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Although some optical spectroscopy methods were introduced more than ten decades ago, they are still finding new applications in many
areas of science. Specifically, medicine and biology are two areas of research where optical methods may facilitate and improve the study
and characterization of tissue and biological molecules in order to improve medical diagnosis. Optical spectroscopy can aid in the study and
detection of some diseases faster than standard laboratory techniques. This work demonstrates applications of Micro-Raman spectroscopy
and multivariate analysis to biomedical problems such as: breast cancer detection, toxoplasmosis study through indirect antibody detection,
and discrimination between antibody isotypes (IgG and IgM).
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Algunas espectroscopiasópticas existen desde hace más de diez d́ecadas; sin embargo, en recientes años estas técnicas se han aplicado en
distintasáreas del conocimiento. Por otro lado, la medicina y la biologı́a son dośareas de investigación donde laóptica puede facilitar
el estudio y caracterización de tejidos y moĺeculas bioĺogicas con el fin de mejorar el diagnóstico cĺınico. Las espectroscopiasópticas
pueden ayudar en el estudio y detección de algunas enfermedades de manera mas rápida que las técnicas estándar de laboratorio. En este
trabajo, mostramos algunas aplicaciones de la espectroscopia Raman y del análisis multivariante en algunos problemas especı́ficos delárea
biomédica, por ejemplo: detección de ćancer de mama, diagnóstico de la toxoplasmosis e identificación de isotipos (IgG e IgM).

Descriptores:Calostro; multivariado; NIR; Raman; suero.

PACS: 87.64.Je; 89.20.-a; 87.14.-g

1. Introduction

Medicine and biotechnology are two areas where the con-
stant development of new and more sophisticated techniques
is required in order to make better and faster decisions related
to clinical diagnosis. Physicians base their diagnoses princi-
pally on the use of three kinds of information: clinical, labo-
ratory, and image analysis. Consequently, the new proposed
techniques should improve upon the current procedures for
early detection of disease.

The medical community is not only interested in tech-
niques that improve the clinical diagnosis; they are also inter-
ested in noninvasive techniques that are less expensive, and
especially in those techniques that do not require a sophisti-
cated technician. In the last three decades, the most promis-
ing noninvasive techniques for characterization and analysis
have been related to the use of visible or near infrared light.
Light has been used to investigate materials and to obtain
corresponding information due to the interaction of radiation
with the material under study. Optical techniques are based
primarily on the simple idea that light passes through the ma-
terial in small quantities (transmission, diffusion, reflection,
or dispersion) and emerges with information about the mate-
rial through which it has passed (tissue, serum, etc.).

Following this direction, optical techniques such as ab-
sorption (UV-Vis, NIR, MIR), fluorescence, reflectance (UV-
Vis, NIR, MIR), Raman, and Micro-Raman spectroscopies

have shown great potential for biomedical applications, for
example glucose determination [1–6], tissue and biologi-
cal sample characterization [7-10], monitoring of cell pro-
liferation [11], quantitative analysis of serum samples [12],
measurement of carotenoids in the skin and retina [13, 14],
measurements of brain activity [15], to assess neural acti-
vation during object processing in infants [16], studies on
immunoassays [17],in vivo disease diagnosis [18], breast
cancer detection in tissue or in serum blood [19–23], and
also alcohol testing and beverage identification have all
been studied using optical spectroscopies and multivariate
techniques [24,25].

Raman and Micro-Raman spectroscopy provide informa-
tion on molecular structure by means of the normal vibra-
tional modes of the molecule under study. The interaction of
the light with the sample causes an energy exchange between
photons and molecules, and this interaction causes the scat-
tering of the photons, in which the majority change direction
(Rayleigh scattering), but only a few (1 in 1×108 photons)
change in frequency (Raman scattering) [26,27]. In addition,
infrared spectroscopy obeys Beer’s law, by which light is ab-
sorbed through the sample and the transmitted or reflected
light is detected at the same frequency as the incident light.

The principal objective of this paper is to show poten-
tial applications of optical spectroscopies, specifically Raman
spectroscopy, to biomedical problems.
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In the next section, we describe the Raman spectroscopy
technique applied in the analysis of biological samples. Sec-
tion 2.1 describes the experimental setup, the protocol for
sample preparation, and the acquired data. Raman spectra
(RS) were analyzed through multivariate analysis (three mul-
tivariate techniques were used in this study), and the methods
are described in Sec. 2.2; for more details on these meth-
ods, we encourage the reader to consult the corresponding
references. In Sec. 3, three different biomedical problems
are discussed, including the discrimination between of serum
samples of healthy subjects and breast cancer patients, anti-
body detection, and antibody isotype identification.

