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Linearized five dimensional Kaluza-Klein theory as a gauge theory
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We develop a linearized five-dimensional Kaluza-Klein theory as a gauge theory. By perturbing the metric around flat and de Sitter back-
grounds, we first discuss linearized gravity as a gauge theory in any dimension. In the particular case of five dimensions, we show that
in using the Kaluza-Klein mechanism, the field equations of our approach imply both linearized gauge gravity and Maxwell theory in flat
and de Sitter scenarios. As a possible further development of our formalism, we also discuss an application in the context of gravitational
polarization scattering by means of the analogue of the Mueller matrix in optical polarization algebra. We argue that this application can be
of particular interest in gravitational wave experiments.
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Desarrollamos una telarKaluza-Klein linealizada en cinco dimensiones como unaaeternorma. Discutimos primero gravedad linealizada
como una teda de norma en cualquier dimeasiperturbando las @tricas de fondo plana y la de de Sitter. Demostramos que usando el
mecanismo de Kaluza-Klein en el caso particular de cinco dimensiones, las ecuaciones de campo de nuestra@pimylicasi tanto
gravedad linealizada de norma como la taate Maxwell en escenarios planos y de de Sitter. Como otro posible desarrollo de nuestro
formalismo, tamk&n discutimos una aplicami en el contexto de dispedsi gravitacional polarizada, por medio de una matrzlega a la

de Mueller usada en el algebra de polaribadiptica. Argumentamos que esta apliéecpuede ser de intes particular en los experimentos

de ondas gravitacionales.

Descriptores:Teofia de Kaluza-Klein; gravedad linealizada; matriz de Mueller.

PACS: 04.50.+h, 04.30.-w, 98.80.-k, 42.15.-i

1. Introduction fiber-bundled* x B, with B as a properly chosen compact

] ) ] . . space. Thus, we have that this case can be summarized by the
Itis known that linearized gravity can be considered to be aeyristic picture

gauge theory [1]. In this context, one may be interested in

the idea of a unified theory of linearized gravity and Maxwell em — g. 2)
theory. This idea is, however, not completely new since in

fact the quest for a unified theory of gravity and electromag-  Qur aim in this paper is to combine the two scenarios (1)
netism has a long history [2]. One can mention, for instanceang (2) in the form

the five-dimensional Kaluza-Klein theory [3], which is per-

haps one of the most interesting proposals. The central idea em — g. ©)

in this case is to incorporate electromagnetism into a geo-

metrical five-dimensional gravitational scenario. The gaugespecifically, we start with linearized gravity in five-
properties arise as a result of broken general covariance viadimensions and apply the Kaluza-Klein compactification
mechanism called “spontaneous compactification”. Symbolmechanism. We probe that the resultant theory can be un-
ically, one may describe this process through the transitioglerstood as a gauge theory of linearized gravity in five di-
M® — M* x S, whereM® and M* are five- and four- mensions. Furthermore, we show that, by using this strategy,
dimensional manifolds respectively afd is a circle. Thus, one can derive an unified theory of gravity and electromag-
after compactification the fiber-bundlé* < S* describesthe netism with a generalized gauge field strength structure. As
Kaluza-Klein scenario. Let us picture this attempt of unifica-an advantage of our formalism, we outline the possibility that
tion as optical technigues can be applied to both gravity and electro-
magnetic radiation in a unified context. Thus, we argue that
our results may be of particular interest in the detection of
whereem means electromagnetism angravity. gravitational waves.

In the case of linearized gravity theory, the scenario looks  Technically this article is organized as follows. In Sec. 2,
different because it can be understood as a gauge theowye develop linearized gravity in any dimension. In Sec. 3, we
rather than a pure geometrical structure. Therefore, a unifiediscuss linearized gravity in a 5-dimensional Kaluza-Klein
theory in this case may be understood as an idea for incorpdheory and in Sec. 4 we generalize our procedure to a de Sitter
rating linearized gravity in a Maxwell gauge context. In otherbackground. In Sec. 5, we outline a possible application of
words, one may start from the beginning with a generalizedur formalism of unified framework of electromagnetic and

em — g, (1)
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gravitational radiation to an optical geometry via the Mueller
matrix. In Appendix A we present a generalization to any

