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The solutions of the Schdinger equation describing rotational states of asymmetric molecules are known to be separable as products of
Lame functions in spheroconal coordinates. However, the numerical evaluation of such solutions has not been implemented in efficient and
practical ways. This paper overcomes this deficiency by presenting a matrix method for evaluating the neédenhétzons, in their two

kinds and eight species, to obtain accurate energy eigenvalues and eigenfunctions for the rotational states of molecules with any asymmetry.
A generating function for these eigenfunctions, including its series expansions for any asymmetry, is also presented.

Keywords: Asymmetric molecules; rotation spectra; matrix evaluation; spherical harmonicse fiamtions; spheroconal harmonics;
generating function.

Se sabe que las soluciones de la eciradie Schiidinger que describen estados rotacionales décnfds asiratricas son separables como
productos de funciones de L&nen coordenadas esferoconales. Sin embargo, la evauagierica de tales soluciones no ha sido imple-
mentada en formas eficientes yapticas. Este trabajo elimina tal deficiencia presentandoétodn matricial para evaluar las funciones de
Lamé necesarias, en sus dos tipos y ocho especies, para obtener valores precisos de los eigenvaloresiag ldediasrgigenfunciones
para los estados rotacionales de @tolas con cualquier asimitr Tambén se presenta una fubai generadora para tales eigenfunciones
incluyendo su desarrollo en serie para cualquier asieetr

Descriptores: Moléculas asiratricas; espectro rotacional; evaludatimatricial; arndnicos estricos; funciones de Lagy armbnicos esfero-
conales; fundin generadora.

PACS: 33.20Sn; 33.15.Mt: 33.20.-t; 31.15.Hz

1. Introduction providing spectroscopically accurate numerical results. Sec-
tion 2 reviews the simultaneous separation of the &dinger
This is a companion and complementary article of Ref. 1 equation and the square of the angular momentum equation,
concerning the accurate evaluation of rotational spectra di SPheroconal coordinates, into two Larordinary differ-
asymmetric molecules [2-5]. While [1] is based on the usegantial .equ_ations. We fo!low the nqtation of Refs. 5 a_nd 6,
of spherical harmonics to evaluate the energy eigenvalues afgeluding in the Appendix the details about the coordinates
the intrinsic eigenfunctions of the rotational states of asymand operators for completeness sake. The separation con-
metric molecules, the present investigation is focused on thatants are identified as well defined linear combinations of
numerical evaluation of the corresponding exact and separdbe eigenvalues of the enerdy” and the square of the an-
ble Lamé function solutions. Indeed, Kramers and Ittmanngular momentunf(Z + 1). Section 3 studies the solutions to
introduced and analyzed such solutions [2], but their apthe Lane differential equation, characterizing them by their
proach was not implemented in practice because the numeparity and singularity properties, which lie behind their clas-
ical methods for evaluating Lanfunctions were not devel- sification into two kinds, each with four species. Conse-
oped efficiently. On the other hand, the line of work pio- duently, the Laré functions can be expressed as the prod-
neered by [3,4], using the basis of eigenfunctions of symmetUct of a singularity-removing factor and a series expansion
ric molecules later known as the WignBrfunctions, became in €ven powers ofn(x, k). The expansion coefficients are
a practical tool for interpreting rotational spectra within the found to satisfy three-term recurrence relations, which can
limiting framework of perturbation theory [7-17]. Recently, be rewritten in a single square tridiagonal matrix of finite
the investigations in Refs. 5 and 6 started the revisiting oflimension, for each kind and species of lafunction and
Ref. 2, but the numerical results of the former are still lim- €ach value of. The diagonalization of such matrices yields
ited to the lower excited states, while the later - focused on th@ccurate numerical values of the expansion coefficients and
most asymmetric molecules - still aims at taking the latter as #1€ Separation constants for each Iéafanction. Section 4

reference to do perturbation theory extensions for molecule§XPlains how to assemble the eigenfunctions of the rotational
with neighboring asymmetries. states of the asymmetric molecule, as products of matching
Our revisiting of Refs. 2, 5, and 6 targets the construc-l‘amte functions a_ccording to_ kind and species, and glso ac-
tion of the exact and separable Larfunction solutions for cording to matching separation constafitsand i, which

: ... also yield accurate eigenenergies for the chosen valde of
molecules with any asymmetry and states of any excitation,
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The eigenfunctions turn out to be also of two kinds and four
species. Numerical results for the respective functions and 1

eigenvalues are illustrated in both Secs. 3 and 4. The d'SCUS'I = Q + Pe;, (6)
sion in Sec. 5 centers around the identification of generating

functions for spheroconal harmonics, and their appllcatlonsQ — 1 [1 1 + 1 } 7 (7)
in quantum mechanics beyond the rotations of asymmetric 3L L I

molecules. e1+ext ez =0, ®)

2 2 2 §
. L . e te; =g, 9)
2. Separation of the Schbdinger equation and
the square of the angular momentum eigen- (1_1)2+ <1_1>2 N <1_1)2 (10)
value equation into Lamé ordinary differ- L I Iy I3 Is L) |
The parametef) is the average trace of the matrix and

ential equations
provides the spherical top contributigiQ/(¢ + 1) to the
energy eigenvalue in Eqg. (4). The paramd®eis a measure
of the magnitude of the asymmetry of the molecule, while
e1, e2, ez quantify the distribution of the asymmetry in the
U= BV, 1) directions of the principal axes. The three asymmetry distri-
bution parameters in Egs. (8) and (9) can also be replaced by
one single angular parametér< ¢ < /3, of Eq. (45) in
wherel,, I, I; are the moments of inertia ad, L, L. are Ref. 5:
the angular momentum components in the reference framg = cos o,
fixed in the body and oriented along the principal axes; of the

2
9

The rotational states of an asymmetric molecule are dete
mined by the common eigenfunctions of the Hamiltonian,

212 f2
J_Fi_’_i

1
o\l T L T

ez =cos(o — 2F), ez =cos(o + 2F), (11)

square of the angular momentum, the symmetric prolate and oblate molecules correspond to
o = 0ando = 7/3, respectively, while the most asymmetric
Fo | F2 | 72 _ 32 . molecules have = 7 /6. In summary, the three moments of
(Ll. + 12+ Lz> U = R20(0 + 1)T; @) / .

inertia are replaced by the three independent param@tdrs
and onee;. By choosingl; < I, < I3, the complete equali-
3?;§:yth; fn(é?tg?ig?enrte?]fctg?r:rr;%mar momentum in the Iabt ies lead ta) = 1/1; andP = 0, for the spherical molecule;

' ' ' the partial equality; < Iy = I3 corresponds to the symmet-
ric prolate molecule witle; = 1, eo = e3 = —1/2 and rota-
tional invariance around the x-axis; the other partial equality
. ) I, = I, < I5 describes the symmetric oblate molecule with
borrowing Egs. (34) and (35) of [5]. The; andM; oper- ¢ = ¢, = 1/2, e5 = —1 and rotational invariance around
ators, where = z,y, z, are expressed in terms of the three the z-axis; and the most asymmetric molecule is character-
familiar Euler angles, Egs. (32) and (33) of [5], but the eigen-jzed bye, = —e3 = \@/2, ey = 0.
valuesE' and{(¢ + 1) do not depend om because the angle It is convenient to illustrate at once numerically, the cor-
defining the orientation of the free molecule in the |ab0rat0ryresp0nding values of the alternative asymmetry distribution
is ignorable. References 1 and 5 choose to describe the stategrameterss, 1, e, e, k? and k2, related by Egs. (11)
with m = 0, for which the; become the familiar angular and (A.19), via Table I. We refer to it in Secs. 3 and 4 when
momentum operators depending on the other two Euler aneporting the numerical values for the successive functions
gles, Eq. (37) of Ref. 5. and eigenvalues.

For completeness, we also review the alternative

parametrizations of the Hamiltonian, described by Eqs. (46)rasLE I. Corresponding values of asymmetry distribution param-

