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With the measurements of the local radii of curvature of an aspherical optical, convex or concave surface, the shape of the surface can be
found. In this paper a method is proposed for taking radius measurements, for off-axis sections of an optical surface, using a retrocollimated
interference method (rim) that was previously developed by several authors[1-3]; but in particular, in this paper, the one described by Xiang[4]
for measuring long radii of curvature[5,6] is used.
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A partir de las medidas de los radios de curvatura locales, de una superficie asférica convexáo cóncava, se puede encontrar la forma de dicha
superficie. En este trabajo se propone un nuevo método para medir los radios de curvatura locales, de una superficie fuera de eje, usando un
método interferoḿetrico por retrocolimación, desarrollado anteriormente por varios autores para superficies en eje[1-3]; en particular en este
trabajo se usa el ḿetodo desarrollado por Xiang[4], cuya caracterı́stica principal es medir radios de curvatura largos[5,6].

Descriptores: Retrocolimacíon; interferencia; radios de curvatura locales.

PACS: 42.87.-d; 42.79.Bh; 42.25.Hz

1. Introduction

There are many methods for measuring the paraxial radius of
curvature of optical surfaces[7 - 9], and the techniques em-
ployed could be mechanical (for example in the Computer-
ized Numerical Control (CNC) machine tool, stylus instru-
ments, etc.) [10,11] or optical (with Fizeau interferometers in
the visible and infrared wavelengths) [12]. The methods us-
ing interferometric techniques are, in general, more accurate
for setting certain positions, such as the center of curvature
(c.c.), and the vertex (v) of an optical surface[13]. There are
several papers that reported using an interferometer, where
the outgoing and returning light beams from the interferome-
ter are collimated and retrocollimated, respectively. In all the
experimental arrangements using this retrocollimated tech-
nique, as is common in some other methods, the main aim
is to find the c.c. and vertex of the surface; that means that
for long radii of curvature measurements, some of the optical
components or the optical surface have to be moved long dis-
tances (Non-Contact Measurements) [14]. In order to solve
the problem for long distance shifting of the optical parts of
the instrument, or the optical surface, for long radius of cur-
vature measurements, there are some techniques using aux-
iliary optics, such as those developed by Mingshan[3] and
Xiang[4]. In particular, the work by Xiang used a simple but
powerful method based on Newton’s equation for lenses[5,6].

2. Retrocollimated interferometric method

In what follows, as a brief explanation, the main steps to be
applied in the method described by Xiang are described [4];

in this paper the XIang method is applied to measure the local
radii of curvature of a monolithic conic surface and off-axis
conic section.

Figure 1a shows the collimated beam passing the beam
splitter(BS1) and moving toward the lensL; the beam is fo-
cused on the back focal point,F ′1, of lensL1 that is located
on the vertex V of the surface,S.

For the use of the retrocollimated beam for finding the
front focal pointF1 of L1, at O, see Fig. 1b; a second aux-
iliary lens,L2, and a flat mirror,M , are positioned as shown
in Fig. 1b. Once the pointF ′2 = F1 is located, the flat mirror
is removed from the experimental setup.

In Fig. 1c, the lensL2 is shifted to the left a distancex,
for a convex surface, because the idea is to locateO” = cc for
the vertex or off-axis zone, because at this position, a retro-
collimated beam is produced and returned to the left. This
means that when the c.c. is coincident withO”, and taking
the fact that the vertex was previously was coincident with
the focal pointF ′1, then the value of the radius of curvature of
the surface can be obtained from Newton’s equation[15,16]

xx′ = −f2; (1)

sincef = f1 andx is measured andx′ = R, therefore,

R = −f2
1

/
x . (2)

For the case of a concave surface, the lensL2 is shifted to
the right, because thecc is in front of the surface.
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FIGURE 1. a) Observed interference fringes at OP by retrocolli-
mated beam from vertexV . b) Retrocollimated beam reflected on
flat mirror M , once confocal arrangement is set up with lensesL1

andL2. c) Similar to a) and b), a retrocollimated beam from the
surface is obtained whenO” is the imageO’.

