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We review our recent work about the stability of strange few-body systems containingN ’s, Λ’s, andΞ’s. We make use of local central
Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nucleon-nucleon system and the latest
updates of the hyperon-nucleon and hyperon-hyperon ESC08c Nijmegen potentials. We solve the three- and four-body bound-state problems
by means of Faddeev equations and a generalized Gaussian variational method, respectively. The hypertriton,Λnp (I)JP = (1/2)1/2+,
is bound by 144 keV; the recently discussedΛnn (I)JP = (1/2)1/2+ system is unbound, as well as theΛΛnn (I)JP = (1)0+system,
being just above threshold. Our results indicate that theΞNN , ΞΞN andΞΞNN systems with maximal isospin might be bound.

Keywords: Baryon-Baryon interactions; Faddeev equations; variational approaches.

PACS: 21.45.-v; 25.10.+s; 11.80.Jy

1. Introduction

Strange nuclear physics is a very topical subject. The
hyperon-nucleon (Y N ) and hyperon-hyperon (Y Y ) interac-
tions constitute the input for microscopic calculations of few-
and many-body systems involving strangeness, such as ex-
otic neutron star matter [1–5] or hypernuclei [6–8]. There
are theoretical debates [9–14] on the possible existence of a
neutral bound state of two neutrons and aΛ hyperon,3Λn,
suggested by recent data of the HypHI Collaboration [15].
There have been also recent proposals regarding the stabil-
ity of 4

ΛΛn [14], the existence ofΞ hypernuclei [6–8], or
the existence of a strangeness−2 hypertriton [16, 17]. Ob-
viously, all these predictions are subject to the uncertain-
ties of our knowledge of the baryon-baryon interaction, in
particular in the strangeness−2 sector. Experimentally, it
has been recently reported an emulsion event, the so-called
KISO event, providing evidence of a possible deeply bound
state ofΞ−−14N [18]. Although microscopic calculations
are impossible in this case and, consequently, their interpre-
tation will be always affected by uncertainties, the ESC08c
Nijmegen potential has been recently updated [19–21] to give
account for the most recent experimental information of the
strangeness−2 sector, the KISO [18] and the NAGARA [22]
events. A thorough discussion of the present status of the ex-
perimental and theoretical progress in hypernuclear physics
can be found in Refs. 23 and 24.

When a two-baryon interaction is attractive, if the sys-
tem is merged with nuclear matter and the Pauli principle
does not impose severe restrictions, the attraction may be
reinforced. Simple examples of the effect of a third or a
fourth baryon in two-baryon systems could be given. The
deuteron,(I)JP = (0)1+, is bound by2.225 MeV, while
the triton,(I)JP = (1/2)1/2+, is bound by 8.480 MeV, and
the α particle, (I)JP = (0)0+, is bound by 28.295 MeV.
The binding per nucleonB/A increases as1 : 3 : 7. A
similar argument could be employed for strangeness−1 sys-
tems. Whereas the existence of dibaryon states is still un-
der discussioni, the hypertriton3

ΛH, (I)JP = (0)1/2+, is
bound with a separation energy of130 ± 50 keV, and the
4
ΛH, (I)JP = (0)0+, is bound with a separation energy
of 2.12 ± 0.01 (stat) ± 0.09 (syst) MeV [26]. This co-
operative effect of the attraction in the two-body subsys-
tems when merged in few-baryon states was also made ev-
ident in the prediction of aΣNN quasibound state in the
(I)JP = (1)1/2+ channel very near threshold [27, 28].
SuchΣNN quasibound state has been recently suggested in
3He(K−, π∓) reactions at 600 MeV/c [29].

In this paper, we review our recent studies of the three-
body systems:ΛNN , ΞNN , ΛΛN , and ΞΞN , as well
as the four-body systemsΞΞNN and ΛΛNN . We make
use of the most recent updates of the ESC08c Nijmegen
potentials in the strangeness−1, −2, −3 and −4 sec-
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tor [19,20,30] accounting for the recent KISO [18] and NA-
GARA [22] events in the strangeness−2 sector. As discussed
above, the existence of two-body attractive interactions or
bound states could give rise to other stable few-body sys-
tems when merged with other nucleons or hyperons. For ex-
ample, the overall attractive character of theΞN interaction
comes suggested by recent preliminary results from lattice
QCD [31] together with other indications of certain emul-
sion data [20, 21, 30]. Besides the recent update of ESC08c
Nijmegen model,Ξ−hypernuclear calculations [32] and chi-
ral quark models [33] found aΞN attractive interaction be-
fore the KISO event. Furthermore, the possible existence
of stable strange few-body states comes reinforced by the
attractive character of theΞΞ interaction for some partial
waves [19,30,34–38]. It is worth to mention that preliminary
studies of theΞΞN system [39] indicate that lattice QCD cal-
culations of multibaryon systems are now within sight. Anal-
ogously, if a secondΛ would be added to the uncertainΛnn
state, the weakly attractiveΛΛ interaction [22] and the re-
inforcement of theΛN potential without paying a price for
antisymmetry requirements, may give rise to a stable bound
state [14].