Let us now define the symbol

dimension of the Novello and Neves work [4]. Fapp = Faps +n18aFp — NepFa, (15)
. . . . . which has the propert
2. Linearized gravity in any dimension property
Fapp = —Fpas. (16)

Let us consider d + d-dimensional manifold/'+¢, with
the associated metrigaz(x¢). We shall assume thata s
can be written in the form

Y4B =NaB + hap, (4)

wherenap = diag(—1,1,...,1) andhap(z®) is a small

perturbation, that is
lhaB| < 1. (5)
To first order inh 4 g, the inverse of the metrigy 5 becomes

AAB _ pAB _ pAB. (6)

Thus, by using expression (15) we find that field equa-
tions (14) are simplified in the form

8rG
O Fapp = 0721+dTBD- (7)
Sinced Fapp = 0*Fapp, field equations (17) can also be

written as

167G
O Fap) = THdTBm (18)
where the brackeétB D) means symmetrization of the indices

B andD. It is worth mentioning that in & + 3-dimensional

Using (4) and (6) we find that the Christoffel symbols andspacetime field equations (18) are reduced to those proposed

Riemann curvature tensor are

1
I'ép = 577AB(hBC,D +hgp,c —hep,B) (7)
and
Rapcp = 0aFcpB — OFcpa, (8)

respectively. Here, the symb&l-pp means

1
FecpB = i(hBC.,D —hgp,C)- 9

Observe thaF¢ p g is antisymmetric in the indiceS andD.
In terms of the quantity 4 defined by

Fa=n1°"Facs, (10)
and the symbalF 4 p 5, the Ricci tensoRzp reads
Rpp = 0" Fapp + 0pFp. (11)
Thus, we find that the Ricci scalétis given by
R =204F,. (12)

Substituting (11) and (12) into the Einstein weak field

equations inl + d dimensions

1 831G
Rpp — 5nspR = C2l+d Tsp (13)
we find
G
O Fapp + 0pFp —nppd*Fa = Ci;MTBDa (14)

where G4, 4 is the Newton gravitational constant in+ d
dimensions.

by Novello and Neves [4].
Furthermore, it is not difficult to show that field equa-
tions (17) can be derived from the action

S = / AT {FAPBFupp — 2FAFa — Linatter ), (19)

whereL,,..i.er denotes a Lagrangian associated with matter
fields. In fact, by varying action (19) with respectitag and
and assuming

5Lmatter

_ 327TG1+d TBD
5hBD 02 ’

one obtains the field equations (17).

3. Linearized gravity in a five-dimensional
Kaluza-Klein theory

In a 5-dimensional spacetime the weak field metric tensor

YAB = NaB + has, WherenAB = diag(—l, 1,1,1, 1), can
be written in the block-matrix form

| M + I hay
YAB = ( 1+ hay )

h41/
with i, v = 0, 1,2, 3. If one adopts the Kaluza-Klein ansatz,
with

(20)

huu - hul/ (l'a)7 (21)
hap = Au(z®) (22)

and
hag =0, (23)
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where A, (z*) is identified with the electromagnetic poten- one discovers thak),,, is identically equal to zero.

tial, we discover that the only nonvanishing terms?f 45 For completeness let us observe that (37) leads to
are
1 hl“’vu = 07
-7:,11,1104 = i(ha,u,u - hal/,p,)a (24) (38)
h=n*"h, =0,
1
Fiva = iauAav (25)  and the Lorentz gauge fot,,
and A*,,=0. (39)
1
Fuva = _iF,uu» (26)  Cconsequently one finds that, in the gauge (38) and (39), the
) o field equations (32) and (36) are reduced to
where F,,, = A,, — A, is the electromagnetic field
strength. Thus, from (15) we find that the nonvanishing com- 2 __16nG
O%hy, = — Ty (40)
ponents off'p 45 are 2
F,uuoz = f}LVOt + na,ufu - nauf;n (27) and
1 O?AF = —4mJH, 41
Fipo = i(auAa - nauaﬁAB)v (28) " ( )
1 respectively, wherél? = n#*9,,9, is the d’Alembertian op-
Fus=—=F,, (29) erator. Thus, we have found a framework in which the grav-
2 itational and electromagnetic waves can be treated on the
and same footing.
Foaa = —Fp. (30)