From the above explanation, it can be seen, by the Gaus-
sian relation between image and object distances, that with a
short shifting of lensL2, corresponding to the distancex, a
long paraxial radius of curvature of an optical surface can be
measured. As a matter of fact the radius of curvature could
be in the order of meters. Appendix A explains a general
method for the selection of the set of lensesL1 andL2 for
contructing an experimental setup with different dimensions.
A specific example of the selection of the lenses of the ex-
perimental scheme is given for the case of a conic convex
surface[12], with local radii of curvature between 176.50, at
the vertex, and 363.79 cm, at the edge.

It is important to mention that in the paper by Xiang [4]
there is an extensive error analysis of the retrocollimated in-
terferometric method, using the Newton’s equation for a lens.
As a complement to such error analysis, in Appendix B there
is a further study of the errors, but for the case of shorter
radius of curvature measurements,i.e. less than one meter.

3. Measurement of local radii of curvature of
an aspherical or conic optical surface

As has been mentioned previously, in what follows it is ex-
plained how the (rim) method[16] for measuring paraxial ra-
dius of curvature[4] can be extended and applied to measure-
ments of the local radii of curvature of a monolithic conic
surface, and also for an off-axis section of a parabolic sur-
face. This is done because, as an alternative method, from
the knowledge of the local radii of curvatures, the shape of a
surface can be found.

3.1. Monolithic conic surface

For the measurements of local radii of curvature (LRC) for an
off-axis zone, Fig. 2a shows the experimental scheme used in
our experiment. Figure 2b shows a diagram indicating how
the surface must be first shifted by a distanceY , using the
vertex of the surface as a reference starting point, for fixing
certain off-axis zones of the optical surface; as a second step
the surface is rotated through an angleθ around a vertical axis
fixed at the “vertex”; and the third step is to define the “ver-
tex” of the off-axis section. In the lower picture in Fig. 2a,
the mechanical mounts used to rotate and shift the surface
under test can be seen. In order to take the measurement of
the LRC, the steps in Fig. 1b and 1c must be completed.
For decreasing the focusing contribution to the error in the
method, mentioned in the Appendix B, for the different zones
of the surface, a diaphragm is used when the surface is illu-
minated[5].

FIGURE 2. a) Upper picture a general view of the experimental
setup. Lower left picture is a lateral view of the mounting of the
surface, withL1axis along the optical axis. Lower right, front view
of the surface, showing rotation of the surface under measurement
around a vertical axis. b) Schematic view of the translation,Y1 and
rotationθ of the surface around the vertical axis; to find out the
zones,Y1, along which the radii of curvature are measured.
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The requirements for rotating and shifting the surface cer-
tain angle and distance, as shown in Fig. 2b, are in order to
ensure that the incident beams are normal to the surface, so
that a reflected and retrocollimated beam comes back from
the surface; of course, as shown in the experimental scheme
in Fig. 1c, for finding the value of LRC, the lensL2 must be
shifted.

For the case of a parabolic surface, with conic constant
K = −1, a diameter of 150 mm, and paraxial radius of curva-
ture (prc)r = 596.6 mm. The interferograms observed along
different diameters and local positions are shown in Fig. 3;
as a numerical example, the values of Table I are for the local
positions, along theY axis, withx = 0. For the different val-
ues ofY , a comparison is made between the theoretical and
experimental values of the local radii of curvature. The ro-
tated angleθ is fixed for each position and measurement are
done, until an interferogram is observed in the observation
plane (op). The interferograms of Fig. 3 are taken after the
accomplishment of normal incidence beam to each off-axis
zone of the surface, and after following the procedure of Fig.
1c and the explanation given in Sec. 2 for this step.

TABLE I. Parabolic surface with a diameter of 150mm. and prc
equal to 596.6 mm.

Y(mm) Rteo(mm) RExpmm)

0 596.610±0.001 596.562±0.017

21.05 597.284 597.449±0.017

29.55 598.073 598.071±0.017

38.05 599.035 599.301±0.017

46.55 600.239 600.598±0.017

FIGURE 3. Interference patterns observed at the locations where
radii of curvature measurements are done, for a monolithic surface.

It is worth mentioning that the accuracy of the measure-
ments can be achieved because the positions of the retrocol-
limated beams produced the interferograms of Fig. 3 and
the interferogram has a minimum number of fringes. Hence,
for 10 measurements for each position, the same interference
pattern must be observed; and for each zone the interfero-
gram has the minimum number of fringes.