M,V = hmU, (3)

and (47) in Ref. 5: eters, related by Egs. (11) and (A.19).
1, X o 0° 15° 30° 45° 60°
H= QL + PH", @ o 1 S 5 2 3
7 Loz L [ 7 7 V2-\6 NGEN)
H: 5QL2+§P |:61L5+62L§+63L2:| 5 (5) €2 _% 0 64 2 %
e _1 _ 1 V3 V6+v2 -1
. . . .. 3 2 V2 2 1
where the matrix of the inverses of the moments of inertia is , v v
separated into its trace and traceless contributions. Indeed, i 0 = 3 ey 1
Eqgs. (40)-(44) of Ref. 5 provide the relationships between 2 1 23 1 3-v3 0
the respective sets of parameters: 2 3+V3 2 3+v3
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Next, we analyze the common eigensolutions of the &lihger equation fofl*, Eq. (4), and the square of the angular
momentum Eq. (2). Their explicit forms in spheroconal coordinates are written by using Eqgs. (A.14) and (A.18), respectively:

h2
2 (1 — k2sn2(x1, k1) — k3sn2(x2, k2))
o2 0?
X (61 —(e1 — 62)Sn2(X2,k2)) 5T (63 + (e2 — 63)8112(X1,k1)) 5 | V=LY, (12)
ox7 5%
K2 9? 0?
— == | U =R+ 1)T . 13
1 — k3sn2(x1, k1) — k3sn?(xa, k2) (3)& + 8)(%) (+1) (13)

In fact, they can have factorizable solutions of the form

W(x1,x2) = A1(x1)A2(x2) , (14)

which upon subtitution in Eqgs. (12) and (13), and using Eqg. (A.20) lead to

1 (1 d?Aq n 2F* >
(63 + (62 — 63)8112()(1, kl)) A1 dX% h2(61 — 63)

1 1 d2A2 2B* )
+ — o —0, 15
(e~ (o1 — e (xa, k) <A2 T p—— 13)
1 d?*Ay 0(0+1)es
T (0 + 1) k?sn? ki) — ——=
(Al o~ e+ DR ) - S
1 d2A2 2 9 €(€+1)61
il _ 1)k2s —~ ] =0. 1
(5% - e+ DO k) + U)o g

Simultaneous separation of Eqs. (15) and (16) can be achieved by equating the respective terms of Eq. (15) to
+0(¢ + 1)/(e; — e3) and correspondingly in Eq. (16) tp2E*/h?(e; — e3), with the resulting ordinary differential equa-
tions

d?A4 00+ 1)es 2F*
—— — [ (0 + 1)k?*sn®(x1, k — A= 17
e ( (€ + 1)kisn®(x1, k1) + P =T _63>> 1=0, (17)
d%A, - 00+ 1)e; 2E*
dx3 (Z(Z Dk (e, B) €1 —¢€3 - h2(e1 — e3) 2 =0 (18)

Both are of the Lar@ equation form

d?A; 9 9
o2 ((0+ DRFsn* O k) +hi) Ai =0, (19 3 Matrix Evaluation of Lam & functions
with the respective eigenvalues: This section is devoted to the analysis and construction of the
solutions of the Lara equation (19). The derivatives of the
L0+ 1)es 2F* Jacobian elliptical functions, Egs. (A.4), permit the identifi-
hi = e1—es R2(e; —e3) (20) cation of the removable singularities in the Lafunctions.
) The series expansion solutions in even powersi0f, k), af-
ho = _e(g +1)es 4 2E . (21) terremoval of the respective singularity factors, lead to three-
€1—¢€3 h*(e1 — e3) term recurrence relations for the expansion coefficients; such
relations can be expressed in a matrix form, which permits
Their combinations the accurate evaluation of the expansion coefficients and the
0" eigenvalues:. The reader is referred to Whittaker and Wat-
erhy + eshy = ———, (22)  son [18] for the standard treatment of Larfunctions and
i to [19, 20] for the spheroconal coordinates and Jacobi elliptic
hi+hy=—Ll+1), (23)  functions.
The removable singularities are identified as the factors
yield the eigenvalues of Egs. (12) and (13). A =1,s,¢ d, sc sd, cd, scd in the eight species of Lain
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functions:
A = Za;snzp(x, k) (24)
p

A* =sn(x, k) Y assn(x, k) (25)

p
A€ = k)Y agsn®(x, k) (26)

p
= dn(x, k) Zazsn2p<x,k>, (27)
A*¢ =cn )sn(x, k Za“csn (x, k (28)

165

A* = dn(x, k)sn(x. k) Y asfsn® (x, k), (29)
p
A = dn(x, k)en(x, k) ) agsn® (x. k), (30)
p
Ased=dn(x, k)en(x, k)sn(x, k) Y as*sn (x, k) . (31)
P
Substitution of the successive functions of

Egs. (24) - (31) in the Lam Eq. (19) leads to the respec-
tive three-term recurrence relations for the power expansion
coefficientsay :

