσ, e1, e2, e3, k2

1 and k2
2, related by Eqs. (11)

and (A.19), via Table I. We refer to it in Secs. 3 and 4 when
reporting the numerical values for the successive functions
and eigenvalues.

TABLE I. Corresponding values of asymmetry distribution param-
eters, related by Eqs. (11) and (A.19).
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Next, we analyze the common eigensolutions of the Schrödinger equation for̂H∗, Eq. (4), and the square of the angular
momentum Eq. (2). Their explicit forms in spheroconal coordinates are written by using Eqs. (A.14) and (A.18), respectively:

− ~2

2 (1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2))

×
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In fact, they can have factorizable solutions of the form

Ψ(χ1, χ2) = Λ1(χ1)Λ2(χ2) , (14)

which upon subtitution in Eqs. (12) and (13), and using Eq. (A.20) lead to

1
(e3 + (e2 − e3)sn2(χ1, k1))

(
1
Λ1

d2Λ1

dχ2
1

+
2E∗

~2(e1 − e3)

)

+
1

(e1 − (e1 − e2)sn2(χ2, k2))

(
1
Λ2

d2Λ2

dχ2
2

− 2E∗

~2(e1 − e3)

)
= 0, (15)

(
1
Λ1

d2Λ1

dχ2
1

− `(` + 1)k2
1sn

2(χ1, k1)− `(` + 1)e3

e1 − e3

)

+
(

1
Λ2

d2Λ2

dχ2
2

− `(` + 1)k2
2sn

2(χ2, k2) +
`(` + 1)e1

e1 − e3

)
= 0. (16)

Simultaneous separation of Eqs. (15) and (16) can be achieved by equating the respective terms of Eq. (15) to
±`(` + 1)/(e1 − e3) and correspondingly in Eq. (16) to∓2E∗/~2(e1 − e3), with the resulting ordinary differential equa-
tions

d2Λ1
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1
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(
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1sn
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)
Λ1 = 0 , (17)
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Both are of the Laḿe equation form

d2Λi

dχ2
i

− (
`(` + 1)k2

i sn2(χi, ki) + hi

)
Λi = 0 , (19)

with the respective eigenvalues:

h1 =
`(` + 1)e3

e1 − e3
− 2E∗

~2(e1 − e3)
, (20)

h2 = −`(` + 1)e1

e1 − e3
+

2E∗

~2(e1 − e3)
. (21)

Their combinations

e1h1 + e3h2 = −2E∗

~2
, (22)

h1 + h2 = −`(` + 1) , (23)

yield the eigenvalues of Eqs. (12) and (13).

3. Matrix Evaluation of Lam é functions

This section is devoted to the analysis and construction of the
solutions of the Laḿe equation (19). The derivatives of the
Jacobian elliptical functions, Eqs. (A.4), permit the identifi-
cation of the removable singularities in the Lamé functions.
The series expansion solutions in even powers ofsn(χ, k), af-
ter removal of the respective singularity factors, lead to three-
term recurrence relations for the expansion coefficients; such
relations can be expressed in a matrix form, which permits
the accurate evaluation of the expansion coefficients and the
eigenvaluesh. The reader is referred to Whittaker and Wat-
son [18] for the standard treatment of Lamé functions and
to [19,20] for the spheroconal coordinates and Jacobi elliptic
functions.

The removable singularities are identified as the factors
A = 1, s, c, d, sc, sd, cd, scd in the eight species of Laḿe
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functions:

Λ1 =
∑

p

a1
psn

2p(χ, k), (24)

Λs = sn(χ, k)
∑

p
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psn

2p(χ, k), (25)

Λc = cn(χ, k)
∑
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Λd = dn(χ, k)
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p
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Λsc = cn(χ, k)sn(χ, k)
∑

p
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p sn2p(χ, k), (28)

Λsd = dn(χ, k)sn(χ, k)
∑

p

asd
p sn2p(χ, k), (29)

Λcd = dn(χ, k)cn(χ, k)
∑

p

acd
p sn2p(χ, k), (30)

