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We review our recent work about the stability of strange few-body systems contdifi;yg\’s, and='s. We make use of local central
Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nucleon-nucleon system and the lates
updates of the hyperon-nucleon and hyperon-hyperon ESCO08c Nijmegen potentials. We solve the three- and four-body bound-state problem
by means of Faddeev equations and a generalized Gaussian variational method, respectively. The hypenrfod,” = (1/2)1/2%,

is bound by 144 keV; the recently discusskdn (1)J = (1/2)1/2F system is unbound, as well as thnn (I)J¥ = (1)0* system,

being just above threshold. Our results indicate thaBtheV, ==N and==N N systems with maximal isospin might be bound.
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1. Introduction When a two-baryon interaction is attractive, if the sys-
tem is merged with nuclear matter and the Pauli principle
Strange nuclear physics is a very topical subject. Theloes not impose severe restrictions, the attraction may be
hyperon-nucleon V) and hyperon-hyperor¥{(Y) interac-  reinforced. Simple examples of the effect of a third or a
tions constitute the input for microscopic calculations of few-fourth baryon in two-baryon systems could be given. The
and many-body systems involving strangeness, such as edeuteron,(7)J” = (0)17, is bound by2.225 MeV, while
otic neutron star matter [1-5] or hypernuclei [6-8]. Therethe triton,(I)J” = (1/2)1/27, is bound by 8.480 MeV, and
are theoretical debates [9-14] on the possible existence oftae o particle, (I)J = (0)0, is bound by 28.295 MeV.
neutral bound state of two neutrons and\éhyperon,3n,  The binding per nucleo/A increases as : 3 : 7. A
suggested by recent data of the HypHI Collaboration [15]similar argument could be employed for strangenessys-
There have been also recent proposals regarding the stabiems. Whereas the existence of dibaryon states is still un-
ity of 4 ,n [14], the existence of hypernuclei [6-8], or der discussioh the hypertritor} H, (I)J" = (0)1/2F, is
the existence of a strangenes8 hypertriton [16,17]. Ob- bound with a separation energy 630 & 50 keV, and the
viously, all these predictions are subject to the uncertainiH, (1)JF = (0)0*, is bound with a separation energy
ties of our knowledge of the baryon-baryon interaction, inof 2.12 + 0.01 (stat) + 0.09 (syst) MeV [26]. This co-
particular in the strangeness2 sector. Experimentally, it operative effect of the attraction in the two-body subsys-
has been recently reported an emulsion event, the so-calledms when merged in few-baryon states was also made ev-
KISO event, providing evidence of a possible deeply bounddent in the prediction of & NN quasibound state in the
state of=~—1*N [18]. Although microscopic calculations (1)J¥ = (1)1/2% channel very near threshold [27, 28].
are impossible in this case and, consequently, their interpreSuch© N N quasibound state has been recently suggested in
tation will be always affected by uncertainties, the ESC08¢He(K~, 7 T) reactions at 600 MeV/c [29].
Nijmegen potential has been recently updated [19—-21] to give
account for the most recent experimental information of the In this paper, we review our recent studies of the three-
strangeness 2 sector, the KISO [18] and the NAGARA [22] body systems:ANN, ZNN, AAN, and ZEN, as well
events. A thorough discussion of the present status of the exas the four-body systent8=NN and AANN. We make
perimental and theoretical progress in hypernuclear physicgse of the most recent updates of the ESC08c Nijmegen
can be found in Refs. 23 and 24. potentials in the strangenessl, —2, —3 and —4 sec-
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tor [19, 20, 30] accounting for the recent KISO [18] and NA- 2.  The three- and four-body bound-state prob-
GARA [22] events in the strangenes? sector. As discussed lems

above, the existence of two-body attractive interactions or

bound states could give rise to other stable few-body sysh this section we outline the solution of the three- and four-
tems when merged with other nucleons or hyperons. For expody bound-state problems. We will restrict ourselves to con-
ample, the overall attractive character of B& interaction  figurations where all particles are ifi—wave states. The
comes suggested by recent preliminary results from latticéhree-body problem has been widely discussed in the liter-
QCD [31] together with other indications of certain emul- ature and we refer the reader to Refs. 47 to 49 for a more de-
sion data [20, 21, 30]. Besides the recent update of ESC08ailed discussion. The Faddeev equations for a system with
Nijmegen model=—hypernuclear calculations [32] and chi- total isospin/ and total spin/ are,

ral quark models [33] found &N attractive interaction be- .