Our preliminary results show how Raman spectroscopy
can be a useful technique in the study of biomedical prob-
lems.

2. Materials and methods

2.1. Micro-Raman experimental setup

A linearly polarized radiation of 514.5 nm from a 2.6W
water-cooled argon laser (Spectra Physics, Stabilite 2017)
was used as an excitation source. The laser light was fo-
cused on the sample with a 40X microscope objective. RS
were recorded with a monochromator (Jobin Yvon, HR 460)
equipped with an air-cooled CCD (256 pixels× 1024 pixels).
Grams software (version 3.04) was used to obtain the spectra.
To reject Rayleigh emission light and plasma frequencies of
the laser, a holographic Super Notch-Plus filter (Kaiser Opti-
cal Systems, HSPF-31453) and an interference filter (Melles
Griot, 03 IFS 004), respectively, were used. The Raman sys-
tem was calibrated using the 520 cm−1 Raman line of a sili-
con wafer.

To collect the RS of the biological samples, we utilized
the following protocol: a drop of each sample was placed on
an aluminum substrate; after evaporation, the solid residues
were analyzed in different zones. Several RS were acquired
in each drop, where each selected zone was studied in detail
using a microscope. All samples were analyzed on the same
day, and under for same experimental setup and conditions.

2.2. Multivariate methods

To analyze the spectral data obtained, multivariate methods
were used. These methods have been developed to deal with
a large and complex amount of information in which two
or more variables are analyzed simultaneously. These meth-
ods are used in many different fields of research from optical
spectroscopy to neuroscience.

Today, multivariate methods are used to analyze data in
qualitative and quantitative applications. In the following
sections, we describe the multivariate methods used in the
present study.

2.2.1. Principal component analysis

Principal component analysis (PCA) is a multivariate tech-
nique that acts in an unsupervised manner and is used to an-
alyze the inherent structure of the data. PCA reduces the di-
mensionality of the data set by finding an alternative set of
coordinates, the principal components (PCs) [28–30]. Math-
ematically, PCA is a linear transformation,

PC = XW, (1)

where the rows of the matrixX represent each RS and the
columns of the matrix transformationW are the loading vec-
tors, while the columns ofPC represent the new set of vari-
ables called “scores”.

PCs are a linear combination of the original variables,
which are orthogonal to each other and designed in such a
way that each one successively accounts for the maximum
variability of the data set.

In other words, when spectroscopic data are analyzed,
each spectrum contains a large number of variables, in this
case, the Raman frequencies. The principal goal of PCA is
to obtain the information about the structure of the spectro-
scopic data, looking for differences between samples in such
way that it is possible to group the data.

In fact, when PC scores are plotted, for example PC1 vs
PC2 or any combination of the PCs, they can reveal rela-
tionships between samples (grouping). It is important to re-
member that PCA does not act in a supervised manner, which
means that PCA does not know a priori the number of kinds
(groups) of samples under study. PCA provides insight into
how much variance is explained by each PC, and how many
PCs should be kept in order to maintain the maximum in-
formation from the original data without adding noise to the
current information [31, 32]. From the perspective of physi-
cal or chemical information, when PC loadings are plotted as
a function of the variables (Raman frequencies in this case),
the plot reveals which variables account for the greatest dif-
ferences, in other words, which bands show the greatest dif-
ferences between RS of the samples in study. Raman bands
are related to the normal vibrational modes of the molecules
in the samples, and vibrational modes can be associated with
one or several specific markers.

2.2.2. Linear discriminate analysis

Linear discriminate analysis (LDA) is a multivariate tech-
nique that acts in a supervised manner, meaning that we know
a priori how many groups there are and which samples cor-
respond to each group. Sometimes, though not as a general
rule, the PC scores are analyzed with LDA. Then, as in the
PCA method, LDA reduces the dimensionality of the data set
by finding an alternative set of coordinates termed “canoni-
cal components”, or DAs. DAs are linear combinations of the
original variables (PC scores). The alternative set is obtained
through maximizing the variance between the samples of dif-
ferent groups and minimizing the variance between samples
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of the same group [29, 33, 34]. When the canonical com-
ponent scores are plotted, they reveal relationships existing
between the samples, such as natural clustering of the data.
This technique provides insight into how effective a pattern
recognition algorithm is in classifying the data.

2.2.3. Partial least square regression

Partial Least Square Regression (PLSR) was developed in
the 1960’s by Herman Wold as an econometric technique,
but some of its most avid users are chemical engineers and
chemometricians. Partial Least Square (PLS) is a method for
constructing predictive models when the factors are highly
collinear. The PLS method emphasizes the prediction of the
responses, and not the understanding of the underlying rela-
tionship between variables. PLS uses factor analysis to com-
press the size of the spectra and to remove redundant infor-
mation. Generally, PLS uses information about the property
of interest (i.e., the analyte concentration) along with sample
variance in the compression process to create factors that are
correlated with the property of interest. However, when pre-
diction is the goal and there is no practical need to limit the
number of measured factors, PLS is a highly recommended
tool [32,35–37].

3. Micro-Raman applications

In the following subsections, we present the principal re-
sults of some applications to biomedical problems using
Micro-Raman spectroscopy; these results are based on cur-
rent projects in our laboratory. In each case, the medical con-
siderations, data acquisition, and data analysis are discussed.

3.1. Serum analysis of breast cancer patients

Breast cancer is the most common form of malignant tumor
found among women in the western world. Each year, new
cases of breast cancer are detected around the world, and ac-
cording to the American Cancer Society, 178,000 new cases
of breast cancer will be diagnosed for 2007 with a mortality
rate of 26.9 per 100,000 women [38]. In México, the number
of breast cancer cases per year are not well documented; how-
ever, the National Institute of Statistics Geography and Infor-
matics (INEGI) reported 11,242 new cases of breast cancer in
2002 with a mortality rate of 15.2 per 100,000 women [39];
thus, approximately 7,600 Mexican women die each year
due to this disease. Early detection can increase the chances
of survival for patients, and new efficient or complementary
techniques can be helpful to physicians dealing with this dif-
ficult task.

The main objective of this study was to evaluate the capa-
bility of Micro-Raman spectroscopy and multivariate meth-
ods in discriminating between serum samples of patients with
breast cancer and control subjects(healthy subjects).

3.1.1. Serum samples

We collected serum samples of eleven patients with con-
firmed clinical and histopathological diagnosis of breast can-
cer (including four patients with metastases) and twelve
healthy control subjects. The serum was obtained by cen-
trifuging the sample of blood obtained from each volunteer.

All patients and the control group were from the central
region of Mexico and had similar ethnic and socioeconomic
backgrounds. Raman spectra were collected using the ex-
perimental setup and protocol described above. Prior to the
multivariate analysis, a baseline was corrected from Raman
spectra using the commercial software Microcal Origin, in
order to eliminate the fluorescence contribution of each spec-
trum. Next each spectrum was smoothed using the adjacent
averaging method with ten points for the averaging, and then
normalized by applying the maximum normalization trans-
formation.

3.1.2. Breast cancer serum results

Figure 1 shows the mean Raman spectra of the control group
and breast cancer patients. The Raman spectra were ana-
lyzed visually in order to find evident spectral differences be-
tween spectra, our main purpose being the identification of
new bands or shift bands. However, after the visual analysis
was completed, we concluded that the differences come prin-
cipally from changes in the relative changes in Raman inten-
sities. Next, the mean values of intensity of each band were
calculated by group, and the results showed mean values of
breast cancer always lower (in some bands one-third lower)
than the mean value of controls. The mean value of Raman
intensity can be useful for identification of breast cancer pa-
tients if the standard deviations of both groups do not overlap.
However, after the standard deviation was calculated for each
band, our hypothesis was refuted because Raman intensity by
itself does not permit us to use the mean values to discrim-
inate between RS. Nevertheless, to confirm if these changes
in Raman intensity have significant statistical differences, the
intensity of all Raman frequencies was analyzed using an in-
dependent t-test (by two groups) wherep < 0.05 means that
there are significant differences in intensity between the two
kinds of samples on specific bands. Figure 2 shows a RS
showing those spectral regions where significant differences
are observed between the two groups of RS. The black line
indicates those bands wherep > 0.05, and the red line means
those bands wherep < 0.05. As can be seen, only small spec-
tral ranges fail to present statistical differences between these
two groups. This result means that there are real differences
between the RS of serum samples, but it is still necessary to
use a better analysis to find those bands that provide informa-
tion related to the problem under study (breast cancer).
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FIGURE 1. This figure shows the Raman spectra of control (con-
tinuous line) and breast cancer groups (dotted line). The major
difference between these two spectra is due to the changes in Ra-
man intensity. In fact, the mean Raman intensity of breast cancer
patients is lower than that of controls, and this fact can be observed
at 1658, 1446, 1314, and 1003 cm−1.