4. The de Sitter generalization
Now, since all fields are independent of the coordindteve

see that field equations (17) can be written as In order to generalize the formalism described in the previ-
- ous section to a de Sitter scenario, we shall replace the flat
O"Fpp = il 21+4 Tsp. (31)  metricy,, by the de Sitter metrig,,, (). In this case the
€ perturbed Kaluza-Klein metrig4 5 takes the form
These field equations can be separated as follows:
8 G ’YAB — ( f,u,l/ + h/LV AILL ) , (42)
auFm/a = %Tua; (32) AV 1
) 87Cl11a whose inverse is given by
ot Fp4l/ - 727—14117 (33)
c AB Y — e — AR
87TG1+4 v = —AY 1 . (43)
8ILF‘;U/4 = 727—11/47 (34)
¢ By combining the results from Sec. 2 and Appendix A it
and is not difficult to obtain the generalized field equations
87TG1+4
HE 44 = Tuy. 35 3 8nG
0" Fla 2 44 (35) DAFABD_ﬁ(hBD_thD): 021+dTBD’ (44)

Using (28)_and (29),yve find that (33) and (34) lead to eXaCﬂyThus, using (42) and considering that in five dimensions
the same field equations, namely

d =4 andA = 6/1 we find
a'uFV/L = 47TJV7 (36) A _ 87TG1+4

DaFoz u_*(h l/_hf y)— Tua (45)
where J,=(4G144/c¢*)T,4 is the electromagnetic current. ! 4" g c? !

Of course, field equations (32) and (36) correspond to lingnd
earized gravity and Maxwell field equations, respectively. If

A

we setTy4 = 0, then one can see that field equation (35) is a DYF,, — —A, =4nJ,. (46)
pure gauge expression. In fact, if one assumes the transverse 4
traceless gauge in five dimensions Here, we have used the fact that [, ;5 = 0 and f4p = 0.
WAB 0, Obs_ervg that in this case the electromagnetic field strength
37) F,,, is given by
h=n"Phap =0, F = D,A, — D,A,.
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The field equations (45) and (46) are remarkable because #nd the vector
we set

A go
2_ 9
m-=—, (47) = 52
4 g g ) (52)
one discovers that, up to factors, both the graviton and the g3
photon have the same massand even more intriguing is here
the fact that such a mass is proportional to the square root 0
the cosmological constant. 90 = E.E; + E/E;, (53)
. = E,E* — E,E}, 54
5. Final remarks - ¥y 4
. . 92 = E;E, + E,E}, (55)
The present work may have a number of interesting develop-
ments. In particular, as Novello and Neves [4] have shownand
Eqg. (15) can be derived from the formula o .
g3 = i(E By — E Ey). (56)
0" Fapp) =0, (48) . .
The Jones matri¥ and the Mueller matrix(\/ apply to
where C and the vectog, respectively, as follows:
*FA(BD) — EABEFFEDF +€ADEFFEBF, (49) C/ _ JC (57)

with ¢ABEF the completely antisymmetric symbol. Thus, and
one may consider an alternative approach [5] for duality as-
pects of linearized gravity [6] (see Refs. 7 to 11) as in the g'=Mg. (58)

case of Maxwell theory (see Refs. 12 and 13). . o . . :
Another source of physical interest of the present for_ltturns out thatl can be identified with a SU(2) matrix, while

malism is a possible connection with the RandaII-Sundrurr}v_I is a 4x4 augmented matrix form ;. Of course the ma-
brane world scenario [14,15], with gravitational wave formal-mceSJ andM must be related:

ism (see Refs. 16 and references therein) and with quantum M= }TTJ*TO_JU (59)
linearized gravity [17,18]. Moreover, our work may also be 2 ’

useful in clarifying some aspects regarding the relation beyhereq denotes the four Pauli matrices (see Ref. 22 for de-
tween the mass of the graviton and the cosmological constanyjs).

which has been the subject of some controversy [19,20]. Let us make the identification
Aside from theoretical developments, the present work
also opens the possibility of making a number of applica- Foio = Ein. (60)

tions of linearized gravity arising from the Maxwell theory
itself. Let us outline just one possibility. In Maxwell theory Heréfoio denotes some of the components-ip ; accord-

the concept of polarization scattering is of considerable inind {0 the expression (15). The idea is now to consider gen-
terest in optical physics (see Ref. 21 and references thereirfjralization of (50)