3.2. Off-axis section of a conic surface

For this case, it is necessary to satisfy the same condition that
the incident beams upon the optical surface must be normal
to the surface; Fig. 2b already shows the rotated angle and
shift motions required for the off-axis zones of a monolithic
surface. However, for an off-axis section, because the defini-
tion of the optical axis and vertex of the surface are unknown
throughout the experiment, an additional shift is compulsory
along theZ direction. The correct new shift along theZ di-
rection, after rotation through an angleθ and motion along
the y direction, can be found by looking, once more, at the
observed interferograms and finding the ones with the least
number of fringes[6]. As in the case of a monolithic surface,
for each position ten measurements are taken.

As in the previous case, Sec. 3.1, Fig. 4 shows the inter-
ferograms observed along one diameter, and Table II shows
the theoretical and experimental results for a parabolic off-
axis section. The off-axis section is 130 mm. from the optical
axis, and the paraxial radius of curvature (prc) is 2415 mm.

Finally we can obtain the shape of the surface using the
values of the LRC, and its values are adjusted by a numerical
method[20]. Another method for finding the surface shape
was with the use of a genetic algorithm[21]; this generated a
population of surfaces, until the best surface fitting the local
radius of curvature values was found.

FIGURE 4. Interference patterns observed at three locations, for the
measurements of the radius of curvature for an off-axis section of a
parabolic surface.
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TABLE II. Measurements for an off axis, 130 mm from the optical
axis, and prc equal to 241.5 mm.

Y (mm) Rteo(mm) Rexp(mm)

50 2416.553 2417.357

107 2422.334 2422.187

130 2425.504 2425.565

4. Conclusions

An extended method has been developed for the measure-
ments of local radii of curvatures either at the vertex, on-axis
and off-axis sections of a monolithic surface; or for an off-
axis conic surface. The method is very suitable for long ra-
dius of curvature measurements, mainly for optical surfaces
with a large range of values for radii of curvature (see Ap-
pendix A). The results shows some difference between the
theoretical and experimental results, and are given in Tables I
and II; it can be seen that such differences are within accept-
able errors. The method is consistent for taking several mea-
surements for the same position on the surface, because the
technique used by observing interferograms for fixing the po-
sitions for the center of curvature and vertex enable us to have
greater accuracy. From this knowledge of the local radii of
curvature, the profile of the surface along different diameters
can be found; therefore, the shape of the surface can also be
known. For the case of fast optical surfaces, the described
method could also be useful.

After the application of Xiang’s method for off-axis sec-
tions, explained in this paper, in Appendix A and B, further
studies were done into this technique. Appendix A explains
how the test system can be designed for the lensesL1 andL2,
and in Appendix B an error analysis is given for the case of
short radii of curvature, less than 1000 mm.
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Appendix

A. Selection of focal length of lensesL1 andL2, and the
overall-length of the experimental arrangement of lenses
L1 andL2.

One aspect to consider for the experimental setup, is that the
distance between the lens in front of the surface under test
could be selected and depends on the characteristics of the
experimental setup, but assuming that the lenses in the op-
tical setup shown in Fig. 1 and Fig. 5 have the same focal

lengthf1 = f2 = f . Figure 5 shows that once the vertex,V ,
of the surface is fixed, the lensL2 must be shifted a distance
x, in order to find the center of curvatureO′′ such thatO′′ is
the image ofO′. Hence the maximum distance,D, of the set
of lenses, where one of them is shifted a distancex, is equal
to

D = 3f + x. (A.1)

Using the thin lens equation

1
f

=
1
l′
− 1

l
, (A.2)

from the same Fig.5, the next equation for lenses can be writ-
ten

1
l

=
1
l′
− 1

f
=

1
r + f

− 1
f

=
f − r − f

f (r + f)
=

r

f (r + f)
;

and therefore

x = l − f, l =
f (r + f)

r
; x = l − f. (A.3)

In order to find the changes in the distancesx, for the
shifting of lensL2, and the overall distance,D, for differ-
ent values of the focal distance,f , of the lenses, the following
particular case is analyzed.