fore the KISO event. Furthermore, the possible existence i ( Zzh““’”“l 24,

of stable strange few-body states comes reinforced by the Tty (pigi) ZHENON T

attractive character of thE= interaction for some partial 374 4333 0

waves [19, 30,34-38]. It is worth to mention that preliminary

studigs ofthEEN system [39] indicate that Igtt?ce QCD cal- X /dcosg tiiis, (i Dl E — 42 /2u3)

culations of multibaryon systems are now within sight. Anal-

ogously, if a second. would be added to the uncertakmn

state, the weakly attractiv&A interaction [22] and the re- ~ . 1 . T“}j](pj ), @
inforcement of theA V potential without paying a price for E—pi/2u; — Q-/QVJ' 7

antisymmetry requirements, may give rise to a stable bound Qheret,.; . stands for the two-body amplitudes with isospin
state [14]. Gt

i; and spiry;. p; is the momentum of the paji (with ij% an
even permutation of23) andg; the momentum of particlé
with respect to the paijk. p; andy; are the corresponding
"Yeduced masses, ahff’;’;’" are spin— |sosp|n coefficients.
Expanding the amphtud&; ivi; (Ti, 55 €) interms of Leg-
endre polynomials, Eq. (1) can be ertten as,

One should bear in mind how delicate is the few-body.
problem in the regime of weak binding, as demonstrated i
Ref. 40 for the| , H system. Besides, there are models for the
Y N interaction, like the hybrid quark—model based analysis
of Ref. 41, the effective field theory approach of Ref. 42, or
even some of the ear_lier_ models_ of the Nijmegen group [34] zaz (25q:) Zp (2;) Z”}IJ ), )
that, in general, predict interactions weakly attractive or re-
pulsive. One does not expect that these models will give rise
to stable three- or four-body states. However, it is worthwhereT};* (¢;) satisfies the one-dimensional integral equa-
to emphasize that current hypernuclei studies [6-8, 32, 40jon,
have been performed by means of interactions derived from
the Nijmegen mo_dels and, thus, the_ present review comple- Tn;tljz a) Z Z dq Anz}]f],mlj]g
ments such previous work for the simplest systems that can v 4
be studied exactly. To advance in the knowledge of the de-
tails of theY NV interaction, high-resolution spectroscopy of x (gi, q;; E) ijf?}jf (g;), (3)
= hypernuclei using?C targets in(K —, K*) reactions has ’
been awaited [43, 44] and it is now planned at J-PARC [45]Wwith
The new hybrid experimenE(07 recently approved at J— o 2
PARC is expected to record of the order Bf* =~ stop- ALy (g5, q;3 E) = b7 Z o (E—q; /2%)
ping events [46], one order of magnitude larger than the pre-
vious E373 experiment, and will hopefully clarify the phe- 1
nomenology of some of the systems studied in the present o /dcose Py (27) P (z) @)

2 2 .
work. E —p3/2u; — q; /2v;