Λscd=dn(χ, k)cn(χ, k)sn(χ, k)
∑

p

ascd
p sn2p(χ, k) . (31)

Substitution of the successive functions of
Eqs. (24) - (31) in the Laḿe Eq. (19) leads to the respec-
tive three-term recurrence relations for the power expansion
coefficientsaA

N :

(2N + 1)(2N + 2)a1
N+1 −

[
(1 + k2)(2N)2 + h

]
a1

N + k2 [(2N − 2)(2N − 1)− `(` + 1)] a1
N−1 = 0 , (32)

(2N + 2)(2N + 3)as
N+1 −

[
(1 + k2)(2N + 1)2 + h

]
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N + k2 [(2N − 1)(2N)− `(` + 1)] as
N−1 = 0 , (33)

(2N + 1)(2N + 2)ac
N+1 −

[
(2N + 1)2 + k2(2N)2 + h

]
ac

N + k2[((2N − 1)(2N)− `(` + 1)] ac
N−1 = 0 , (34)

(2N + 1)(2N + 2)ad
N+1 −

[
(2N)2 + k2(2N + 1)2 + h

]
ad

N + k2 [(2N − 1)(2N)− `(` + 1)] ad
N−1 = 0 , (35)

(2N + 2)(2N + 3)asc
N+1 −

[
k2(2N + 1)2 + (2N + 2)2 + h

]
asc

N + k2 [2N(2N + 1)− `(` + 1)] asc
N−1 = 0 , (36)

(2N + 2)(2N + 3)asd
N+1 −

[
k2(2N + 2)2 + (2N + 1)2 + h

]
asd

N + k2 [2N(2N + 1)− `(` + 1)] asd
N−1 = 0, (37)

(2N + 1)(2N + 2)acd
N+1 −

[
(1 + k2)(2N + 1)2 + h

]
acd

N + k2 [(2N(2N + 1)− `(` + 1)] acd
N−1 = 0 , (38)

(2N + 2)(2N + 3)ascd
N+1 −

[
(1 + k2)(2N + 2)2 + h

]
ascd

N + k2 [(2N + 1)(2N + 2)− `(` + 1)] ascd
N−1 = 0 . (39)

These recurrence relations can be cast into tridiagonal
matrix forms with expansion coefficientsaA

N as eigenvec-
tors andh as eigenvalues, following the method introduced in
connection with the evaluation of the electronic states of the
hydrogen molecular ion [21], and Mathieu functions [22].

Notice that the matrices turn out to be finite dimensional.
Consequently, the series solutions in Eqs. (32) - (39) be-
come Laḿe polynomials. The last term of the recurrence
relations indicates that the respective matrices have finite di-
mensionNmax × Nmax. In fact, for ` even Eq. (32) and
Eqs. (36) - (38) determine, respectively,

N1
max=

`

2
+ 1 and Nsc

max=Nsd
max=N cd

max=
`

2
, (40)

leading to a total of̀ /2 + 1 + 3`/2 = 2` + 1 independent
solutions. Likewise, for̀ odd Eqs. (33) - (35) and Eq. (39)
lead respectively, to

Ns
max=N c

max=Nd
max=

` + 1
2

and Nscd
max=

`− 1
2

, (41)

also with a total of2` + 1 independent solutions. Conse-
quently, the sums in Eqs. (24) - (31) include terms with
p = 1, 2, . . . , NA

max, and are thereby identified as Lamé poly-
nomials.

Notice that the matrices in Eqs. (32) - (39) are not sym-
metric and the appropriate LAPACK routine is used for their
diagonalization, [23]. Their finite dimensions allow accurate
evaluations of the eigenvalueshA and eigenvectorsaA

p as il-
lustrated in Table II and Fig. 1.

Table II contains the eigenvalueshA(k) for ` = 4 and5,
for the respective kinds and speciesA, and for the values
of the asymmetry distribution parameterk in the chosen
molecule. The nine values for` = 4 are obtained from one
3× 3 matrix forA = 1, and three2× 2 matrices forA = sc,
sd, cd. Correspondingly, the eleven values for` = 5 follow
from three3×3 matrices forA = s, c, d and one2×2 matrix
for A = scd.

Figure 1 illustrates the Laḿe functionsΛA
n (χ, k) for

` = 5 of the speciesA = s, c, d, scd, Eqs. (25) - (27) and
(31), in the interval0 6 amχ 6 90◦, for the values of the
parameterk2 in the successive rows from top to bottom. No-
tice the common node atχ = 0 and the common zero slope at
amχ = 90◦ for theΛs in the first column; the zero slope and
the node at the respective ends for theΛc in the second col-
umn; the vanishing slopes at both ends for theΛd in the third
column, except for the bottomk = 1 case in whichΛd = Λc;
and the nodes at both ends for theΛscd in the fourth column.
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TABLE II. EigenvalueshA of Lamé Eq. (19) for chosen values of0 ≤ k2 ≤ 1, ` = 4 (A = 1, sc, sd, cd) and` = 5 (A = s, c, d, scd).

k2 0 0.2679491924311 0.5 0.7320508075688 1

1 -16 -16.5851262965012 -17.2111025121022 -18.0899154478468 -20

sc -16 -16.5840359204396 -17.1904157236340 -17.9288070427514 -19

sd -9 -10.6692264277499 -12.6457511848807 -15.3102425028777 -19

cd -9 -10.6082989483587 -12.1904156698290 -13.9045439338914 -16

1 -4 -6.8637729178446 -10 -13.1362268286893 -16

sc -4 -6.0954559153276 -7.8095841501821 -9.3917009234711 -11

sd -1 -4.6897572437845 -7.3542485627514 -9.3307734295673 -11

cd -1 -2.0711928874085 -2.8095842039871 -3.4159640323311 -4

1 0 -1.9100844571886 -2.7888974102462 -3.4148736559090 -4

k2 0 0.2679491924311 0.5 0.7320508075688 1

s -25 -25.7285943365901 -26.4941465914849 -27.5248399518695 -30

c -25 -25.7284748791048 -26.4891252471910 -27.4510721308369 -29

d -16 -18.0685573651675 -20.3629303726905 -23.6602538501924 -29

scd -16 -18.0589446825257 -20.1961522965227 -22.6999607822317 -26

s -9 -12.3098812782257 -16.3687836315523 -21.1654954654817 -26

c -9 -12.0815810174275 -15 -17.918418739595 -21

d -4 -8.8345041215966 -13.6312158705639 -17.6901184271086 -21

scd -4 -7.3000389890087 -9.8038474511094 -11.9410551502134 -14

s -1 -6.3397458103695 -9.6370693353190 -11.9314424644276 -14

c -1 -2.5489277750021 -3.5108746610388 -4.2715250620129 -5

d 0 -2.4751599384210 -3.5058533151019 -4.2714056044777 -5

The reader may also count the number of nodes in the open
interval 0 < amχ < 90◦, n, for the respectiveΛA

n and
their variations in position ask2 takes its successive values.
Specifically,n = 0, 1, 2 for A = s, c, d, andn = 0, 1 for
A = scd, as determined by the sizes of the matrices from
which they are evaluated. The Lamé eigenvalues and func-
tions constructed in this section are used forχ1 andχ2 in a
complementary form in the following section.

The conclusion of this section is that an exact matrix
method for the evaluation of Laḿe polynomials and eigen-
values has been described and implemented, yielding accu-
rate values for both, as illustrated by Fig. 1 and Table II. The
method is in the Refs. 21 and 22 shows.

4. Rotational eigenstates and eigenvalues of
asymmetric molecules

The eigenfunctions of Eq. (14) are constructed by multi-
plying the Laḿe function solution to Eqs. (17) and (18),
evaluated by the method described in Sec. 3, and chosen to
be of complementary species within the two kinds of parity
(x → −x, y → −y, z → −z) eigenstates.