One should bear in mind how delicate is the few-body
problem in the regime of weak binding, as demonstrated in
Ref. 40 for the4ΛΛH system. Besides, there are models for the
Y N interaction, like the hybrid quark–model based analysis
of Ref. 41, the effective field theory approach of Ref. 42, or
even some of the earlier models of the Nijmegen group [34]
that, in general, predict interactions weakly attractive or re-
pulsive. One does not expect that these models will give rise
to stable three- or four-body states. However, it is worth
to emphasize that current hypernuclei studies [6–8, 32, 40]
have been performed by means of interactions derived from
the Nijmegen models and, thus, the present review comple-
ments such previous work for the simplest systems that can
be studied exactly. To advance in the knowledge of the de-
tails of theY N interaction, high-resolution spectroscopy of
Ξ hypernuclei using12C targets in(K−,K+) reactions has
been awaited [43, 44] and it is now planned at J-PARC [45].
The new hybrid experimentE07 recently approved at J–
PARC is expected to record of the order of104 Ξ− stop-
ping events [46], one order of magnitude larger than the pre-
vious E373 experiment, and will hopefully clarify the phe-
nomenology of some of the systems studied in the present
work.

The review is organized as follows. In Sec. 2 we describe
the technical details to solve the three-body bound state Fad-
deev equations as well as the generalized Gaussian varia-
tional method used to look for bound states of the four-body
problem. In Sec. 3 we construct the two-body amplitudes
needed for the solution of the bound state three- and four-
body problems. The results are presented and discussed in
Sec. 4. Finally, in Sec. 5 we summarize our main conclu-
sions.

2. The three- and four-body bound-state prob-
lems

In this section we outline the solution of the three- and four-
body bound-state problems. We will restrict ourselves to con-
figurations where all particles are inS−wave states. The
three-body problem has been widely discussed in the liter-
ature and we refer the reader to Refs. 47 to 49 for a more de-
tailed discussion. The Faddeev equations for a system with
total isospinI and total spinJ are,

T iiji

i;IJ(piqi) =
∑

j 6=i

∑

ijjj

h
iiji;ijjj

ij;IJ

1
2

∞∫

0

q2
j dqj

×
1∫

−1

dcosθ ti;iiji
(pi, p

′
i; E − q2

i /2νi)

× 1
E − p2

j/2µj − q2
j /2νj

T
ijjj

j;IJ(pjqj) , (1)

whereti;iiji stands for the two-body amplitudes with isospin
ii and spinji. pi is the momentum of the pairjk (with ijk an
even permutation of123) andqi the momentum of particlei
with respect to the pairjk. µi andνi are the corresponding
reduced masses, andh

iiji;ijjj

ij;IJ are spin–isospin coefficients.
Expanding the amplitudeti;iiji(xi, x

′
i; e) in terms of Leg-

endre polynomials, Eq. (1) can be written as,

T iiji

i;IJ (xiqi) =
∑

n

Pn(xi)T
niiji

i;IJ (qi) , (2)

whereTniiji

i;IJ (qi) satisfies the one-dimensional integral equa-
tion,

Tniiji

i;IJ (qi) =
∑

j 6=i

∑

mijjj

∞∫

0

dqjA
niiji;mijjj

ij;IJ

× (qi, qj ;E) T
mijjj

j;IJ (qj) , (3)

with

A
niiji;mijjj

ij;IJ (qi, qj ; E) = h
iiji;ijjj

ij;IJ

∑
r

τnr
i;iiji

(E−q2
i /2νi)

q2
j

2

×
1∫

−1

dcosθ
Pr(x′i)Pm(xj)

E − p2
j/2µj − q2

j /2νj
. (4)

The four-body problem has been addressed by means of
the variational method, specially suited for studying low-
lying states. The nonrelativistic hamiltonian is be given by,

H =
4∑

i=1

(
mi +

~p 2
i

2mi

)
+

4∑

i<j=1

V (~rij) , (5)

where the potentialV (~rij) corresponds to an arbitrary two-
body interaction.
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The variational wave function must include all possible
spin–isospin channels contributing to a given configuration.
For each channels, the wave function will be the tensor prod-
uct of a spin (|Ss1〉), isospin (|Is2〉), and radial (|Rs3〉) com-
ponent,

|φs〉 = |Ss1〉 ⊗ |Is2〉 ⊗ |Rs3〉 , (6)

wheres ≡ {s1, s2, s3}. Once the spin and isospin parts are
integrated out, the coefficients of the radial wave function are
obtained by solving the system of linear equations,

∑

s′ s

∑

i

βi
s3

[〈Rj
s′3
|H |Ri

s3
〉

− E 〈Rj
s′3
|Ri

s3
〉δs,s′ ] = 0 ∀ j , (7)

where the eigenvalues are obtained by a minimization proce-
dure.

For the description of the four-body wave function we
consider the Jacobi coordinates:

~rNN = ~x = ~r1 − ~r2 ,

~rY Y = ~y = ~r3 − ~r4 ,

~rNN−Y Y = ~z =
1
2

(~r1 + ~r2)− 1
2

(~r3 + ~r4) , (8)

~RCM = ~R =
∑

mi~ri∑
mi

,

The total wave function should have well-defined permuta-
tion properties under the exchange of identical particles. The
spin part can be written as,

[(s1s2)S12(s3s4)S34 ]S ≡ |S12S34〉S , (9)

where the spin of the twoN ’s (Y ’s) is coupled toS12 (S34).
Two identical spin-1/2 fermions in aS = 0 state are antisym-
metric(A) under permutations while those coupled toS = 1
are symmetric(S). We summarize in Table I the correspond-
ing vectors for each total spin together with their symmetry
propertiesii

TABLE I. Spin basis vectors for all possible total spin states(S).
The ’Symmetry’ column stands for the symmetry properties of the
pair of identical particles.

S Vector Symmetry

0
|00〉S AA

|11〉S SS

|01〉S AS

1 |10〉S SA

|11〉S SS

2 |11〉S SS

The most general radial wave function with total orbital
angular momentumL = 0 may depend on the six scalar
quantities that can be constructed with the Jacobi coordinates
of the system, they are:~x 2, ~y 2, ~z 2, ~x · ~y, ~x · ~z, and~y · ~z. We
define the variational spatial wave function as a linear com-
bination ofgeneralized Gaussians,

|Rs3〉 =
n∑

i=1

βi
s3

Ri
s3

(~x, ~y, ~z) =
n∑

i=1

βi
s3

Ri
s3

, (10)

where n is the number of Gaussians used for each spin-
isospin component.Ri

s3
depends on six variational param-

eters:ai
s, bi

s, ci
s, di

s, ei
s, andf i

s, one for each scalar quantity.
Therefore, the four-body system will depend on6 × n × ns

variational parameters, wherens is the number of different
channels allowed by the Pauli principle. Eq. (10) should have
well-defined permutation symmetry under the exchange of
bothN ’s andY ’s,

P12(~x → −~x)Ri
s3

= PxRi
s3

(11)

P34(~y → −~y)Ri
s3

= PyRi
s3

,

wherePx andPy are−1 for antisymmetric states,(A), and
+1 for symmetric ones,(S). Thus, one can build the follow-
ing radial combinations,(PxPy) = (SS), (SA), (AS), and
(AA):

(SS) ⇒ Ri
1 = Exp

(−ai
s~x

2 − bi
s~y

2 − ci
s~z

2 − di
s~x · ~y − ei

s~x · ~z − f i
s~y · ~z

)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y − ei
s~x · ~z + f i

s~y · ~z
)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y + ei
s~x · ~z − f i

s~y · ~z
)

(12)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x · ~y + ei
s~x · ~z + f i

s~y · ~z
)

,

(SA) ⇒ Ri
2 = Exp

(−ai
s~x

2 − bi
s~y

2 − ci
s~z

2 − di
s~x · ~y − ei

s~x · ~z − f i
s~y · ~z

)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y − ei
s~x · ~z + f i

s~y · ~z
)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y + ei
s~x · ~z − f i

s~y · ~z
)

(13)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x · ~y + ei
s~x · ~z + f i

s~y · ~z
)

,
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(AS) ⇒ Ri
3 = Exp

(−ai
s~x

2 − bi
s~y

2 − ci
s~z

2 − di
s~x · ~y − ei

s~x · ~z − f i
s~y · ~z

)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y − ei
s~x · ~z + f i

s~y · ~z
)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y + ei
s~x · ~z − f i

s~y · ~z
)

(14)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x · ~y + ei
s~x · ~z + f i

s~y · ~z
)

,

(AA) ⇒ Ri
4 = Exp

(−ai
s~x

2 − bi
s~y

2 − ci
s~z

2 − di
s~x · ~y − ei

s~x · ~z − f i
s~y · ~z

)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y − ei
s~x · ~z + f i

s~y · ~z
)

− Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 + di

s~x · ~y + ei
s~x · ~z − f i

s~y · ~z
)

(15)

+ Exp
(−ai

s~x
2 − bi

s~y
2 − ci

s~z
2 − di

s~x · ~y + ei
s~x · ~z + f i

s~y · ~z
)

.

The last equations can be expressed in a compact manner
by defining the following function,

g(s1, s2, s3) = Exp
(− ai

s~x
2 − bi

s~y
2 − ci

s~z
2

− s1d
i
s~x · ~y − s2e

i
s~x · ~z − s3f

i
s~y · ~z

)
, (16)

and the vectors

~Gi
s =




g(+,+, +)
g(−,+,−)
g(−,−, +)
g(+,−,−)


 , (17)

and

~αSS = (+,+, +, +)

~αSA = (+,−, +,−)

~αAS = (+,+,−,−) (18)

~αAA = (+,−,−, +),

which allows to write Eqs. (13)–(15) as,

(SS) ⇒ Ri
1 = ~αSS · ~Gi

s

(SA) ⇒ Ri
2 = ~αSA · ~Gi

s

(AS) ⇒ Ri
3 = ~αAS · ~Gi

s (19)

(AA) ⇒ Ri
4 = ~αAA · ~Gi

s .

The radial wave function includes all possible internal rela-
tive orbital angular momenta coupled toL = 0. It has also
well-defined symmetry properties on the~z coordinate. Being
P(12)(34)(~z → −~z)Ri

s4
= PzR

i
s4

one obtains,

P(12)(34)R
i
1 = +Ri

1

P(12)(34)R
i
2 = −Ri

2

P(12)(34)R
i
3 = −Ri

3 (20)

P(12)(34)R
i
4 = +Ri

4 .

To evaluate radial matrix elements we use the notation intro-
duced in Eq. (19):

〈
Ri

γ |f(x, y, z)|Rj
β

〉
=

∫

V

(~αSγ · ~Gi
s)f(x, y, z)(~αSβ

· ~Gj
s′)dV

= ~αSγ · F ij · ~αSβ
, (21)

whereγ and β stand for the symmetry of the radial wave
function andF ij is a matrix whose element(a, b) is defined
through,

F ij
ab =

∫

V

(~Gi
s)a( ~Gj

s′)bf(x, y, z)dV , (22)

being(~Gi
s)a the componenta of the vector~Gi

s. From Eq. (16)
one obtains,

g(s1, s2, s3)g(s′1, s
′
2, s

′
3) = Exp

(− aij~x
2 − bij~y

2 − cij~z
2

− s̄ij~x · ~y − ēij~x · ~z − f̄ij~y · ~z
)
, (23)

where we have shortened the previous notation according to
ai

s → ai, aij = ai + aj andd̄ij = (s1di + s′1dj). Therefore,
all radial matrix elements will contain integrals of the form,

I =
∫

V

Exp
(− aij~x

2 − bij~y
2 − cij~z

2 − s̄ij~x · ~y

− ēij~x · ~z − f̄ij~y · ~z
)
f(x, y, z)d~xd~yd~z , (24)

where the functionsf(x, y, z) are the potentials. Being all
of them radial functions (not depending on angular variables)
one can solve the previous integral by noting:

∫
Exp

[−
n∑

i,j=1

Aij~xi · ~xj

]
f
(|

∑
αk~xk|

)
d~x1...d~xn

=

(
πn

detA

) 3
2

4π

(
Ωij

π

) 3
2

F (Ωij , f) , (25)
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where

1
Ωij

= ᾱ ·A−1 · α

F (A, f) =
∫

e−Au2
f(u)u2du

detA > 0 (26)

1
Ωij

> 0 .

One can extract some useful relations for the radial matrix
elements using simple symmetry properties. Let us rewrite
Eq. (21)

〈
Ri

γ |f(x, y, z)|Rj
β

〉
=

〈
Ri

PxPyPz
|f(x, y, z)|Rj

P ′xP ′yP ′z

〉

=
∫

x

∫

y

∫

z

Ri
PxPyPz

f(x, y, z)Rj
P ′xP ′yP ′z

d~xd~yd~z . (27)

If f(x, y, x) depends only in one coordinate, for example~x,
the integrals over the other coordinates will be zero if one of
them has different symmetry properties,Py 6= P ′y orPz 6= P ′z
in our example. Therefore

〈
Ri

γ |f(x)|Rj
β

〉
∝ δγβ

〈
Ri

γ |f(y)|Rj
β

〉
∝ δγβ

〈
Ri

γ |f(z)|Rj
β

〉
∝ δγβ (28)

〈
Ri

γ |Constant|Rj
β

〉
∝ δγβ .

The radial wave function described in this section is adequate
to describe not only bound states, but also it is flexible enough
to describe states of the continuum within a reasonable accu-
racy [50–52].

3. Two–body amplitudes

We have constructed the two-body amplitudes for all sub-
systems entering the three- and four-body problems studied
by solving the Lippmann–Schwinger equation of each(i, j)
channel,

tij(p, p′; e) = V ij(p, p′) +

∞∫

0

p′′2dp′′V ij(p, p′′)

× 1
e− p′′2/2µ

tij(p′′, p′; e) , (29)

where

V ij(p, p′) =
2
π

∞∫

0

r2dr j0(pr)V ij(r)j0(p′r) , (30)

and the two-body potentials consist of an attractive and a re-
pulsive Yukawa term,i.e.,

V ij(r) = −A
e−µAr

r
+ B

e−µBr

r
. (31)

The parameters of theΛN , ΞN , ΛΛ andΞΞ channels were
obtained by fitting the low-energy data and the phase shifts
of each channel as given by the most recent update of the
strangeness−1 [19], −2 [20] and−3 and−4 [30] ESC08c
Nijmegen potentials. In the case of theNN interaction we
use the Malfliet-Tjon models [53] with the parameters given
in Ref. 54. The low-energy data and the parameters of these
models are given in Table II. It is worth to note that the scat-
tering length and effective range of the most recent update of
theΛΛ interaction derived from chiral effective field theories
are very much like those of the ESC08c Nijmegen potential
(see Table II of Ref. 42) unlike the earlier version used in
Ref. 14 (see Table IV of Ref. 55) reporting remarkably small
effective ranges.

TABLE II. Low-energy data and parameters of the local central Yukawa-type potentials given by Eq. (31) for theNN potential [54], and the
most recent updates of the ESC08c Nijmegen interactions for theΛN [19], ΞN [20], ΞΞ [30], andΛΛ [20] systems.

(i, j) a(fm) r0(fm) A(MeV fm) µA(fm−1) B(MeV fm) µB(fm−1)

NN (1,0) −23.56 2.88 513.968 1.55 1438.72 3.11

ΛN
(1/2,0) −2.62 3.17 416 1.77 1098 3.33

(1/2,1) −1.72 3.50 339 1.87 968 3.73

(0, 0)a − − 120 1.30 510 2.30

ΞN
(0, 1) −5.357 1.434 377 2.68 980 6.61

(1, 0) 0.579 −2.521 290 3.05 155 1.60

(1, 1) 4.911 0.527 568 4.56 425 6.73

ΞΞ
(0, 1) 0.53 1.63 210 1.60 560 2.05

(1, 0) −7.25 2.00 155 1.75 490 5.60

ΛΛ (0, 0) −0.853 5.126 121 1.74 926 6.04
aThis channel is discussed on Sec. III.
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FIGURE 1. (a)VΛN (r) potential as given by Eq. (31) with the parameters of Table II. (b) Same as (a) for theVΞN (r) potential. (c) Same as
(a) for theVΞΞ(r) potential. (d) Same as (a) for theVΛΛ(r) potential.

TABLE III. Two-bodyNN , Y N andY Y isospin-spin(i, j) channels that contribute to a given three- or four-body state with total isospin
I and total spinJ . The last column indicates the corresponding threshold for each state, that would come given by

∑3(4)
i=1 Mi − E, where

Mi are the masses of the baryons of each channel,B1 stands for the binding energy of the deuteron andB2 for the binding energy of theD∗

ΞN state.

(I, J) ΛN ΞN ΞΞ(NN) ΛΛ E

(1/2, 1/2) − (0,0),(0,1),(1,0),(1,1) (0,1),(1,0) − B1

ΞNN (1/2, 3/2) − (0,1),(1,1) (0,1) − B1

(3/2, 1/2) − (1,0),(1,1) (1,0) − B2

(3/2, 3/2) − (1,1) − − B2

ΞΞN (1/2, 1/2) − (0,0),(0,1),(1,0),(1,1) (0,1),(1,0) − B2

(1/2, 3/2) − (0,1),(1,1) (0,1) − B2

(3/2, 1/2) − (1,0),(1,1) (1,0) − B2

(3/2, 3/2) − (1,1) − − B2

ΞΞNN (2, 0) − (1,0),(1,1) (1,0) − 2B2

ΛΛNN (1, 0) (1/2,0),(1/2,1) − (1,0) (0,0) 0
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TheΞN 1S0 (I = 0) potential was fitted to theΞN phase
shifts given in Fig. 14 of Ref. 20 without taking into account
the inelasticity,i.e., assumingρ = 0 (this two-body channel
does not contribute to the three- and four-body bound states
found in this work). Regarding the two-body interactions
containing a singleΛ, they are constrained by a simultaneous
fit to the combinedNN andY N scattering data, supplied
with constraints on theY N andY Y interaction originating
from the G-matrix information on hypernuclei [19].

The potentials obtained are shown in Fig. 1. In Fig. 1(a)
we show theVΛN (r) potential that it is tightly constrained by
the existing experimental data. The interaction is attractive
at intermediate range and strongly repulsive at short range,
but without having bound states. In Fig. 1(b) we show the
VΞN (r) potential, where one notes the attractive character
of the 3S1(I = 1) ΞN partial wave, giving rise to theD∗

bound state [18] with a binding energy of 1.6 MeV. We also
confirm how all theJ = 1 andI = 1 ΞN interactions are
attractiveiii [30]. Regarding theΞΞ interaction, Fig. 1(c),
we observe the attractive character of the1S0(I = 1) po-
tential, that although having bound states in earlier versions
of the ESC08c Nijmegen potential [34], in the most recent
update of the strangeness−4 sector it does not present a
bound state [30]. The existence of bound states in theΞΞ
system has been predicted by different calculations in the lit-
erature [35–37]. It can be definitively stated that all models
agree on the fairly important attractive character of this chan-
nel, either with or without a bound state [38]. Finally, in
Fig. 1(d) we show theVΛΛ(r) potential, mainly determined
by theNN andY N data, and SU(3) symmetry [20, 21]. It
gives account of the pivotal results of strangeness−2 physics,
the NAGARA [22] and the KISO [18] events. Although other
double-Λ hypernuclei events, like the DEMACHIYANAGI
and HIDA events [43], are not explicitly taken into account,
the G-matrix nuclear matter study ofΞ− capture both in12C
and14N (see section VII of Ref. 20), concludes that theΞN
attraction in the ESC08c potential is consistent with theΞ-
nucleus binding energies given by the emulsion data of the
twin Λ-hypernuclei.

4. Results and discussion

Let us first of all show the reliability of the input potentials.
We compare in Fig. 2 theΛN andΛΛ phase shifts reported
by the ESC08c Nijmegen potential and those obtained by our
fits with the two-body potentials of Eq. (31) and the parame-
ters given in Table II. As can be seen the agreement is good.
As stated above, theΞN 1S0 (I = 0) potential was fitted
to theΞN phase shifts given in Fig. 14 of Ref. 20. Once we
have described the phase shifts, theΛN andΛΛ potentials in-
clude in an effective manner the coupling to other two-body
channels as it may be theΣN or ΞN two-body systemsiv.
We have also tested the two-body interactions in the three-
body problem of systems made ofN ’s andΛ’s. The hyper-
triton is bound by 144 keV, and theΛnn system is unbound.

FIGURE 2. (a) ΛN 1S0 phase shifts. The solid line stands for the
results of the ESC08c Nijmegen potential and the dashed line for
the results of the two-body potential of Eq. (31) with the parame-
ters given in Table II. (b) Same as (a) for theΛN 3S1 phase shifts.
(c) Same as (a) for theΛΛ 1S0 phase shifts.
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The reasonable description of the known two- and three-
body problems gives confidence to address the study of other
three- and four-body systems. We show in Table III the
channels of the different two-body subsystems contributing
to each(I, J) three- and four-body state that we will study.
For theΞΞNN system we only consider theI = 2 chan-
nels, because theI = 0 and1 states would decay strongly
to ΛΛNN states. The three- and four-body problems are
studied by means of the ESC08c Nijmegen interactions de-
scribed in Sec. 3 and given in Table II. The binding energies
are measured with respect to the lowest threshold, indicated
in Table III for each particular state.

4.1. Three-body systems

We show in Fig. 3 the Fredholm determinant of allΞNN
channels [59,60]. As we can see in Fig. 3(b), a bound state is
found for the(I)JP = (3/2)1+/2 ΞNN state, 1.3 MeV be-

FIGURE 3. (a) Fredholm determinant for theJ = 1/2 and
J = 3/2 I = 1/2 ΞNN channels. (b) Fredholm determinant
for theJ = 1/2 I = 3/2 ΞNN channel.

low the corresponding threshold,2mN +mΞ−B2, whereB2

is the binding energy of theD∗ ΞN state. However, the most
interesting result of theΞNN system is shown in Fig. 3(a),
the very large binding energy of the(1/2)3+/2 state, which
would make it easy to identify experimentally as a sharp reso-
nance lying some17.2 MeV below theΞNN threshold. The
ΛΛ−ΞN (i, j) = (0, 0) transition channel, which is respon-
sible for the decayΞNN → ΛΛN , does not contribute to
the (I)JP = (1/2)3+/2 state in a pureS−wave configu-
ration [60]. One would need at least the spectator nucleon
to be in aD−wave or that theΛΛ − ΞN transition chan-
nel be in one of the negative parityP−wave channels, with
the nucleon spectator also in aP−wave. Thus, due to the
angular momentum barriers the resulting decay width of the
(1/2)3+/2 state is expected to be very small.

For the ΞNN three-baryon system with(I, J) =
(3/2, 3/2), only the(i, j) = (1, 1) ΞN channel contributes
(see Table III), and the corresponding Faddeev equations with
two identical fermions can be written as [27],

T = − tNΞ
N G0 T . (32)

Thus, due to the negative sign in the r.h.s. theΞN inter-
action is effectively repulsive and, therefore, no bound state
is possible in spite of the attraction of theΞN subsystem.
The minus sign in Eq. (32) is a consequence of the iden-
tity of the two nucleons since the first term of the r.h.s. of
Eq. (32) proceeds throughΞ exchange and it corresponds
to a diagram where the initial and final states differ only in
that the two identical fermions have been interchanged which
brings the minus sign. This effect has been pointed out be-
fore [61]. This is the reason why the Fredholm determinant
for the (I, J) = (3/2, 3/2) ΞNN channel is not shown in
Fig. 3(b).

Finally, we show in Fig. 4 the Fredholm determinant
of all ΞΞN channels. The Fredholm determinant for the
(I)JP = (3/2)3/2+ channel is not shown in Fig. 4(b) for
the same reason explained above for theΞNN system, it is
strongly repulsive. In theΞΞN system there appears a bound
state with quantum numbers(I)JP = (3/2)1+/2, 2.9 MeV
below the lowest threshold,2mΞ + mN − B2, whereB2

stands for the binding energy of theD∗ ΞN subsystem. Since
thisΞΞN state has isospin3/2 it can not decay intoΞΛΛ due
to isospin conservation so that it would be stable. This stable
state appears in spite of the fact that the last update of the
ESC08c NijmegenΞΞ 1S0(I = 1) potential has not bound
states, as it is however predicted by several models in the lit-
erature. If bound states would exist for theΞΞ system the
three-body state would become deeply bound as it happens
for theΞNN system. TheI = 1/2 channels are also attrac-
tive but they are not bound.

Let us finally mention that our results for three-body sys-
tems containing aΞN subsystem has been recently repro-
duced by means of the configuration-space Faddeev equa-
tions [62].
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FIGURE 4. (a) Fredholm determinant for theJ = 1/2 and
J = 3/2 I = 1/2 ΞΞN channels. (b) Fredholm determinant
for theJ = 1/2 I = 3/2 ΞΞN channel.

4.2. Four-body systems

In the previous section we have seen that all three-body sys-
tems made ofN ’s andΞ’s in the maximal isospin channel,
i.e., systems consisting only of neutrons and negativeΞ’s or
protons and neutralΞ’s, are bound. As mentioned above,
the uniqueness of these systems is a consequence of the two-
body interactions betweenNN , ΞN andΞΞ pairs being all
in the isospin 1 channel. Thus, the strong decayΞN → ΛΛ is
forbidden. Therefore, such states, if bound, would be stable
under the strong interaction. This is why we now proceed to
study four-body systems made ofN ’s andΞ’s in the maximal
isospin channel,I = 2. The most favorable configuration to
minimize the effect of the Pauli principle is theΞΞNN sys-
tem, that due to identity of twoN ’s and twoΞ’s can only
exist withJ = 0 [63].

FIGURE 5. Binding energy of the(I)JP = (2)0+ ΞΞNN state as
a function of the number of Gaussians in the variational calculation.

The binding energy of theΞΞNN state has been calcu-
lated by means of the variational method with generalized
Gaussians described in Sec. 2. The method has been used
in the four-body sector to study the possible existence of
tetraquarks [64–66] and tested against the hyperspherical har-
monic formalism with comparable results [51, 52]. We show
in Fig. 5 the binding energy of the(I)JP = (2)0+ ΞΞNN
state as a function of the number of Gaussians in the vari-
ational calculation. As we can see the result is almost sta-
ble considering 12 Gaussians, although we have pushed fur-
ther our calculation with a negligible gain of binding in the
second decimal digit. The lowest threshold for this state is
2B2 = 3.2 MeV, whereB2 is the binding energy of theD∗

ΞN state (see Table III). Thus, the state lies 7.4 MeV below
theΞΞNN mass, with a separation energy of 4.2 MeV with
respect to an asymptotic state made of twoD∗ ΞN dibaryons.

One can also study the behavior of the root mean square
radius (RMS) of the four-body system, defined in the usual
way,

RMS =




∑4
i=1 mi

〈
(~ri − ~RCM )2

〉

∑4
i=1 mi




1/2

=
1
2

( 〈
r2
NN

〉

1 + mΞ/mN
+

〈
r2
ΞΞ

〉 mΞ/mN

1 + mΞ/mN

+
〈
r2
NN−ΞΞ

〉 mΞ/mN

(1 + mΞ/mN )2

)1/2

. (33)

The results are shown in Fig. 6, where besides the RMS
radius we have also calculated the root mean square radii
of the different Jacobi coordinates. As seen in Table III,
only the1S0(I = 1) NN andΞΞ channels contribute to the
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FIGURE 6. Root mean square radii of the(I)JP = (2)0+ ΞΞNN
state as a function of the number of Gaussians in the variational
calculation. See text for details.

(I)JP = (2)0+ ΞΞNN state. As discussed in Sec. 3, al-
though they are attractive, the1S0(I = 1) NN andΞΞ chan-
nels do not present a bound state, giving the largest internal
radii. In theΞN subsystem one finds contributions from the
1S0(I = 1) and3S1(I = 1) channels, the last one presenting
theD∗ bound state, which is the responsible of the smallest
radius in theΞ−N relative coordinate. The RMS gets fully
stabilized with 14 Gaussians with a value of 1.18 fm.

We have finally evaluated the binding energy of the
ΛΛNN system with quantum numbers(I)JP = (1)0+ [67].
The system is unbound appearing just above threshold and
thus it does not seem to be Borromean, a four-body bound
state without two- or three-body stable subsystems. An un-
bound result was also reported in Ref. 68, although in this
case the authors made use of repulsive gaussian-type poten-
tials for any of the two-body subsystems (see the figure on
pag. 475) what does not allow for the existence of any bound
state.

We have studied the dependence of the binding on the
strength of the attractive part of the different two-body inter-
actions entering the four-body problem. For this purpose we
have used the following interactions,

V B1B2(r) = −gB1B2 A
e−µAr

r
+ B

e−µBr

r
(34)

with the same parameters given in Table II. The system
hardly gets bound for a reasonable increase of the strength of
the theΛΛ, gΛΛ, interaction. Although one cannot exclude
that the genuineΛΛ interaction in dilute states as the one
studied here could be slightly stronger that the one reported
in Ref. 20, however, one needsgΛΛ ≥ 1.8 to get a bound
state, what would destroy the agreement with the ESC08c Ni-
jmegenΛΛ phase shifts. Note also that this is a very sensitive
parameter for the study of double -Λ hypernuclei [40] and

FIGURE 7. Binding energy of the(I)JP = (1)0+ nnΛΛ state as
a function of the multiplicative factor,gNΛ, in the attractive part of
V NΛ(r) interaction forgNN = gΛΛ = 1.

this modification would produce an almostΛΛ bound
state in free space, in particular it would give rise to
aΛΛ

1S0
= −29.15 fm and r0

ΛΛ
1S0

= 1.90 fm. The four-body
system would also become bound taking a factor1.2 in the
NN interaction. However, such modification would make
the 1S0 NN potential as strong as the3S1 [53] and thus
the singletS−wave would develop a dineutron bound state,
aNN

1S0
= 6.07 fm and r0

NN
1S0

= 1.96 fm. The situation is
slightly different when dealing with theΛN interaction. We
have used a common factorgNΛ for attractive part of the two
ΛN partial waves,1S0 and3S1. We show in Fig. 7 the bind-
ing energy of the(I)JP = (1)0+ ΛΛNN state as a function
of the multiplicative factorgNΛ, for gNN = gΛΛ = 1. As
one can see the four-body system develops a bound state for
gNΛ = 1.1, giving rise to theΛN low-energy parameters:
aΛN

1S0
= −5.60 fm, r0

ΛN
1S0

= 2.88 fm, aΛN
3S1

= −2.91 fm,
andr0

ΛN
3S1

= 2.99 fm, far from the values constrained by the
existing experimental data.

Reference 14 tackled the same problem by fitting low-
energy parameters of older versions of the Nijmegen-RIKEN
potential [30, 69] or chiral effective field theory [55, 70],
by means of a single Yukawa attractive term or a Morse
parametrization. The method used to solve the four-body
problem is similar to the one we have used in our calculation,
thus the results might be directly comparable. Our improved
description of the two- and three-body subsystems and the
introduction of the repulsive barrier for the1S0 NN partial
wave, relevant for the study of the triton binding energy (see
Table II of Ref. 71), leads to a four-body state just above
threshold, that cannot get bound by a reliable modification in
the two-body subsystems. As clearly explained in Ref. 14,
the window of Borromean binding is more an more reduced
for potentials with harder inner cores.
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5. Summary

This manuscript intends to summarize our recent work on
few-body systems made ofN ’s, Λ’s and Ξ’s based on
the most recent updates of the ESC08c Nijmegen potential
in the different strangeness sectors, accounting for the re-
cent experimental information. We have solved the three-
and four-body bound state problems by means of Faddeev
equations and a generalized Gaussian variational method,
respectively. The hypertriton,npΛ (I)JP =(1/2)1/2+, is
bound by 144 keV, and the recently discussednnΛ
(I)JP =(1/2)1/2+ system is unbound. We have found that
theΞNN system presents bound states with quantum num-
bers(I)JP =(3/2)1/2+ and(1/2)3/2+, the last one being
a deeply bound state lying 15 MeV below theΞd thresh-
old. The ΞΞN system presents a bound state with quan-
tum numbers(I)JP =(3/2)1/2+, in spite of having used the
most recent update of the ESC08c Nijmegen potential that
does not predictΞΞ bound states. In the case of the three-

body systems we note that there appear bound states in all
systems made ofN ’s and Ξ’s with maximal isospin. The
same conclusion has been obtained in the four-body system,
concluding aΞΞNN bound state with quantum numbers
(I)JP = (2)0+, lying 7.4 MeV below theΞΞNN thresh-
old with a root mean square radius of 1.18 fm. We have also
studied the(I)JP = (1)0+ ΛΛNN state, it does not present
a bound state. Thus, the4ΛΛn four-body system does not seem
to be Borromean.
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i. Note that the pronounced cusp-like structure seen in manyΛN
related observables near theΣN threshold could be very well a
signature of a dibaryon [25].

ii. Being theN andΞ I = 1/2 particles, an analogous table serves
for the symmetry properties of the wave function in isospin
space. In the case of theΛ’s the isospin wave function is sym-
metric.

iii. There are also models for the strangeness−2 baryon-baryon
interaction based on EFT calculations [55] showingI = 1 ΞN
attraction, although one cannot conclude the strength of the in-
teraction due to the huge effective ranges reported.

iv. Although by fitting theΛN phase shifts, the coupling to the
ΣN system has been included in an effective manner, it would
also be interesting to unfold the effectiveΛN interaction, sep-
arating the contribution fromΛN ↔ ΣN . As it has been dis-
cussed in the literature [9, 10, 27, 56–58] the hypertriton does
not get bound by considering onlyΛNN channels, but it is nec-
essary to include alsoΣNN channels. Similar considerations
hold for theΛΛ ↔ ΞN coupling.
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Rev. C75 (2007) 034002.

Rev. Mex. Fis.63 (2017) 411-422



422 H. GARCILAZO, A. VALCARCE AND J. VIJANDE

28. H Garcilazo, A. Valcarce, and T. Fernández-Caraḿes, Phys.
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