JFL Mijg; 0

The review is organized as follows. In Sec. 2 we describe  The four-body problem has been addressed by means of
the technical details to solve the three-body bound state Fadke variational method, specially suited for studying low-
deev equations as well as the generalized Gaussian varibing states. The nonrelativistic hamiltonian is be given by,
tional method used to look for bound states of the four-body
problem. In Sec. 3 we construct the two-body amplitudes H— Z (mz ) Z V(7 (5)

i<j=1

needed for the solution of the bound state three- and four-
body problems. The results are presented and discussed in
Sec. 4. Finally, in Sec. 5 we summarize our main concluwhere the potential’(7;;) corresponds to an arbitrary two-
sions. body interaction.
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The variational wave function must include all possible
spin—isospin channels contributing to a given configurationTasLE I. Spin basis vectors for all possible total spin stai§%.
For each channal the wave function will be the tensor prod- The 'Symmetry’ column stands for the symmetry properties of the
uct of a spin (Ss, )), isospin (I,,)), and radial (R,,)) com-  pair of identical particles.

ponent, 5 ; R 6 S Vector Symmetry
65} = 185) ©110) @ 1Rea) , (O 00)s AA
wheres = {s1, s2,s3}. Once the spin and isospin parts are 0 111) ss

integrated out, the coefficients of the radial wave function are

)
obtained by solving the system of linear equations, 01)s AS
1 |10)s SA
ZZﬁiS [<RZQ|H‘R;3> |11)s SS
s i 2 11)s SS

—~E(R’,|R.,)6,] =0 Vi, (7)
4 : : . : :

The most general radial wave function with total orbital

where the eigenvalues are obtained by a minimization proceangular momentuni, = 0 may depend on the six scalar

dure. guantities that can be constructed with the Jacobi coordinates
For the description of the four-body wave function we of the system, they are??, 472, 22, 7 - ¢, Z - Z, andy/ - 7. We
consider the Jacobi coordinates: define the variational spatial wave function as a linear com-

bination ofgeneralized Gaussians

—

Fyy = § =175 — 4, Zgb Rl (%,7,7) = ZB” R., (10
1 1
FNN-yy =Z= 5 (M1 +72) — 5 (F3+7 8 _ _ _
M 2 (Fi+72) 2 o+ 7a), ©) where n is the number of Gaussians used for each spin-
_ Sy myT isospin componentRi3 depends on six variational param-
Rom =R = S m; eters:a’, b, ¢, d, ei, andfi, one for each scalar quantity.

Therefore, the four-body system will depend®x n x n,
The total wave function should have well-defined permuta'\/ariationa| parameterS, Whe’fa is the number of different
tion properties under the exchange of identical particles. Thghannels allowed by the Pauli principle. Eq. (10) should have

spin part can be written as, well-defined permutation symmetry under the exchange of
both N’s andY’’s,
[(5152) 5., (5354)554] g = [S12934) 5 9)
Piy(¥ — —F)R., = P,R., (11)

where the spin of the twd/’s (Y's) is coupled taS12 (S34).
Two identical spint /2 fermions in a5 = 0 state are antisym- Py (g — —Q’)Ri =P, R;g,
metric (A) under permutations while those coupledte= 1

are symmetri¢S). We summarize in Table | the correspond- where P, and P, are—1 for antisymmetric stateg,4), and
ing vectors for each total spin together with their symmetry+1 for symmetric ones(,S). Thus, one can build the follow-

ropertie§ ing radial combinations,P, P,) = (SS), (SA), (AS), and
prop g y
| (AA):
SS) = Ry = Exp (—a'@? —big* — 22 —d'Z-ij— el 7 — flg- %
1 s y s s s
+Exp(—azx2—b’§'2—cl2 +diz g —eld- 7+ fly 2’)
+Exp (—ald? —bly? — 2% +dii - §+eld - 7 — fly - 7) (12)
+Exp (—al@® = big® — L 27— diT - g+ eld -+ fly - 2)
(SA) = R, = BExp (—al@® —bly* — .2 —dii - §— i@ - Z— flj- 2)
—Exp(—aaz —big? — i dd el 24 fly -Z)
+Exp (—ald? —big? — 7% + diT - g+ eld - Z— fl - 2) (13)
— Exp (—aéa‘:’2—bigj’z—ciZQ—diqu—i—eif-Z—l—f;" Z’) ,

Rev. Mex. Fis63(2017) 411-422



414 H. GARCILAZO, A. VALCARCE AND J. VIJANDE

\N}

(AS):>R§,zExp(—a"fQ—bi,ﬂ2 CZ? —diF g —eld-Z— fly

+Exp (—al® — 0,77 — .77 + diF - elT 2+ f17 - 7)
*EXP( az 142 5252+dif‘g+€if-57f§_’~2) (14)
—Exp (—ai@® —0l§? — 2P —diT o+ AT+ f12)

(AA) = R} = Exp (— alZ? byt —Z? —diEg—elT- 7 — fliy 7)
,Exp( ax 015 +dzf~gfeif~2’+fi Z)
— Exp (—al2” — E AT elT - E - [i - 7) (15)
+ Exp (—al® —b1”2—c§2‘2—dif.g+egf.g+ﬁ 7).

The last equations can be expressed in a compact manner
by defining the following function, I'I'o evaluate radial matrix elements we use the notation intro-
duced in Eq. (19):

g(s1,52,83) = Exp(—a —blf? — 22

i G- salT T ssfl7-2), (16)  (R|f(ay, )| RS )= / (d@s, - GO f(x,y,2)(ds, - GL)aV

and the vectors v y 21)
=dg, - FY-as,, 21
g(+,+,+) ! ’
Gi — 9(—=,+,-) , (17) where~ and g stand for the symmetry of the radial wave
’ 9(=—+) function andF'™ is a matrix whose elemert, b) is defined
9(+,— ) through,
and g oo
= [@u@nswyav, @
O_ZSS (+7 +,+ 7+) v
dsa=(t=+-) being(G'), the component of the vectoiGi:.. From Eq. (16)
das = (+,+,— ) (18)  one obtains,
Gaa=(+ - ’+)’ 9(s1,52,83)9(sh, 5, 85) = Exp( — a;@® — b §° — ¢;;27
which allows to write Egs. (13)—(15) as, — 5T —eyd - Z— fii- 7), (23)
(85) = R} = dss - G, where we have shortened the previous notation according to
(SA) = R =dgy - 61 ai — G4, Q55 = Q4 + a; anddij = (Sldi + S/ldj). Therefore,
2 j all radial matrix elements will contain integrals of the form,
(AS) = R3 = das - G (19)
(AA) = Ry =dan- Gl I= /EXP( = ay@? = by§? — ;2 = 5T
\4
The radial wave function includes all possible internal rela- ey Z— iy 2) f(@,y, 2)dFdgaz, (24)

tive orbital angular momenta coupled io= 0. It has also
well-defined symm(?try propezmes on theoordinate. BeiNg  \here the functiong'(z, v, z) are the potentials. Being all
Puo)sa)(F = —2)R;, = P:R,, one obtains, of them radial functions (not depending on angular variables)

i i one can solve the previous integral by noting:
Pazey i = +1 P grat by oing

Puoysay Ry = — Ry /Exp[ _ Z Ay - j’j]f(| Zakfk|)df1-..dfn
P4y Ry = — Ry (20) ij=1
, ) 3 3
Plgysay Ry = +Rj . a2 Q) °
= — L F(Q,: 2
detA m T ( l]af)a (5)
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where 3. Two-body amplitudes
L _ a-A1l.q We have constructed the two-body amplitudes for all sub-
Qi systems entering the three- and four-body problems studied
s by solving the Lippmann—Schwinger equation of eéch)
F(A, f) :/6 A f (w)u du channel,
det A >0 (26) B N )
1 t7(p,p'se) = VY (p.p') + / p"dp" V¥ (p,p")
o >0. 1 0
One can extract some useful relations for the radial matrix - — 0?2 t9(p",p'se), (29)
elements using simple symmetry properties. Let us rewrite
Eq. (21) where
i J\ _ i J iy 2 7
<R”|f(x’y7z)|Rﬂ> B <RPwaPz|f(x’y’Z)|RP4P4P4> VY (p,p' */TQC“” Jo(pr)VY (r)jo(p'r),  (30)
™
. . 0
~ [ [ [ Bourpto By gy iz @)

and the two-body potentials consist of an attractive and a re-
pulsive Yukawa termi.e.,
If f(x,y,x) depends only in one coordinate, for examgle

T Yy z

. . . . —HAT —HUBT
the integrals over the other coordinates will be zero if one of Vi(r) = iy + B¢ ) (31)
them has different symmetry properti¢3, # P, or P, # P, r
in our example. Therefore The parameters of th& N, =N, AA and== channels were
obtained by fitting the low-energy data and the phase shifts
<R1 |f(z)| R}y > o 0 of each channel as given by the most recent update of the
strangeness-1 [19], —2 [20] and —3 and —4 [30] ESC08c
<R1 |f(y)| R > o 6. Nijmegen potentials. In the case of theN interaction we
use the Malfliet-Tjon models [53] with the parameters given
<RZ |f ()| R’ > X 0y (28)  in Ref. 54. The low-energy data and the parameters of these
models are given in Table 1. It is worth to note that the scat-
<R§\Constant|Rg> X 0y - tering length and effective range of the most recent update of

the AA interaction derived from chiral effective field theories
The radial wave function described in this section is adequatare very much like those of the ESC08c Nijmegen potential
to describe not only bound states, but also it is flexible enouglisee Table Il of Ref. 42) unlike the earlier version used in
to describe states of the continuum within a reasonable acciref. 14 (see Table IV of Ref. 55) reporting remarkably small
racy [50-52]. effective ranges.

TABLE Il. Low-energy data and parameters of the local central Yukawa-type potentials given by Eq. (31)Na¥tpetential [54], and the
most recent updates of the ESCO08c Nijmegen interactions fok #1¢19], =N [20], == [30], andAA [20] systems.

(%, 9) a(fm) ro(fm) A(MeV fm) pa(fm™1) B(MeV fm) pp(fm™1)
NN (1,0) —923.56 2.88 513.968 1.55 1438.72 3.11
AN (1/2,0) —2.62 3.17 416 1.77 1098 3.33
1/2,1) —1.72 3.50 339 1.87 968 3.73
(0,0) - — 120 1.30 510 2.30
. (0,1) —5.357 1.434 377 2.68 980 6.61
(1,0) 0.579 —2.521 290 3.05 155 1.60
(1,1) 4911 0.527 568 4.56 425 6.73
o (0,1) 0.53 1.63 210 1.60 560 2.05
- (1,0) —7.25 2.00 155 1.75 490 5.60
AA (0,0) —0.853 5.126 121 1.74 926 6.04

2This channel is discussed on Sec. Ill.
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100 150 T
< SI(IZO) ]SU(IZO)
75 | 100
1S,(I=1/2) .
> 501 T 501
o =
2 N
=, —~ 0
o A | o)
= i 50
Z r =|
2 0 >
-100 A
=254
-150 A
'50 T T T ! T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
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150 \ 75
\
\
\
100 - \ 38, (1=0) 50 -
\\ ; ISO(IZO)
% 504 A S 254
2 \\\ S
= E
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> >
=50 1S,(I=1) =25
-100 \ T \ -50 T T T
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FIGURE 1. (a) Van (r) potential as given by Eq. (31) with the parameters of Table Il. (b) Same as (a) foethg) potential. (c) Same as
(a) for thé/z=(r) potential. (d) Same as (a) for thé A (r) potential.

TABLE Ill. Two-body NN, YN andY'Y isospin-spin(z, j) channels that contribute to a given three- or four-body state with total isospin
I and total spinJ. The last column indicates the corresponding threshold for each state, that would come gﬂéﬁlbwi — E, where

M, are the masses of the baryons of each charhestands for the binding energy of the deuteron @&ador the binding energy of th®*
=N state.

(1,7) AN EN EZ(NN) AA E

(1/2,1/2) - (0,0),(0,1),(1,0),(1,1) (0,1),(1,0) - B

ENN (1/2,3/2) - (0,1),(1,1) 0,1) - B
(3/2,1/2) - (1,0),(1,1) (1,0) - B,

(3/2,3/2) - (1,1) - - B,

EEN (1/2,1/2) - (0,0),(0,1),(1,0),(1,2) (0,1),(1,0) - B;
(1/2,3/2) - (0,1),(1,2) 0,1) - B,

(3/2,1/2) - (1,0),(1,1) (1,0) - B,

(3/2,3/2) — (1,1) - - By

ZENN (2,0) —~ (1,0),(1,1) (1,0) — 2B,
AANN (1,0) (1/2,0),(1/2,1) - (1,0) (0,0) 0

Rev. Mex. Fis63(2017) 411-422
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The=N 1S, (I = 0) potential was fitted to thE N phase 40
shifts given in Fig. 14 of Ref. 20 without taking into account NA'S,
the inelasticity,.e., assuming = 0 (this two-body channel
does not contribute to the three- and four-body bound states 30 4

found in this work). Regarding the two-body interactions
containing a singlé\, they are constrained by a simultaneous
fit to the combinedVN andY N scattering data, supplied
with constraints on th& N andY'Y interaction originating
from the G-matrix information on hypernuclei [19].

The potentials obtained are shown in Fig. 1. In Fig. 1(a)
we show thé/, i () potential that it is tightly constrained by
the existing experimental data. The interaction is attractive
at intermediate range and strongly repulsive at short range,
but without having bound states. In Fig. 1(b) we show the

=~ (r) potential, where one notes the attractive character
of the3S,(I = 1) =N partial wave, giving rise to thé&*
bound state [18] with a binding energy of 1.6 MeV. We also ) Prs(MeVie)
confirm how all theJ = 1 andI = 1 EN interactions are 40
attractivé® [30]. Regarding the== interaction, Fig. 1(c), NASS,
we observe the attractive character of t&(I = 1) po-
tential, that although having bound states in earlier versions 30 4
of the ESCO08c Nijmegen potential [34], in the most recent
update of the strangeness! sector it does not present a
bound state [30]. The existence of bound states indRe
system has been predicted by different calculations in the lit-
erature [35-37]. It can be definitively stated that all models
agree on the fairly important attractive character of this chan-
nel, either with or without a bound state [38]. Finally, in
Fig. 1(d) we show th&/, (r) potential, mainly determined
by the NN andY N data, and SU(3) symmetry [20, 21]. It
gives account of the pivotal results of strangene®ghysics,
the NAGARA [22] and the KISO [18] events. Although other j
double/ hypernuclei events, like the DEMACHIYANAGI 100 200 300 400 500 600
and HIDA events [43], are not explicitly taken into account,  (b) Pr(MeV/c)
the G-matrix nuclear matter study &f~ capture both in2C 20
and!*N (see section VII of Ref. 20), concludes that &’ AA'S,
attraction in the ESC08c potential is consistent with e
nucleus binding energies given by the emulsion data of the 15 -
twin A-hypernuclei.

20 A

Phase Shift (deg)

10

0 I T I T T
100 200 300 400 500 600

204/

Phase Shift (deg)

10 A

—_
=)
|

4. Results and discussion

Let us first of all show the reliability of the input potentials.
We compare in Fig. 2 tha N and AA phase shifts reported

by the ESC08c Nijmegen potential and those obtained by our
fits with the two-body potentials of Eq. (31) and the parame-
ters given in Table Il. As can be seen the agreement is good.
As stated above, thEN 1S, (I = 0) potential was fitted e ‘ ‘ : '

to the=N phase shifts given in Fig. 14 of Ref. 20. Once we 30 80 130 180 230 280
have described the phase shifts, g andA A potentials in- (c) PLaoMeV/c)

clude in an effective manner the coupling to other tWQ'bOdyHGURE 2. (@) AN 'S, phase shifts. The solid line stands for the
channels as it may be theN or ZN two-body systemtS.  egits of the ESCO8c Nijmegen potential and the dashed line for
We have also tested the two-body interactions in the threeme resuits of the two-body potential of Eq. (31) with the parame-
body problem of systems made &fs andA’s. The hyper-  ters given in Table II. (b) Same as (a) for théV S, phase shifts.
triton is bound by 144 keV, and thenn system is unbound. (c) Same as (a) for th&A * S, phase shifts.

Phase Shift (deg)

n
|
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The reasonable description of the known two- and threelow the corresponding threshoRin x +mz — By, whereB,
body problems gives confidence to address the study of othés the binding energy of th®* =N state. However, the most

three- and four-body systems.

We show in Table Il theinteresting result of th& N N system is shown in Fig. 3(a),

channels of the different two-body subsystems contributinghe very large binding energy of ti{é¢ /2)3* /2 state, which
to each(7, J) three- and four-body state that we will study. would make it easy to identify experimentally as a sharp reso-

For theZEN N system we only consider the = 2 chan-

nance lying somé&7.2 MeV below theZN N threshold. The

nels, because the = 0 and1 states would decay strongly AA —Z=N (i, 5) = (0, 0) transition channel, which is respon-
to AANN states. The three- and four-body problems aresible for the decale NN — AAN, does not contribute to
studied by means of the ESC08c Nijmegen interactions dethe (I)J” = (1/2)3*/2 state in a pureS—wave configu-
scribed in Sec. 3 and given in Table Il. The binding energiesation [60]. One would need at least the spectator nucleon
are measured with respect to the lowest threshold, indicatetd be in aD—wave or that theAA — ZN transition chan-

in Table Il for each particular state.

4.1. Three-body systems

We show in Fig. 3 the Fredholm determinant of &IN NV
channels [59, 60]. As we can see in Fig. 3(b), a bound state i /2, 3/2), only the(i,j) = (1,1) EN channel contributes

found for the(I)J* = (3/2)17 /2 EN N state, 1.3 MeV be-

o
oo
L

e
)

Fredholm determinant
=
o0
1

-1.6

=NN I=1/2

-12.5

E (MeV)

0.8

0.0

-0.8

Fredholm determinant

-1.6 4

ENN =372

(b)

FIGURE 3.

125 -7.5
E (MeV)

(a) Fredholm determinant for thé

1/2 and

nel be in one of the negative parify—wave channels, with
the nucleon spectator also infa—wave. Thus, due to the
angular momentum barriers the resulting decay width of the
(1/2)3%/2 state is expected to be very small.

For the ZNN three-baryon system withl,J) =

(see Table IIl), and the corresponding Faddeev equations with
two identical fermions can be written as [27],

T=—tN=GT. (32)
Thus, due to the negative sign in the r.h.s. HEW inter-
action is effectively repulsive and, therefore, no bound state
is possible in spite of the attraction of th&V subsystem.
The minus sign in Eq. (32) is a consequence of the iden-
tity of the two nucleons since the first term of the r.h.s. of
Eq. (32) proceeds througB exchange and it corresponds
to a diagram where the initial and final states differ only in
that the two identical fermions have been interchanged which
brings the minus sign. This effect has been pointed out be-
fore [61]. This is the reason why the Fredholm determinant
for the (I,J) = (3/2,3/2) ENN channel is not shown in
Fig. 3(b).

Finally, we show in Fig. 4 the Fredholm determinant
of all EEN channels. The Fredholm determinant for the
(I)J¥ = (3/2)3/2* channel is not shown in Fig. 4(b) for
the same reason explained above for#MeN system, it is
strongly repulsive. In thE=N system there appears a bound
state with quantum numbe($)J? = (3/2)1%/2, 2.9 MeV
below the lowest threshol®mz + my — