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A hamiltonian control approach for the stabilization of the angular velocity
of a rigid body system controlled by two torques
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We present a Hamiltonian control approach for the stabilization of a rigid body system that is controlled by two torques. The stabilization
strategy consists in solving a feasible matching condition in order to derive a feedback controller which forces the closed-loop system to be
globally asymptotically stable.
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Presentamos un enfoque de control Hamiltoniano para la estabilización de un sistema de cuerpo rı́gido que es controlado por dos torques. La
estrategia de control consiste en resolver una condición de acoplamiento conveniente con el fin de derivar un controlador de retroalimentación
que haga al sistema en lazo cerrado global y asintóticamente estable.

Descriptores: Control de un sistema de cuerpo rı́gido; control no-lineal; estabilidad de Lyapunov.

PACS: 05.45.-a; 45.40.-f; 45.20.Jj; 45.40.Cc

1. Introduction

The controlled Hamiltonian approach is a useful method that
allows us to stabilize a broader class of physical systems,
that can be described by means of Hamiltonian equations.
Roughly speaking, it consists in finding an external input
that forces the closed-loop systemi to follow another suit-
able Hamiltonian system with some stability properties. In
some cases, it is convenient for the closed-loop system to be
asymptotically stable around one unstable equilibrium point.
In other cases, it is necessary for the desired system to follow
periodic orbits or simply diminish the effect of undesirable
vibration. In general, it is desirable for the total energy of
the closed-loop system to go to zero or to a positive constant,
depending on the requirements of the problem. One advan-
tage to this method is that the original system can be seen
as an energy transformation device, where the action of the
controller may be interpreted, in terms of energy, as another
system interconnected to the process to be controlled, in or-
der to modify, as desired, the behavior of the target system
(see Refs. 1 and 2). And this advantage allows us to see the
control as a dissipator of the total energy of the system. While
a survey of this topic is beyond the scope of this article, we
refer the reader to see Ref. 3.

In this work we deal with the stabilization of the angu-
lar velocity of a rigid body system controlled by two torques
using the energy-based control approach. This problem is

important because it has a great number of applications to
several engineering fields, such as the control of spacecrafts
and satellite systems [4]. When a rigid body system is con-
trolled by three torques, the problem is solved. However,
when only one or two torques are available, we have an
under-actuated mechanical system, because it has fewer actu-
ators than degrees-of-freedom. As a result, many controlling
strategies used for controlling fully-actuated systems cannot
be directly applied to control this mechanical device. Also,
this system cannot be input-output linearized by means of
static feedback and it is not locally controllable around the
origin [5, 6]. This fact makes it especially difficult to carry
out some controlled maneuvers such as regulation at a point
or tracking a trajectory [5]. On the other hand, a complete
solution for the angular velocity stabilization and the track-
ing problem exists when the rigid body has three independent
controllers. Siraet al. [7] proposed a redundant dynamical
sliding mode control scheme for controlling a rigid body sys-
tem, with the advantage of its being robust with respect to
external perturbations. In Refs. 8 and 9 the regulation prob-
lem is solved by means of a PD-like control law, whereas in
Ref. 10 the Energy-Casimir method is used to solve the sta-
bilization around the origin. Brockett in Ref. 11 and Aeyels
in Ref. 12 showed that the asymptotical stabilization of the
angular velocity could be achieved by two independent con-
trollers. A similar problem was addressed by Refs. 13 and 14,
where the stabilization problem for a single torque is han-
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dled. In Ref. 15, the authors proposed time-varying feedback
controllers to regulate the altitude of a rigid spacecraft with
two inputs. In Ref. 16, the authors present a robust con-
trol strategy in order to attenuate the effect of external distur-
bances, with two independent torques. Reference 17 was de-
voted to the stabilization of the angular velocity of an Euler’s
system via variable structure based controllers. In Ref. 18,
the author presents a control strategy for the stabilization of
the angular velocity with two torques. The proposed strategy
consists in transforming the original system into a discon-
tinuous one by applying a discontinuous coordinate transfor-
mation, which achieves asymptotic stability with exponential
convergence rates. While a survey of this topic is beyond the
scope of this paper, we refer the reader to Refs. 19 and 20,
for a detailed treatment of it.

In this paper we present a solution for the stabilization of
the angular velocity of a rigid body system that is controlled
by two independent actuators. Our control strategy consists
in solving a feasible energy matching condition that allows
us to build the total energy of the desired closed-loop sys-
tem in such a way that it is globally asymptotically stable
at the origin. Having satisfied this condition, we derive the
state feedback control laws that asymptotically stabilize the
rigid body system at the origin. The main contribution of this
paper is in proposing and solving, in a very simple way, a
suitable energy matching condition that allows us to obtain
the two stabilizing controllers that render the system asymp-
totically stable at the origin. We must emphasize that this
control problem is of considerable practical interest, since the
designed state feedback laws can stabilize the system at the
origin, even when one of the actuators of the rigid body sys-
tem fails.

The remainder is organized as follows: Sec. 2 presents
Euler’s equations of the body system. Section 3 discusses
the obtaining of the two stabilizing controllers by solving a
convenient matching condition. Then, the convergence of
the closed-loop system is guaranteed by applying the well-
known LaSalle’s invariance theorem. In Sec. 4 we evaluate
the controllers’ performance through some computer simula-
tions. Finally, Sec. 4 contains the concluding remarks. The
proof of Lemma 1 is found in the Appendix.

2. The rigid body

Consider a rigid body which is controlled by means of two
torque inputs applied to two principal axes. Letw1, w2 and
w3 be the angular velocity components with respect to the
principal axes, and denote byJ1, J2 andJ3 the moments of
inertia of the rigid body about the principal body axes. Let
us assume that the two inputs are about the first two principal
axes. The Euler equations for the rigid body system are given
by [5]

J1
.
w1 = (J2 − J3)w2w3 + τ1

J2
.
w2 = (J3 − J1)w1w3 + τ1

J3
.
w3 = (J1 − J2)w2w3. (1)

Hereτ1 andτ2 are the torques that act as inputs for the sys-
tem. In order to apply a matching energy controller based
approach, we proceed to rewrite the above system as a con-
trolled Hamiltonian system, described by

ẇ = J−1

(
S(w)

∂V0

∂w
(w) + Bu

)
(2)

wherew = (w1, w2, w3)T is the state,uT =(τ1,τ2) is the
controller, J =diag(J1,J2, J3) the inertia matrix,S andB
are the internal and external interconnection matrices given
by

S(w) =




0 w3 −w2

−w3 0 w1

w2 −w1 0


 , B =




1 0
0 1
0 0


 .

andV0 is the total energy of the rigid body system, defined
by

V0(w) =
1
2
wT Jw.

Notice that matrixS is a skew-symmetric matrix, that is,
xT S(w)x = 0, for all x ∈ R3.
The control objective is to find smooth feedback controllersτ1

and τ2 that bring all the angular velocities to the rest equi-
librium point. That is, we force the closed-loop system to be
asymptotically stable at the origin from any initial conditions.

We must emphasize that the linearization of the sys-
tem (1) about the origin has one uncontrollable eigenvalue
at the origin. Hence the resulting linearized system is not sta-
bilizable and can not be exponentially stabilized by a smooth
feedback at the origin (see Ref. 21).