FIGURE 2. A statistical t-test was used to determine which regions
of Raman spectra are statistically significant. In this figure, a char-
acteristic Raman spectrum of a serum sample was plotted to show
the results of the t-test in the following form: the continuous line
represents those regions where p values are lower that 0.5, while the
dotted line corresponds to those regions where p values are greater
than 0.5. We observe that only small regions of the spectra fail
to show significant differences between the spectra of control and
breast cancer patients.

The principal goals of this study are:

1) to explore whether it is possible to discriminate the RS
and decide which subjects are healthy or which have
breast cancer;

2) to determine which bands make this discrimination
possible, and identify those biological markers that
may be associated with breast cancer.

The t-test showed that relevant information is contained
in the Raman intensity, and this information should be an-
alyzed using new methodologies that permit us to make the
discrimination and also to identify those bands that contribute
most to this discrimination. For this reason, multivariate anal-
ysis (MM), PCA and LDA algorithms were applied to the full
range of the data set.

As was mentioned above, PCA is a MM that permits the
user to reduce the number of variables while preserving the
maximum original information. Then, after PCA was applied
to RS data, the results show that, of the original variables,
720 wavelengths can be replaced by a new set of ten new
variables. Also, the first significant loadings were plotted as
a function of Raman frequency. This new plot shows a spec-
trum similar to the original Raman spectrum: in this case, the
intensity of the peaks represent those frequencies where there
are huge differences between the spectra of the two groups.
In this case, the bands correspond to 731(no assignation), 851
(protein, Tyr), 1002 (Phe), 1157 (beta carotene, C-C skele-
tal stretch), 1318 (adenine), 1338(Trp, adenine,α helix, and
phospho- lipids), 1450 (β sheet and phospho-lipids), 1523
(beta carotene), and 1656 cm−1 (C=O stretch, Trp, adenine,
phospholipids).

After PCA was conducted for variable reduction, the
LDA algorithm was used to analyze the new variables (PCs),
and a cross-validation method was used in order to find the
relationship between groups of samples. A cross-validation
method is used when the number of samples is small to divide
the data into groups, one to build the model (trainee data),
and one more to prove the model (testing data). In cross-
validation, a portion of the data is set aside as training data,
leaving the remainder as testing data. In this approach one
samples (testing data) at a time was left out.

Figure 3 shows the results obtained from the LDA, where
hollow circles represent the samples corresponding to breast
cancer patients, triangles represent those corresponding to the
control group, full circles denote spectra corresponding to pa-
tients with metastasis, and the continuous line represents a
borderline decision.

As can be seen, discrimination between the two groups
is given by the first component, LDA1, and both groups have
similar dispersion over this component. However, when com-
ponent LDA2 is considered, it is clear that the breast cancer
group has a greater dispersion, but it is hard to determine the
real variable that produces this dispersion.

This methodology demonstrates that the combination of
Raman spectroscopy and multivariate analysis has a sensitiv-
ity of 0.97 and specificity of 0.78. The conclusion of this
section is that Raman spectroscopy was able to detect molec-
ular markers correlated with the presence or absence of breast
cancer in sanguineous serum, and a the protocol was able to
identify the samples from breast cancer patients with a sensi-
tivity of 0.97. These preliminary results need to be confirmed
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with a large number of subjects. For more details from this
study, we refer the readers to the Refs. 23.

3.2. Study of specific antibodies in colostrum samples

Antibodies are the principal mode of defense of our body
against extra-cellular agents such as bacteria, viruses, and ex-
otoxins. Antibodies are serum proteins that aid in the neutral-
ization of pathogens or antigens in order to protect us. De-
tection of a patient antibody response to a pathogen is of-
ten the only means of diagnosing an infection. Knowing the
type of antibody response that the patient is currently pro-
ducing can help ascertain whether the infection is ongoing or
resolved. We are particularly interested in the study of human
colostrum, because colostrum is the principal source of anti-
bodies that protect a newborn. There are many serological
tests used to detect and identify specific antibodies in human
fluids. However, these tests require prior sample preparation,
and require considerable time to obtain results [40–48].

The goal of this study is to show the feasibility of using
Raman spectroscopy and PCA as an auxiliary tool for ana-
lyzing colostrum samples and to identify those patients that
have been in contact withToxoplasma gondii(T. gondii).

3.2.1. Colostrum samples

Human colostrum samples were obtained from a group of
pregnant women from the central region of Mexico with sim-
ilar socioeconomic and ethnic lifestyles. For this study, we
chose 11 colostrum samples, of which five were negative and
six were positive for the presence of antibodies IgG, IgM, and
IgA anti-T. gondii. Each colostrum sample was tested by an
indirect ELISA test at the Institute of Medical Research of the
University of Guanajuato. For the colostrum samples, a to-
tal of 165 Raman spectra were obtained from the 11 samples
of colostrum; 75 spectra to negative samples and 90 spectra
corresponded to positive samples. The Raman spectra were
collected using the experimental setup and protocol described
in Section 2.1.

3.2.2. Results of antibody detection

The Raman spectra of colostrum samples show small differ-
ences between positive and negative, and these are observed
primarily due to changes in intensity and in the shift of sev-
eral specific bands, such as 1681, 1162, 950, and 886 cm−1.
Figure 4 shows the mean Raman spectra. The band shift is
on the order of the resolution of the experimental system, and
therefore it is difficult to use this information as a classifier
parameter in order to discriminate between patients exposed
to this parasite from those patients that were not exposed. The
principal goal of this section is to explore whether it is possi-
ble to use a chemometric technique such as PCA to discrim-
inate between samples. As a first approximation, PCA was
conducted on the set of raw data (RS): however, the results
did not reveal a clear discrimination between samples, appar-
ently because the small differences did not provide enough

information. Nevertheless, a second derivative of RS was an-
alyzed by PCA using the full cross-validation method. The
derivative is a common transformation in spectroscopy, and
is used to enhance differences among spectra, to resolve over-
lapping bands in qualitative analysis, and most importantly,
to reduce the effects of interference from scattering, matrix,
or other absorbing compounds in quantitative analysis. The
second derivative of each spectrum was obtained based on the

FIGURE 3. The two-dimensional PCA scatterplot graphically
shows the discrimination between controls and breast cancer pa-
tients. The control group is represented by triangles and is dis-
tributed on the left side of the plot, while the breast cancer group
is represented by circles and occupies the right side. Also, the plot
shows that the distribution of the breast cancer patients has a huge
dispersion in the PCA plane as compared with the controls. This
indicates that the spectra of the control group have fewer variations
in the measured parameters such as Raman intensity and Raman
shifting.

FIGURE 4. Mean Raman spectra of colostrum samples, a) nega-
tive samples and b) positive samples (IGg, and IGm). The band
shift and variations in intensity are the major differences between
positive and negative samples for the T. gondii-specific antibody.
Some of the bands that present a shift, taken as a reference for the
negative samples, are located at 886, 950, 1162, and 1681 cm−1.

Rev. Mex. F́ıs. 54 (3) (2008) 180–187



OPTICAL SPECTROSCOPY AND MULTIVARIATE ANALYSIS OF BIOMEDICAL OPTICS 185

Savitzki-Golay algorithm using a second-order polynomial
function with a five data-point window. The small changes in
Raman spectra due to the presence of the specific antibodies
is enhanced by the first and second derivative.

The new PCA analysis conducted on the second deriva-
tives showed an improved discrimination between positive
and negatives samples of colostrum. For this case, five PCs
explained the maximum variance of the data set. After a
careful revision of the PCA score plots, we found that PC2
is the component that explains the major differences associ-
ated with the absence or presence of anti-T. gondii antibod-
ies. Figure 5a and 5b shows the two-dimensional score plots
of PC1 vs PC2 and PC2 vs PC3. These plots show a good
separation between positive and negative samples. In addi-
tion, subgroups can be observed in each group; when RS on
the PC space are projected on the first component, an over-
lap of positive and negative samples can be observed, and the
reason for the overlap is that positive and negative samples
have common information. In fact, the first loading vector as
a function of the wavenumber shows average information of
the variations in the two spectra, and means that component
one does not have information related to the specific antibod-
ies.

As a matter of fact, when second loading vectors were
plotted as a function of Raman frequency, higher variation
between the two groups of samples was observed. Six bands
marked the greatest differences, 1119, 1172, 1195, 1513,
1542 and 1558 cm−1, and corresponded to (C-N), Tyr + Phe,
Trp, aromatic amino acids, Tyr and amide II, respectively.
These bands may be associated with those molecules that
conform to the antibodies. In fact, P.C. Painter and J.L. Koen-
ing [49] studied human and rabbit antibodies IgG and IgM,
identifying those principal bands of IgG, where some of these
bands corresponded to those observed by PCA, 1119, 1172,
and 1558 cm−1.