(2N +1)(2N +2)ay 1 — [(1 + k*)(2N)* + k] apy + k* [2N — 2)(2N — 1) — £({+ )] ap_, =0, (32)

(2N +2)(2N +3)aj 1 — [(1+k*) (2N +1)* + h] afy + k> [(2N = 1)(2N) — £({ + 1)]ajy_, =0, (33)

(2N + 1)(2N +2)af,, — [(2N +1)* + K*(2N)* + h] af + K*[(2N — 1)(2N) — £({ + 1)]ay_, =0 , (34)
(2N +1)(2N +2)a%,, — [2N)? + k*(2N + 1) + h] a% + k* [(2N — 1)(2N) — £({ + 1)]a%_, =0, (35)
(2N +2)(2N + 3)aiy , — [k2(2N +1)°+ (2N +2)°> + ] a¥f + K*2N(2N + 1) — (L + 1)]afi_, =0, (36)
(2N +2)(2N +3)ail,, — [F*(2N +2)% + (2N + 1)2 + h] a5f + k> 2N(2N + 1) — £(¢ + 1)] a¥_; = 0, (37)
(2N +1)(2N +2)ai, — [1+ )N +1)? + h] aff + K2 [(2N(@2N + 1) — (¢ + D] ai_, =0, (38)

(2N +2)(2N +3)ax?; — [(1+ k%) (2N +2)% + h] a¥? + k2 [(2N + 1)(2N +2) — (¢ + D] ai, =0 (39)

These recurrence relations can be cast into tridiagonal
matrix forms with expansion coefficients; as eigenvec- Notice that the matrices in Egs. (32) - (39) are not sym-
tors andh as eigenvalues, following the method introduced inmetric and the appropriate LAPACK routine is used for their
connection with the evaluation of the electronic states of thaliagonalization, [23]. Their finite dimensions allow accurate
hydrogen molecular ion [21], and Mathieu functions [22].  evaluations of the eigenvalués' and eigenvectors;)4 as il-

Notice that the matrices turn out to be finite dimensional.lustrated in Table Il and Fig. 1.

Consequently, the series solutions in Egs. (32) - (39) be- Table Il contains the eigenvaluag (k) for ¢ = 4 and5,
come Langé polynomials. The last term of the recurrencefor the respective kinds and specids and for the values
relations indicates that the respective matrices have finite dief the asymmetry distribution parametérin the chosen

MensionN,,.. X Nnae- In fact, for ¢ even Eq. (32) and molecule. The nine values fér= 4 are obtained from one
3 x 3 matrix for A = 1, and three x 2 matrices forA = sc,
sd, cd. Correspondingly, the eleven values foe 5 follow
from three3 x 3 matrices fordA = s, ¢, d and one x 2 matrix
for A = scd.

Figure 1 illustrates the Laén functionsAZ (y,k) for
¢ = 5 of the speciesA = s, ¢, d, scd, EQs. (25) - (27) and
(31), in the interval < amy < 90°, for the values of the
parametefk? in the successive rows from top to bottom. No-
tice the common node gt= 0 and the common zero slope at
amy = 90° for the A* in the first column; the zero slope and
the node at the respective ends for ttfein the second col-

Egs. (36) - (38) determine, respectively,

_t
2 )
leading to a total of /2 + 1 + 3¢/2 = 2¢ + 1 independent

solutions. Likewise, fo¥ odd Egs. (33) - (35) and Eq. (39)
lead respectively, to

E

and

a1

1
max 2 Nq(d 7 (4 1)

S
Nma;r max

—_N¢

v and

also with a total of2¢ + 1 independent solutions. Conse-
(31) include terms withumn; the vanishing slopes at both ends for Aifein the third

guently, the sums in Egs. (24) -
p=1,2,..., N4 _ andare thereby identified as Larpoly-
nomials.

column, except for the bottom = 1 case in whicm ¢ = A¢;
and the nodes at both ends for th&? in the fourth column.

Rev. Mex. 5. 54 (2) (2008) 162-172
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TABLE Il. Eigenvaluesh” of Lamé Eq. (19) for chosen values 0f< k> < 1,£ =4 (A = 1, s¢, sd, cd) andl = 5 (A = s, ¢, d, scd).