Ψ1 = Ψ+++
n1n2

(χ1, χ2) = Λ1
n1

(χ1)Λ1
n2

(χ2) , (42)

Ψyz = Ψ+−−
n1n2

(χ1, χ2) = Λcs
n1

(χ1)Λcd
n2

(χ2) , (43)

Ψxz = Ψ−+−
n1n2

(χ1, χ2) = Λds
n1

(χ1)Λsd
n2

(χ2) , (44)

Ψxy = Ψ−−+
n1n2

(χ1, χ2) = Λdc
n1

(χ1)Λsc
n2

(χ2) , (45)

Ψx = Ψ−++
n1n2

(χ1, χ2) = Λd
n1

(χ1)Λs
n2

(χ2) , (46)

Ψy = Ψ+−+
n1n2

(χ1, χ2) = Λc
n1

(χ1)Λc
n2

(χ2) , (47)

Ψz = Ψ++−
n1n2

(χ1, χ2) = Λs
n1

(χ1)Λd
n2

(χ2) , (48)

Ψxyz = Ψ−−−n1n2
(χ1, χ2) = Λdcs

n1
(χ1)Λscd

n2
(χ2) . (49)

Notice that the combinations ofA andB species for the
Lamé functions inχ1 andχ2, respectively

A 1 cs ds dc d c s dcs
B 1 cd sd sc s c d scd

AB 1 yz xz xy x y z xyz
are associated with the reproduction of the removable singu-
larity factors in Eqs. (42) - (49). The number of nodes of the
respective Laḿe functions are chosen to match the condition:

n1 + n2 = ` , (50)
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FIGURE 1. Lamé functions, Eqs. (25) - (27) and (31), for chosen values of0 ≤ k2 ≤ 1 and` = 5 (A = s, c, d, scd), as functions of
0 ≤ amχ ≤ 90◦, Eqs. (A.2) - (A.3).

counting the total number of nodal surfaces of the corre-
sponding spheroconal harmonics of order`, even or odd.

The eigenvalueshA
n1

andhB
n2

of the Laḿe functions de-
termine the energy eigenvaluesE∗AB

n1n2
via Eq. (22), and their

sum satisfies Eq. (23).

The energy eigenvaluesE∗A
n1n2

may be evaluated numer-
ically using Eq. (11) with the matching asymmetry distribu-
tion parameters of Table I, for̀ = 4 (AB = 1, yz, xz, xy)
and ` = 5 (AB = x, y, z, xyz), and also the values of
hA(k1) andhB(k2) taken from Table II. It is no surprise that
the numerical results coincide with those reported in Ref. 1,
as the reader can check directly. Of course, these results hold
in general for all values of̀, obviating the inclusion of the
corresponding numerical Tables and Figures for the energy
levels in this article, by referring the reader to Ref. 1.

On the other hand, the rotational eigenfunctions for the
asymmetric molecules with̀= 4 and5 also follow from the
diagonalizations of the matrices of Eqs. (32) - (39), yield-
ing the respective expansion coefficientsaA

N (k1) andaB
N (k2)

to be used in the construction of the Lamé polynomials,
Eqs. (24) -(31), and then the latter are matched in turn to
lead to the product solutions of Eqs. (42) - (49). The eigen-
functions for` = 4 were graphically reported in [1], and
here Fig. 2 does the complementary counterpart for` = 5.
Again, the eigenfunctions obtained by the alternative meth-
ods of [1] and this work are numerically accurate and equiv-
alent. The discussion of the individual and global properties
of the eigenfunctions presented in [1] is also valid for any
value of the magnitude of the angular momentum, includ-
ing ` = 5 as illustrated here. Specifically, the five cartesian-
plane or elliptic-cone nodal surfaces for each eigenfunction
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of the asymmetric molecules can be identified in the three
middle columns, including their degeneration into circular-
cone and meridian-plane nodes for the symmetric molecules
in the outer columns.