Colostrum samples were studied using Raman spec-
troscopy and multivariate methods to determine which sam-
ples correspond to patients with anti-T-gondii antibodies.
Also, multivariate PCA permitted the identification of those
bands that show the greatest variance between RS. Good dis-
crimination was obtained by analyzing the second derivative
of the Raman spectra of colostrum samples; however, it was
necessary to conduct additional testing for a more complete
study to determine if the collected Raman spectra information
offered direct or indirect information related to the presence
of specific antibodies. For full information about this work,
we refer the reader to the Ref. 50.

3.3. Antibody isotype identification

The goal of this section is to show the capacity of Raman
spectroscopy and multivariate analysis for discriminating be-
tween antibody isotypes. This last application relates to
the ability of Raman spectroscopy and multivariate analysis
to distinguish between serum samples from volunteers who
were in contact withToxoplasma gondii, and to generate spe-
cific antibody isotypes, specifically IgG and IgM against T.
gondii.

The study was performed using the RS data of Subsec-
tion 1 of Sec. 3.2, but for the present analysis, only those
RS corresponding to positive samples were analyzed. Three
samples were positive to IgG anti-T. gondii, and three sam-
ples positive to IgM anti-T. gondii. As was mentioned previ-
ously, each sample was first analyzed with an ELISA test to
determine the isotype.

For this study, we analyzed the second derivative of
ninety RS from positive samples, 43 RS corresponding to
samples with IgG, and 47 corresponding to samples with
IgM. In this case, the multivariate analysis was conducted
using PCA and LDA, as described in Section 2.4.

FIGURE 5. PC2 is the component that permits discrimination between positive and negative samples, demonstrating that the PC1 component
does not have information related to the presence of specific antibodies.
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FIGURE 6. Two-dimensional plots of PC1 Vs PC2 and PC1 Vs PC3 show discrimination between specific isotypes IgG and IgM T-gondii;
the positive and negative samples are arranged in two groups in each case. However, only the first component, PC1, retains the information
that permits discrimination between the isotypes.

3.3.1. Isotype identification results

According to the measurement protocol and the experimental
setup described in the sections above, the second derivatives
of the 90 Raman spectra of six positive colostrum samples
were analyzed using PCA and LDA, 43 RS corresponding to
IgM samples and 47 to IgG samples.

The score plots show a good discrimination between IgG
and IgM antibodies to anti-T. gondii, as can be seen in Fig. 6a
and 6b. The PCA analysis shows that three PCs are the op-
timum number needed to explain the maximum variances in
the data set, where PC1 explains 14%, PC2 explains 13%,
and PC3 explains 3%. The line shown in the score plots is
the calculated borderline decision. After analyzing the score
plots, we concluded that PC1 is the component that explains
the differences between antibody isotypes, and the loading
plot of PC1 shows that too many slight differences exist as
band shift and intensity variation along the entire spectral
range between the IgG and IgM spectra.

However, at this moment, the number of samples ana-
lyzed for antibody isotype is small. Therefore, we intend to
increase the number of samples to see if those bands observed
are completely responsible for discrimination of the isotypes,
and to decide if the intensity and the shift of these bands are
related to antibody isotypes. Nevertheless, the results seem
very promising for the identification of isotypes using a non-
destructive technique that does not require sample prepara-
tion.

4. Conclusions

Raman and infrared spectroscopies open up new possibili-
ties in clinical diagnosis, especially with the rapid evolution
of optoelectronic devices. Many recent studies have demon-
strated the feasibility of optical spectroscopies in many ap-
plications of medicine and biotechnology. Currently, Raman
spectroscopy has been used in the study and identification of
breast cancer biopsies or serum samples, detection of calci-
fied atherosclerotic tissue, and has identified differences be-
tween Alzheimer’s disease and normal temporal gray cortex.
In this work, our team was engaged in the study of biological
fluids in order to study breast cancer and antibody detection.
Our results show that Raman spectroscopy and multivariate
techniques are very promising methods for discrimination be-
tween control subjects and breast cancer patients. It was also
possible to identify the presence of specific antibodies and
to discriminate between two isotypes. The potential of these
techniques opens up new possibilities for noninvasive tech-
niques for clinical application in the near feature.
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