K2 0 0.2679491924311 0.5 0.7320508075688 1
1 -16 -16.5851262965012 -17.2111025121022 -18.0899154478468 -20
sc -16 -16.5840359204396 -17.1904157236340 -17.9288070427514 -19
sd -9 -10.6692264277499 -12.6457511848807 -15.3102425028777 -19
cd -9 -10.6082989483587 -12.1904156698290 -13.9045439338914 -16
1 -4 -6.8637729178446 -10 -13.1362268286893 -16
sc -4 -6.0954559153276 -7.8095841501821 -9.3917009234711 -11
sd -1 -4.6897572437845 -7.3542485627514 -9.3307734295673 -11
cd -1 -2.0711928874085 -2.8095842039871 -3.4159640323311 -4
1 0 -1.9100844571886 -2.7888974102462 -3.4148736559090 -4
K2 0 0.2679491924311 0.5 0.7320508075688 1
S -25 -25.7285943365901 -26.4941465914849 -27.5248399518695 -30
c -25 -25.7284748791048 -26.4891252471910 -27.4510721308369 -29
d -16 -18.0685573651675 -20.3629303726905 -23.6602538501924 -29
scd -16 -18.0589446825257 -20.1961522965227 -22.6999607822317 -26
S -9 -12.3098812782257 -16.3687836315523 -21.1654954654817 -26
c -9 -12.0815810174275 -15 -17.918418739595 -21
-4 -8.8345041215966 -13.6312158705639 -17.6901184271086 -21
scd -4 -7.3000389890087 -9.8038474511094 -11.9410551502134 -14
S -1 -6.3397458103695 -9.6370693353190 -11.9314424644276 -14
c -1 -2.5489277750021 -3.5108746610388 -4.2715250620129 -5
0 -2.4751599384210 -3.5058533151019 -4.2714056044777 -5

The reader may also count the number of nodes in the open
interval 0 < amy < 90°, n, for the respective\? and

their variations in position ak? takes its successive values. U= Wt (v, xe) = Ay, () Ay, (x2) (42)
Specifically,n = 0,1,2 for A = s,¢,d, andn = 0,1 for 2 — s cd
- L7 . Uz = A A 43
A = scd, as determined by the sizes of the matrices from nina (X1 X2) = A3 () A (x2) (43)
which they are evaluated. The Laneigenvalues and func- U7 =0, (1, x2) = A% (x1) AL (xa) | (44)
tions constructed in this section are usederandy- in a oy B e .
complementary form in the following section. T = ‘I’mm (X1, x2) = A%S (X)) A (x2) (45)
The conclusion of this section is that an exact matrix T8 =T, tH(x1,x2) = AL (x1)A3, (x2) , (46)
method for the evaluation of La@npolynomials and eigen- I . .
values has been described and implemented, yielding accu- 2" = Yrnims (X1, X2) = Ay, ()7, (x2) (47)
rate values for both, as illustrated by Fig. 1 and Table Il. The U7 — gt AS Ad
= ning (X1 X2 e (XD)AG, (X2) (48)
method is in the Refs. 21 and 22 shows. ! 2( )= dl( ? ) )
U =W, o, (X x2) = AT (AR (x2) - (49)

Notice that the combinations of and B species for the

. . . Lamé functions iny; andya, respectivel
4. Rotational eigenstates and eigenvalues of 1 andxz, resp Y
A |1 ¢cs ds dc d ¢ s dcs

asymmetric molecules B 1 od sd sc s ¢ d scd
AB |1 yz X2 xy X Yy z Xyz
The eigenfunctions of Eq. (14) are constructed by multi-are associated with the reproduction of the removable singu-
plying the Lang function solution to Egs. (17) and (18), |arity factors in Eqs. (42) - (49). The number of nodes of the
evaluated by the method described in Sec. 3, and chosen {gspective Lar@ functions are chosen to match the condition:
be of complementary species within the two kinds of parity
(r — —x,y — —y,z — —z) eigenstates. ny+ng=4£ (50)
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A A A? A

0.2679...

05

0.7320...

o 45" 0" 0° 45" 80" 0" 45% 80" 0° 45% 20"
amy amy amy amy
FIGURE 1. Lamé functions, Egs. (25) - (27) and (31), for chosen valueg ef k? < 1 and/ = 5 (A = s, ¢, d, scd), as functions of
0 < amyx < 90° Egs. (A.2) - (A.3).

counting the total number of nodal surfaces of the corre- On the other hand, the rotational eigenfunctions for the
sponding spheroconal harmonics of ordegven or odd. asymmetric molecules with= 4 and5 also follow from the
) N i _ diagonalizations of the matrices of Egs. (32) - (39), yield-
The eigenvalues; andhZ of the Lang functions de-

_ 7 2 p ~ ing the respective expansion coefficieats(k;) anda¥ (k)
termine the energy eigenvalugy; .’ via Eq. (22), and their 14 e ysed in the construction of the Lanpolynomials,

sum satisfies Eq. (23). Egs. (24) -(31), and then the latter are matched in turn to

The energy eigenvalugs*4 may be evaluated numer- lead to the product solutions of Egs. (42) - (49). The eigen-

ically using Eq. (11) with thelrriatching asymmetry distribu- functions for = 4 were graphically reported in [1], and
here Fig. 2 does the complementary counterpartfer 5.

tion parameters of Table I, fat = 4 (AB = 1,yz, 2z, zy) g _ | _ |
and! = 5 (AB = =z,y,2 2yz), and also the values of Again, the eigenfunctions obtained by the alternative meth-

hA (k1) andh® (k2) taken from Table I1. Itis no surprise that ©dS Of [1] and this work are numerically accurate and equiv-
the numerical results coincide with those reported in Ref. 12lent. The discussion of the individual and global properties

as the reader can check directly. Of course, these results hofdf the eigenfunctions presented in [1] is also valid for any
in general for all values of, obviating the inclusion of the Value of the magnitude of the angular momentum, includ-

corresponding numerical Tables and Figures for the energi?d ¢ = 5 as illustrated here. Specifically, the five cartesian-
levels in this article, by referring the reader to Ref. 1. plane or elliptic-cone nodal surfaces for each eigenfunction

Rev. Mex. 5. 54 (2) (2008) 162-172
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of the asymmetric molecules can be identified in the threerhe method is direct and simple, leading to accurate values
middle columns, including their degeneration into circular-for molecules with any asymmetry and for states of any exci-
cone and meridian-plane nodes for the symmetric moleculestion.
in the outer columns.
It is also important to compare the advantages and disad-
vantages of the methods of Ref. 1 and this work. The frame5.  Common generating function for complete
work of Ref. 1, using spherical harmonics, is more familiar ~ wave functions of rotational states and dis-
for most people; but the Sdbdinger equation is not separa- cussion
ble into spherical coordinates. The spheroconal coordinates
and the Larg functions are not so familiar; but they are the In the companion article [1], it was recognized that the com-
natural tools behind the separabilty and integrability of theplete wave functions for the rotational states of asymmetric
problem. The motivation to learn about them, including de-molecules are spheroconal harmonics, solutions of the
veloping methods to evaluate them, is physically justified andingular part of the Laplace equation. Consequently, it was
long overdue. Both methods yield equally accurate numerialso possible to identify the Coulomb potential as the com-
cal results. Of course, becoming familiar with both is mostmon generating function for the Legendre polynomials, and
advantageous. On the practical side, for a given valug of at the same time for both the spherical harmonics and the
the sizes of the matricés< fand(/ +1) x (£ + 1) inRef. 1 spheroconal harmonics via the addition theorem.
and the smaller sizes of Eqs. (40) - (41) in this article tilt  hile the initial motivation of the work reported in Ref. 1
the scales in favor of the latter. The matrix evaluation of theand this paper was the evaluation of the rotational states of
Lame functions in Sec. 3, for matching values of the asym-asymmetric molecules, its results are valid and applicable to
metry distribution parameters, in accord with Table |, leadsother quantum systems. Indeed, it is also known that the
in a natural way to the construction of the complete eigensoschidinger equation is separable and integrable for the hy-
lutions studied in this section. drogen atom not only in spherical coordinates but also in
The rotational states obtained in Refs. 1, 2, 5, and 6 andpheroconal coordinates [24, 25]. Actually, this also holds

the present work are restricted to those with= 0 in the  for any central potential, since the corresponding operators
laboratory-fixed frame. The states with m4=l, +2, fol-

low from the successive applications of the ladder operators g, 2 [, and H, L2 aii + bﬁj + Cﬁg

M. to the state withn = 0. In practice, the familiar theory

of angular momentum favors the representation of the corform complete and commuting alternative sets; of course, the
responding states in terms of spherical harmonics [1] ovethird members of each set do not commute with each other.
the one constructed here in terms of Lafanctions. Onthe  Consequently, any generating function for spherical harmon-
other hand, it may be worthwhile exploring the extension ofics is also a generating function for spheroconal harmonics
the theory of angular momentum based on spheroconal hajvolving Lamé functions, Egs. (24) - (31). As an example,

monics. we consider the Rayleigh expansion of the plane wave into
We conclude this section by underlining the fact that thespherical waves [19]:

separable and integrable eigenfunctions and eigenenergies of
asymmetric-molecule rotational states can be reliably con- eliRT) Z%(QH— Dje(kr)Py(k-7) (51)
structed via the matrix evaluation of the Larpolynomials. 7

|  and the addition theorem [1]:

Z Z An1 lekl)Anz(XQ»wkQ)Anl(lekl)Ang(XQ’kQ) 5

A,Bni,n2

Pg(l‘i T 2£+1Z H7¢KY[ (a¢) 2£+1

(52)

wherey, andy», are the spheroconal coordinates defining
the orientation ok, and where thé; andk, parameters are
restricted by Egs. (A.6) and (A.19), and the parity-singularityspheroconal coordinates, as it follows from the application of
labelsA and B and the number of nodes andn. are sub- Eq. (52).
ject to the restrictions before and in Eq. (50), respectively. In conclusion, the matrix evaluation of the Lanfunc-
The harmonic oscillator and the hydrogen atom in thredions introduced and developed in this work is useful to de-
dimensions have common generating functions for theiscribe the rotational states of asymmetrical molecules, as well
respective complete wave functions in different coordi-as alternative rotational states of any central potential quan-
nates [25] and [26], including spherical coordinates and alséum system.
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O' 0° o=15° o =30° o =45° o =60°
z

FIGURE 2. Lamé function rotational eigenstatés?ﬁr Eqgs. (46) - (48), incyz space as functions of the asymmetry distribution parameter
o, Eq. (11).
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Appendix

Spheroconal coordinatés, x1, x2) are defined by the trans-

formation equations to cartesian coordinates
x =rdn(x1, k1) sn(xe, k2);
y =1 en(xa, k1) en(xa, ki),
z =7 sn(x1, k1) dn(xz, k2) (A1)

involving Jacobian elliptic functions, cn anddn, [20]. The
latter are defined and related in the following way:

©
/ do

U= | —
J 1—k2sin?a

wherey is called the amplitude af, and

(A.2)

sn(u, k) = sin @,

en(u, k) = cosp = /1 —sn?(u, k),

dn(u, k) = \/1 — k2sn2(u, k) = /1 — k2sin® p. (A.3)

Their derivatives are given by

%sn(u, k) = en(u, k)dn(u, k),

%Cn(u, k) = —sn(u, k)dn(u, k),

idn(u, k) = —k*sn(u, k)en(u, k).

Tu (A.4)

E. LEY-KOO AND R. MENDEZ-FRAGOSO

Therefore, the coordinate< r < oo defines families of
concentric spheres.

The succesive elimination of the coordinatgor 2 be-
tween Egs. (A.1), using Egs. (A.3), leads to the respective
equations:

22 y? A
+ =1, .
7’2d112()<17 k) r2en?(x1, k1) (A7)
2 2
y z
+ =1. A.8
T2CHQ (XQa k2) 7’2dn2 (XQ7 kg) ( )

Equation (A.7) for fixed values af and x, defines the
intersection of the corresponding sphere and the surface de-
fined by the value of the angular variabje. Equation (A.8)
does the same for fixed valuesofindy,. Equations (A.7)
and (A.8) can be rewritten, with the help of Eq. (A.5), in
terms of onlyy; andy., respectively:

22k2sn?(x1, k1) y2sn?(x1, k1)
22dn* (1, k1) z2en?(x1, k1)
22k3sn?(x2, k)
ac2dn2(x27 k)

=1, (A.9)

y?sn?(xa2, k2)
x2en?(xz, k2)

=1. (A.10)

Equation (A.9), for fixed valueg;, describes an ellip-
tic cone with vertex at the origific = 0,y = 0,z = 0),
its axis coinciding with the-axis, and elliptical intersections

The squares of Egs. (A.1), upon summation and use odvith the succesive = 2, planes with major its semi-axis

Egs. (A.3), lead to
Pyt +22 =07, (A.5)
provided that
B4 k2=1. (A.6)

2odn(x1, k1)/k1sn(x1, k1) along thez-direction, and minor
semi-axiszocn(x1, k1) /sn(x1, k1) along they-direction. In

the same way, Eqg. (A.10) for fixed value gf describes el-
liptical cones with the succesive = x( planes with minor
axis along thgy-axis and major axis along theaxis.

The evaluation of the vector displacement using
Egs. (A.1) and (A.4):

dF = idx + jdy +kdz = ('Zdn(xh k1)sn(xe, ka) + 3cn(X1, k1)en(xo, ko)+ l%sn(xh k1)dn(xa, k‘g)) dr

—i 1S1n{X1, K1)Cn{ X1, K1 )sn{ X2, K2 *3811 X1, R1)dn{xi, ~1)Cn{xz, K2
+ ( —ekfsn(xa, k1)en(xa, k1)sn(xz, k2) (X1, k1)dn(x1, k1)en(xz, k2)

+ ken(x, k1)dn(x1, k1 )dn(x, kz)) rdx

+ (%dn(le ke1)en(xz2, k2)dn(xa, k2)— jen(xi, k1)sn(xe, k2)dn(xz2, k2)

permits the identification of the scale factors usingI

Egs. (A.3):

h, =1, th = th = hX’

hy = 7”\/1 — kisn?(x1, k1) — k3sn?(xo, k2).  (A.12)

— ksn(x1, k1)k3sn(xa, k2)en(xe, k‘2)) rdxa, (A.11)

The reader can also identify the unit vectérs, andyo,
and their ortogonality from Eq. (A.11).

The Laplace operator can be constructed by using
Eqg. (A.12):
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10 0 1 62 82
2_ - Y 2 v 05 0%
VT <r 37‘) TR (k) — R3sn2(xa, £) (axi - axg> ’ (A13)
allowing the immediate identification of the square of the angular momentum operator of Eq. (38) in Ref. 5,
A h2 92 92
1= 3t A A.14
1 — kfsn2(x1, k1) — k3sn?(xa, k2) (8;@ + 8)(%) ( )

The reader may notice the presence of only the second derivatives with respeetrity - in Eqs. (A.13) and (A.14), due
to the equality of the scale factors in Eq. (A.12), in contrast with the corresponding operator in spherical coordinates.

The cartesian components of the angular momentum operator are necessary in order to construct the Hamiltonian operato
They take the forms:

io— _ip | 0O ka)dnlxa, kydn(xa, ko) 0 kfsn(x1, k1)sn(xz, ko)en(xi, k1) 0 (A15)
r 1 — k%SH2(X17 kl) — k%sn2(X27 ]{32) 5‘X1 1 — k’%SH2(X1, ]Cl) — k%SH2(X27 kg) 8)(2 ’ )
7o |0 ken(xe k)dn(xa ki) - 9 enlxa, ki)sn(xe, ka)dn(xa, k2) 9 (A.16)
Y 1 — kfsn2(x1, k1) — k3sn?(xa, k2) Ox2 1 —kfsn2(x1, k1) — k3sn2(xa, ka2) Oxa '
i—in k3sn(x1, k1)sn(xz, ko)en(xa, k2) 9 n en(xi, k)dn(xa, ki)dn(xe, ko) 0 (A17)
: 1 —kisn?(x1, k1) — k3sn?(x2, k2) Ox1 1 —kfsn?(x1, k1) — k3sn?(x2, k2) Oxa2 | '
The Hamiltonian operator of Eq. (47) in [5] in spherical coordinates becomes
~ 1 N " . h2
)2 E—— 2 2 2\ _ _
2 (elLI tealy + 63Lz) 2 (1 — kfsn2(x1, k1) — k2sn2(xa, k2))
0? 0?
X |:<€1 — (61 — 62)8112()(2, ]CQ)) 724’ (63 + (62 — 63)5112()(1, k’l)) 2:| . (A18)
ox7 X3

It also involves only the second derivatives with respect
to x1 andy.. Actually the original presence of the second
derivative with respect tg; andy-, and also the first deriva-
tives, are eliminated by the choice

which is the Weierstrass form of elliptical functions.

276 g2_azer (A.19)  Acknowledgments
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