The subject of interest in this arena is to describe the inter- Jo
action of polarized waves with a target in a complex setting. ( Eya ) (61)
It turns out that the useful mathematical tool in the scattering
radiation process is the so-called Mueller matrix [22] (seend to consider the analogue of (53)-(56), namely
also Ref. 23 and references therein). What appears interest- o o s
ing about such a matrix is that its elements refer to intensity Go = By Ego + By Bya, (62)
measurements only. Let us recall the main ideas for the con- G1=EJE;, — EJE;,, (63)
struction of the Mueller matrix.
A polarized radiation field may be represented by a 2- G2 = E}*Eya + EYE,, (64)
dimensional complex field and
E,
( E, ) : (50) Gs = i(E;*Eya — ESE},). (65)
From the components of this vector, one may define the Herfhus, we can apply the Mueller matrix/ as in (58):
mitian coherency matrix G’'= MG. In fact, sinceM contains the information of the
. . intensities of both gravitational and electromagnetic radiation
C= ( EiEm EmEg ) (51)  Viathe quantityf;, one should expect a broad range of ap-
E:E, E,Ej plications ofM in a gravitational wave context.
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Appendix A Substituting (74) and (76) into the Einstein weak field

. . ) ] ] _equations irl + d dimensions, with cosmological constant
In this appendix we shall study the linearized gravity with

: ) i 1
fap as a metric background. Consider the perturbed metric Rop — Q(fBD 4 hpp)R+ (f5p +hep)A

YaB = faB + has, (66) 87G14d
_ , = ———Tgp, (77)
whereh 4 is a small perturbation, that id 45| < 1. To ¢
first order inh 4 g One finds we obtain
,_YAB _ fAB o hAB. (67)

1
DAFapp + DpFp — fepD*Fa — §RABCDhAC
The Christoffel symbols can be written in the interesting

1 1
form —|—§REBhg + §fBD'REFhEF — §hBDR+hBDA
ra, =Q4, + HEp, (68) 8rG
cD cD cD = 7621+dTBD. (78)
whereﬂg‘ p are the Christoffel symbols associated withs
andH¢ , is defined by Here, we used the fact that
1 1
HéD = §fAE(DChDE+DDhCE_DEhCD)- (69) RBD - ifBDR'i‘fBDA:O« (79)
Here, the symbaD 4 denotes covariant derivatives witlf, ,, Since we have
as a connection. 1
By using (68) it is straightforward to check that the Rie- Rapcp = ﬁ(fACfBD — fabpfBc) (80)
mann tensor can be written in the form
and
Rgep = Rpop + DeHpp — DpHpe, (70) d(d—1)
whereR 4, is the Riemann tensor associated Witf . A= 212 (81)
With the help of the co tation relatio . .
! e help © commutation refation we discover that (78) is reduced to
DoDphap—DpDchap=—REicphep—REcphar (71)
D*Fapp + DpFp — fepD* Fa
we find that the Riemann curvature tensor (70) can also be 1 87C
written as ~ 5(d =D (hsp ~ hfpp) = C;+dTBD. (82)
Rapop = DaFepp — DpFopa+Rapep Thus, by defining the symbol
1 1
+ §RgABhEC - iRgABhED' (72) Fapp = Fapp + fBaFp — fepFa, (83)
Here, the symbaFcpp takes the form we find that the field equations (82) are simplified in the form
1
= — 1 81G
-7:CDB Q(DDhBC DChBD)- (73) DAFABD_ﬁ(d_l)(hBD—thD): 621+dTBD~ (84)

Observe thafpp can be obtained from (9) by replacing or-

: S e
dinary partial derivatives by covariant derivativ€som (72) In four dimensions! = 3 andA = 3/1°. Therefore (84)

we get the Ricci tensor becomes
A A A 871'G1+3
Rpp = D" Fapp + DpFp+Rpp D Fapp — g(hBD —hfBp) = =2 Tgp, (85)
1 1 . ) . .
- iRABCDhAC + 5REBhg (74)  which are the field equations obtained by Novello and
Neves [4].
where
Fa=fBFucp. (75)  Acknowledgments
Thus, we find that the Ricci scal& is given by We would like to thank C.M. Yee and E.A. ba for their
N BD helpful comments. This work was supported in part by the
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