It is also important to compare the advantages and disad-
vantages of the methods of Ref. 1 and this work. The frame-
work of Ref. 1, using spherical harmonics, is more familiar
for most people; but the Schrödinger equation is not separa-
ble into spherical coordinates. The spheroconal coordinates
and the Laḿe functions are not so familiar; but they are the
natural tools behind the separabilty and integrability of the
problem. The motivation to learn about them, including de-
veloping methods to evaluate them, is physically justified and
long overdue. Both methods yield equally accurate numeri-
cal results. Of course, becoming familiar with both is most
advantageous. On the practical side, for a given value of`,
the sizes of the matrices̀× ` and(` + 1)× (` + 1) in Ref. 1
and the smaller sizes of Eqs. (40) - (41) in this article tilt
the scales in favor of the latter. The matrix evaluation of the
Lamé functions in Sec. 3, for matching values of the asym-
metry distribution parameters, in accord with Table I, leads
in a natural way to the construction of the complete eigenso-
lutions studied in this section.

The rotational states obtained in Refs. 1, 2, 5, and 6 and
the present work are restricted to those withm = 0 in the
laboratory-fixed frame. The states with m =±1, ±2, fol-
low from the successive applications of the ladder operators
M̂± to the state withm = 0. In practice, the familiar theory
of angular momentum favors the representation of the cor-
responding states in terms of spherical harmonics [1] over
the one constructed here in terms of Lamé functions. On the
other hand, it may be worthwhile exploring the extension of
the theory of angular momentum based on spheroconal har-
monics.

We conclude this section by underlining the fact that the
separable and integrable eigenfunctions and eigenenergies of
asymmetric-molecule rotational states can be reliably con-
structed via the matrix evaluation of the Lamé polynomials.

The method is direct and simple, leading to accurate values
for molecules with any asymmetry and for states of any exci-
tation.

5. Common generating function for complete
wave functions of rotational states and dis-
cussion

In the companion article [1], it was recognized that the com-
plete wave functions for the rotational states of asymmetric
molecules are spheroconal harmonics,i.e., solutions of the
angular part of the Laplace equation. Consequently, it was
also possible to identify the Coulomb potential as the com-
mon generating function for the Legendre polynomials, and
at the same time for both the spherical harmonics and the
spheroconal harmonics via the addition theorem.

While the initial motivation of the work reported in Ref. 1
and this paper was the evaluation of the rotational states of
asymmetric molecules, its results are valid and applicable to
other quantum systems. Indeed, it is also known that the
Schr̈odinger equation is separable and integrable for the hy-
drogen atom not only in spherical coordinates but also in
spheroconal coordinates [24, 25]. Actually, this also holds
for any central potential, since the corresponding operators

Ĥ, L̂2, L̂z and Ĥ, L̂2, aL̂2
x + bL̂2

y + cL̂2
z

form complete and commuting alternative sets; of course, the
third members of each set do not commute with each other.
Consequently, any generating function for spherical harmon-
ics is also a generating function for spheroconal harmonics
involving Lamé functions, Eqs. (24) - (31). As an example,
we consider the Rayleigh expansion of the plane wave into
spherical waves [19]:

e(i~κ·~r) =
∑

`

i`(2` + 1)j`(κr)P`(κ̂ · r̂) , (51)

and the addition theorem [1]:

P`(κ̂ · r̂) =
4π

2` + 1

∑
m

Y ∗m
` (θκ, φκ)Y m

` (θ, φ) =
4π

2` + 1

∑

A,B

∑
n1,n2

ΛA
n1

(χ1κ , k1)ΛB
n2

(χ2κ , k2)ΛA
n1

(χ1, k1)ΛB
n2

(χ2, k2) ,

(52)

whereχ1κ andχ2κ are the spheroconal coordinates defining
the orientation of̂κ, and where thek1 andk2 parameters are
restricted by Eqs. (A.6) and (A.19), and the parity-singularity
labelsA andB and the number of nodesn1 andn2 are sub-
ject to the restrictions before and in Eq. (50), respectively.

The harmonic oscillator and the hydrogen atom in three
dimensions have common generating functions for their
respective complete wave functions in different coordi-
nates [25] and [26], including spherical coordinates and also

spheroconal coordinates, as it follows from the application of
Eq. (52).

In conclusion, the matrix evaluation of the Lamé func-
tions introduced and developed in this work is useful to de-
scribe the rotational states of asymmetrical molecules, as well
as alternative rotational states of any central potential quan-
tum system.
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FIGURE 2. Lamé function rotational eigenstatesΨAB
n1n2 , Eqs. (46) - (48), inxyz space as functions of the asymmetry distribution parameter

σ, Eq. (11).
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Appendix

Spheroconal coordinates(r, χ1, χ2) are defined by the trans-
formation equations to cartesian coordinates

x = r dn(χ1, k1) sn(χ2, k2);

y = r cn(χ1, k1) cn(χ1, k1),

z = r sn(χ1, k1) dn(χ2, k2) (A.1)

involving Jacobian elliptic functionssn, cn anddn, [20]. The
latter are defined and related in the following way:

u =

ϕ∫

0

dα√
1− k2 sin2 α

, (A.2)

whereϕ is called the amplitude ofu, and

sn(u, k) = sin ϕ,

cn(u, k) = cos ϕ =
√

1− sn2(u, k),

dn(u, k) =
√

1− k2sn2(u, k) =
√

1− k2 sin2 ϕ. (A.3)

Their derivatives are given by

d

du
sn(u, k) = cn(u, k)dn(u, k),

d

du
cn(u, k) = −sn(u, k)dn(u, k),

d

du
dn(u, k) = −k2sn(u, k)cn(u, k). (A.4)

The squares of Eqs. (A.1), upon summation and use of
Eqs. (A.3), lead to

x2 + y2 + z2 = r2 , (A.5)

provided that

k2
1 + k2

2 = 1 . (A.6)

Therefore, the coordinate0 < r < ∞ defines families of
concentric spheres.

The succesive elimination of the coordinateχ1 or χ2 be-
tween Eqs. (A.1), using Eqs. (A.3), leads to the respective
equations:

x2

r2dn2(χ1, k1)
+

y2

r2cn2(χ1, k1)
= 1 , (A.7)

y2

r2cn2(χ2, k2)
+

z2

r2dn2(χ2, k2)
= 1 . (A.8)

Equation (A.7) for fixed values ofr andχ, defines the
intersection of the corresponding sphere and the surface de-
fined by the value of the angular variableχ1. Equation (A.8)
does the same for fixed values ofr andχ2. Equations (A.7)
and (A.8) can be rewritten, with the help of Eq. (A.5), in
terms of onlyχ1 andχ2, respectively:

x2k2
1sn

2(χ1, k1)
z2dn2(χ1, k1)

+
y2sn2(χ1, k1)
z2cn2(χ1, k1)

= 1 , (A.9)

y2sn2(χ2, k2)
x2cn2(χ2, k2)

+
z2k2

2sn
2(χ2, k2)

x2dn2(χ2, k2)
= 1 . (A.10)

Equation (A.9), for fixed valuesχ1, describes an ellip-
tic cone with vertex at the origin(x = 0, y = 0, z = 0),
its axis coinciding with thez-axis, and elliptical intersections
with the succesivez = z0 planes with major its semi-axis
z0dn(χ1, k1)/k1sn(χ1, k1) along thex-direction, and minor
semi-axisz0cn(χ1, k1)/sn(χ1, k1) along they-direction. In
the same way, Eq. (A.10) for fixed value ofχ2 describes el-
liptical cones with the succesivex = x0 planes with minor
axis along they-axis and major axis along thez-axis.

The evaluation of the vector displacement using
Eqs. (A.1) and (A.4):

d~r = îdx + ĵdy + k̂dz =
(
îdn(χ1, k1)sn(χ2, k2) + ĵcn(χ1, k1)cn(χ2, k2)+ k̂sn(χ1, k1)dn(χ2, k2)

)
dr

+
(
−îk2

1sn(χ1, k1)cn(χ1, k1)sn(χ2, k2)− ĵsn(χ1, k1)dn(χ1, k1)cn(χ2, k2)

+ k̂cn(χ1, k1)dn(χ1, k1)dn(χ2, k2)
)

rdχ1

+
(
îdn(χ1, k1)cn(χ2, k2)dn(χ2, k2)− ĵcn(χ1, k1)sn(χ2, k2)dn(χ2, k2)

− k̂sn(χ1, k1)k2
2sn(χ2, k2)cn(χ2, k2)

)
rdχ2, (A.11)

permits the identification of the scale factors using
Eqs. (A.3):

hr = 1, hχ1 = hχ1 = hχ,

hχ = r
√

1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2). (A.12)

The reader can also identify the unit vectorsr̂, χ̂1 andχ̂2,
and their ortogonality from Eq. (A.11).

The Laplace operator can be constructed by using
Eq. (A.12):
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∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 (1− k2

1sn2(χ1, k1)− k2
2sn2(χ2, k2))

(
∂2

∂χ2
1

+
∂2

∂χ2
2

)
, (A.13)

allowing the immediate identification of the square of the angular momentum operator of Eq. (38) in Ref. 5,

L̂2 = − ~2

1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2)

(
∂2

∂χ2
1

+
∂2

∂χ2
2

)
. (A.14)

The reader may notice the presence of only the second derivatives with respect toχ1 andχ2 in Eqs. (A.13) and (A.14), due
to the equality of the scale factors in Eq. (A.12), in contrast with the corresponding operator in spherical coordinates.

The cartesian components of the angular momentum operator are necessary in order to construct the Hamiltonian operator.
They take the forms:

L̂x = −i~
[

cn(χ2, k2)dn(χ1, k1)dn(χ2, k2)
1− k2

1sn2(χ1, k1)− k2
2sn2(χ2, k2)

∂

∂χ1
+

k2
1sn(χ1, k1)sn(χ2, k2)cn(χ1, k1)

1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2)
∂

∂χ2

]
, (A.15)

L̂y = −i~
[

sn(χ1, k1)cn(χ2, k2)dn(χ1, k1)
1− k2

1sn2(χ1, k1)− k2
2sn2(χ2, k2)

∂

∂χ2
− cn(χ1, k1)sn(χ2, k2)dn(χ2, k2)

1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2)
∂

∂χ1

]
(A.16)

L̂z = i~
[

k2
2sn(χ1, k1)sn(χ2, k2)cn(χ2, k2)

1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2)
∂

∂χ1
+

cn(χ1, k1)dn(χ1, k1)dn(χ2, k2)
1− k2

1sn2(χ1, k1)− k2
2sn2(χ2, k2)

∂

∂χ2

]
. (A.17)

The Hamiltonian operator of Eq. (47) in [5] in spherical coordinates becomes

Ĥ∗ =
1
2

(
e1L̂

2
x + e2L̂

2
y + e3L̂

2
z

)
= − ~2

2 (1− k2
1sn2(χ1, k1)− k2

2sn2(χ2, k2))

×
[(

e1 − (e1 − e2)sn2(χ2, k2)
) ∂2

∂χ2
1

+
(
e3 + (e2 − e3)sn2(χ1, k1)

) ∂2

∂χ2
2

]
. (A.18)

It also involves only the second derivatives with respect
to χ1 andχ2. Actually the original presence of the second
derivative with respect toχ1 andχ2, and also the first deriva-
tives, are eliminated by the choice

k2
1 =

e2 − e3

e1 − e3
, k2

2 =
e1 − e2

e1 − e3
, (A.19)

which is consistent with Eq. (A.6). Then the angular part of
the square of the scale factor, Eq. (A.12), takes the alternative
form:

1− k2
1sn

2(χ1, k1)− k2
2sn

2(χ2, k2) =
1

e1 − e3

× [−e3 − (e2 − e3)sn2(χ1, k1)

+ e1 − (e1 − e2)sn2(χ2, k2)
]
, (A.20)

which is the Weierstrass form of elliptical functions.
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5. E. Pĩna,J. Mol. Struct. (THEOCHEM)493(1999) 159.
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