3. Control strategy

System (2) suggests the use of the matching control energy
approach for the design of the stabilizing feedback control
laws, which force the motion, starting from any arbitrary ini-
tial conditionsw(0), towards the desired resting equilibrium
pointw = 0. Intuitively, this control strategy consists in find-
ing a suitable controlu, such that the closed-loop system can
be rewritten as a new asymptotic Hamiltonian system (see the
previous works of Refs. 3, 22, and 23). To this end, we first
introduce the definition of matching energy condition, then
we obtain the necessary matching condition, which allows us
to explicitly obtain the convenient candidate Lyapunov func-
tion and the desired control.
Now, consider a second, autonomous Hamiltonian system de-
scribed by

ẇ = (Sd(w)−D)
∂Vd

∂w
(w), (3)

whereD is a constant positive diagonal matrix,Sd(w) is
a skew-symmetric matrix, andVd(w) is the desired energy
function of the closed-loop system, selected in such a way
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thatVd is strictly positive with a global minimum at the ori-
gin. That is,Vd(w) > 0 for all w ∈ R3, with w 6= 0 and
Vd(w) = 0 if and only if w = 0. System (3) is the desired
closed-loop system or target system. We chose system (3) as
the target systembecause it is asymptotically stable, as we
shall demonstrate in the next section.

Now we introduce a useful definition: we say that sys-
tems (2) and (3) are matched for some convenient control law
u(w) if the solutions to both systems are the sameii. That is,
(w(t),u(w(t))) is a solution for (2) if and only ifw(t) is a
solution for (3), for allt ≥ 0iii.

Therefore, systems (2) and (3) are matched if and only
if the dynamics of the two systems are equal. Thus, equat-
ing the left-hand sides of (2) and (3) we have the following
equality:

Bu = J (Sd(w)−D)
∂Vd

∂w
(w)− S(w)

∂V0

∂w
(w). (4)

From the above we have the following set of partial differ-
ential constraint equations, which have to be fulfilled for any
control law (see Refs. 22 and 23):

B⊥
[
S(w)

∂V0

∂w
(w)− J (Sd(w)−D)

∂Vd

∂w
(w)

]
= 0, (5)

whereB⊥ is the left annihilator ofB. That is,B⊥B = 0.
Therefore, if variablesSd, D andVd are known, then control
u(w) can be directly computed as

u =− (BT B)−1BT

×
[
J (Sd(w)−D)

∂Vd

∂w
(w)− S(w)Jw

]
. (6)

It is worth mentioning that Eq. (5) represents the dy-
namics of the system that cannot be manipulated or modified,
while Eq. (6) represents the dynamics of the system that can
be manipulated (or external control), which transforms the
original system into a dissipative system with respect to the
total energy function.

We summarize the control strategy as follows: we first
need to solve the matching energy condition (5), which is
directly related to the total energy of target system (3). After-
wards, controlu is obtained via (6).
Remark 1: The above energy matching condition allows us
to characterize all the energy functions that can be assigned
to the target system by fixing the structure of the desired in-
terconnection matricesSd andDiv. That is, matricesSd and
D can be seen as free parameters, used to achieve the above-
mentioned energy matching condition. In general, this is not
an easy task because we need to solve a non-linear partial
differential equation (PDE). Therefore, there is no one sin-
gle method to obtainVd and the solution is not unique. Be-
sides, the solution might not be feasible, that is, the obtained
Vd might not be strictly positive or not well-defined for all
w ∈ R3. However, for this particular case it is relatively easy
to ensure the desired energy matching condition, as we shall
show in the next section.

Comments: We wish to emphasize that there are no explicit
conditions for the existence of the solution to the PDE related
to the energy-matching condition, as pointed out in Ref. 24.
However, in many applications it is possible to ensure these
conditions by adequately selecting the needful interconnec-
tion matricesSd andD. Examples of these applications, such
as the inverted pendulum, the inertia wheel pendulum and the
spherical inverted pendulum, can be found in Refs. 22 and 23.