For the convex secondary mirror of the Large Millime-
ter Telescope (LTM)[17], the following characteristics are
considered for its convex surface: paraxial radii of curva-
ture r = 176.5cm, diameterφ = 250cm, and conic con-
stant k = - 1.14269, which correspond to a hyperbolic sur-
face. In Table III, it is shown that once the focal distance is
chosen(f = f1 = f2), and using Eqs. (A.1) and (A.3), the
values ofl, x, andD can be calculated. From the same Ta-
ble III, for shorter values off , a more compact lens system
are implied, and smaller shifts forx are required; in other
words,D andx have smaller values.

FIGURE 5. Diagram for the lensL1 andL2 in a confocal setup;
shifting lensL2 by amountx, such thatO” = c.c., andO” is the
image ofO’. D is the overlength of the experimental set up of
lensesL1 andL2.
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TABLE III. Relations between parameters of the setup of Fig. 5,
and using Eqs. (A.1) to (A.3).

f l′ x ∼ D

1000 15665 565 3565

500 641.6 141.6 1641.6

400 490.6 90.6 1290.6

300 351.0 51.0 951.0

250 285.4 35.4 785.4

200 222.7 22.7 622.7

Units are in mm.

TABLE IV. Example of∆rz vsx, with f = 30 mm, and hyperbolic
surface with k = - 1.14269, and diameter of 2500mm.

S(mm) rz(mm) x(mm)

250 1829.5 49.2

500 2016.4 45.0

750 2346.9 38.8

1000 2821.5 32.3

1250 3482.4 25.8

FIGURE 6. Decreasing of focusing error with the bigger diameter
of lens, in the setup of Fig. 1a. with f=130 mm.

FIGURE 7. Decreasing of focusing error with the bigger diameter
of lens, in the setup of Fig. 1a. with f=110 mm.

Using the equationrz = (1/c)
(
1− kc2S2

)
[18], wherec

is the paraxial curvature of the surface, Table IV shows, for
the same surface described above, the corresponding local
radii of curvature(rz) for different zones,S, of the surface.

Considering that the focal distance of lensesL1 andL2 of the
experimental setup are both equal to 30 cm; with Eq. (A.3)
the corresponding data for the shifting distancex is calcu-
lated. From the same Table IV, it can be concluded that, for
an interval∆rz = 165.29cm, the interval for moving lensL2

is only ∆x = 2.34cm. With this example, it is important to
notice the capacity of the method, and the necessity to find
out the most adequate values for the focal distances ofL1

andL2 of Fig. 5.

B. Error analysis for short radii of curvature

In this section we derived the error analysis of this method;
from Eq.(2) is derived the equation

δR =
∣∣∣∣
∂R

∂f

∣∣∣∣ ∆f +
∣∣∣∣
∂R

∂x

∣∣∣∣ ∆x; (B.1)

where implicit form is

δR =
2f

x
∆f +

f2

x2
∆x; (B.2)

and the relative error with respect to R is

δR

R
=

(
2f
x
f2

x

)
∆f +

(
f2

x2

f2

x

)
∆x =

2∆f

f
+

∆x

x
. (B.3)

But we need to consider the contribution of the focusing er-
ror, which can be analyzed as follows:

δR

R
= 2

∆f

f
− ∆x

x
+

∆t

R
; (B.4)

where ∆f, ∆x, and∆t, are errors in the focal length,
with the distance, , and the focus position , respectively.
The condition imposed for dropping the error∆t is that
|∆t/R| < 10−6, which is satisfied for the experimental
setup. Then, from the error analysis, and taking only the first
two terms of Eq. (B.4), an accuracy of0.1% can be obtained
for surfaces with R> 100cm.

For the case of surfaces with R< 100cm, the following
error analysis is done in order to eliminate the influence of
the third right term of Eq. (B.4), considering the equation
derived by Hopkins[18], for the defocus term, to be

∆t

R
=

[
8

(
f

φ

)2

∆w

]/
R; (B.5)

Figures 6 and 7, shows the change in defocus, according
to Eq. (B.2), as a function of the diameterφ of the lens, with
∆w = λ/2; for R = 900mm and f = 130mm; and R = 600mm
and f = 110mm, respectively. It can be seen from the first
case, Fig. 6, that the diameter required must be larger than
95mm; from Fig. 7 the diameter must also be larger 95mm.
Hence in order to satisfy the condition for eliminating the in-
fluence of defocus,∆t, from Eq. (B.4), forR <10cm, a set
of adequate values off andφ must be chosen.
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