3.1. Solving the matching condition

The following lemma allows us to shape the stored energy
function of the target system:
Lemma 1: Let D=diag{d1, d2, 1}, with d1 and d2 strictly
positive constants, and let Sd be a skew-symmetric matrix
defined by

Sd(w) =




0 k −k2 − δw2

−k 0 −2k3w3

k2 + δw2 2k3w3 0


 , (7)

whereδ = (J1− J2)/J3, andk is an arbitrary constant, and
the constantsk1, k2 andk3 are selected according to

δk2(δk2 + k1k3) < 0 with k1 > 0. (8)

Then, the energy matching condition(5) is satisfied, for the
following:

Vd(w) =
1
2
(w1 + k2w3)2 + f(w2, w3) (9)

where

f(w2, w3) =
1
4
δk2w

2
3(2w2 + k3w

2
3)

+
1
4
k1(w2 + k3w

2
3)

2. (10)

Furthermore,Vd(w) is strictly positive with a global mini-
mum at the origin.Proof is given in the Appendix.
Observe that for any structural parameterδ we can always
find k1, k2 andk3 satisfying (8).

3.2. Closed-loop stability analysis

From the definition of the energy matching condition, already
discussed in the previous section, it follows that the stability
of system (2) in closed-loop with (6) is equivalent to the sta-
bility of the desired closed-loop system (3). Therefore, the
stability analysis can be carried out using the target system.
Under the condition of Lemma 1, let us takeVd(w) as a can-
didate Lyapunov function for the target system. Now, com-
puting the time derivative ofVd(w) around the trajectories of
system (3) leads to

V̇d(w)=
(

∂Vd

∂w

)T

(Sd(w)−D)
∂Vd

∂w
=−

(
∂Vd

∂w

)T

D
∂Vd

∂w

= −
3∑

i=1

di

(
∂V

∂wi

)2

.
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It is easy to show, by using simple algebraic considera-
tions, that the above expression is strictly negative definitive.
That is,Vd and−V̇d are strictly positive definitive. Therefore,
from the Lyapunov theorem (see Ref. 25), the origin of the
closed-loop system is globally asymptotically stable.
Summarizing the above discussion, we present the main
proposition of this paper:
Proposition 1Under the assumption of Lemma 1, the non-
linear system (2) in closed-loop with (6), is globally asymp-
totically stable.

4. Numerical simulations

Simulations were performed for system (1) in closed-loop
with (6). The physical parameters of the rigid body were
selected as if it were a real satellite:J1=27 kg m2,
J2=17 kg m2 and J3 = 25 kg m2. The initial conditions
of the system were fixed asw1 = −3, w2 = 20 andw3 = 4.

In the first experiment, we have fixed the gains of the con-
troller as d1 = 35, d2 = 25, k1 = 1, k2 = 3, k3 = −3.5 and
k = −2. Figure 1 depicts the state response of the closed-
loop system, with its respective controllersτ1 andτ2. It can
be observed in Fig. 1 how the states converge to zero:w1

does it almost instantly and it is followed byw2 andw3 in
that order. Also, it can be seen that initially the rate conver-
gence is fast, but aftert >= 5 it becomes very slow, and as
t is increased, little by little, all the states move closer and
closer to zero. This happens because the closed-loop system
is asymptotically stable but not locally exponentially stable.
That is, we expect that as time goes to infinity, eventually all
the states are closer to the origin. This is a disadvantage of
the resulting asymptotic convergence of the closed-loop sys-
tem, compared to other methods such as discontinuous con-
trol law [18], where exponential stability is guaranteed except
at the origin.

FIGURE 1. Closed-loop response of all the states of the rigid body system.

FIGURE 2. Closed-loop robustness of the control strategy when the rigid body system is exposed to external perturbations.
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In the second experiment, we set the same initial condi-
tions as in the first experiment. Nevertheless, to show the
robustness of the proposed control strategy, we added the ex-
ternal perturbationss(t)wi, i = 1, 2, 3 in the direction of the
three axes, wheres(t) is a sinusoidal function uniformly dis-
tributed in[−1, 1]. Figure 2 depicts the state response of the
closed loop, with its respective two controllers. It is clear
that the control strategy is quite effective, even if the system
is exposed to external perturbations.

5. Conclusions

An energy control strategy is used to stabilize the angular ve-
locity of a rigid body system, which is controlled by two inde-
pendent torques. The stabilization strategy is based on solv-
ing a feasible energy matching condition, which is directly
related to the candidate Lyapunov function of the desired tar-
get system. The idea behind it consists in forcing the de-
sired closed-loop system to behave like an asymptotic stable
Hamiltonian system (3). To ensure the matching condition,
it is necessary to solve a single third-order partial differential
equation. Fortunately, the matching condition can be easily
solved, as we showed in Lemma 1. The stability analysis is
carried out by using the traditional Lyapunov method. The
closed-loop performance of the controlled system is seen to
be quite satisfactory, as assessed from the numerical simula-
tions.
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Appendix

In this appendix section we show how the matricesD and
Sd can be proposed in order to satisfy the matching condi-
tion (5). By definition of the desired closed-loop system (3),
matricesD andSd are given respectively, as:

D =




d1 0 0
0 d2 0
0 0 d3


 ,

Sd(w) =




0 X3 −X2

−X3 0 X1

X2 −X1 0


 , (11)

wheredi > 0 for i = {1, 2, 3}. For simplicity we letd3 = 1.
After substituting the above matricesD andSd(w) and the
values ofS(w), J andB⊥, defined previously in (3), into
the matching condition (5), we havev

0 = δw1w2 +
∂V

∂w3
+ X1

∂V

∂w2
−X2

∂V

∂w1
. (12)

To solve the above partial differential equation, we shape the
desired positive functionV , as we stated previously in (9).
This trick was introduced in order to reduce the order of
the above partial differential equation, from third to second.
Then, substitutingV , defined in (9), into relation (12), we
obtain the following partial differential equation:

0 = w1(k2 + δw2 −X2) + w3

(
k2
2 − k2X2

)

+ X1
∂

∂w2
f(w2, w3) +

∂

∂w3
f(w2, w3).

From the above, we must note that it is convenient to
eliminate the coefficient ofw1 in order to obtain a fea-
sible f(w2, w3). Thus, variableX2 can be selected as
X2 = k2 + δw2. Also, variableX1 can be selected as de-
sired. However, in order to get a simple solution, we let
X1 = −2k3w3. Thus the above relation turns out to be:

0 =− δk2w2w3 − 2k3w3
∂

∂w2
f(w2, w3)

+
∂

∂w3
f(w2, w3), (13)

the solution to which has been given previously in the Lemma
(see 10). That is, the obtained matricesD andSd, and the
proposedV , previously defined in the Lemma, satisfy the
matching condition (5).

Finally, we need to guarantee the positiveness of the
obtained functionV . Indeed, the functionf (10) can
be expressed as a quadratic form given byzT Qz, where
z = (w2,w2

3) and

Q =
[

k1 δk2 + k1k3

δk2 + k1k3 δk2k3 + k1k
2
3

]
.

Evidently,Q > 0vi if and only if

det(Q)= −δk2(δk2 + k1k3) > 0.

That is, if the set of constants{k1, k2, k3} satisfy inequal-
ity (8) then functionf , defined previously in (10), is strictly
positive definite. Now, it is relatively easy to check that the
proposedV , defined by

V (w) = 1/2(w1 + k2w3)2 + f(w2, w3),

is a strictly positive-definite function, for anyf(w2, w3)
which is strictly positive-definite.¥
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i. The original system (or physical plant) interconnected with the
control action is referred as closed-loop system.

ii. V0 andVd refer the original and the desired energies, respec-
tively.

iii. It is important to emphasize that the initial conditions of both
systems, the target (3) and the open-loop (2), are the same. That
is because we are forcing the dynamics of both systems to be
the same.

iv. Recall thatV0 is given a priori.

v. Recall thatδ = (J1−J2)/J3 and the variablesX1 andX2 can
be selected, as desired.

vi. Recall that matrixQ = {qij}; i, j = 1, 2 is strictly pos-
itive definitive, that isQ > 0, if and only if a11 > 0 and
det(Q) > 0.
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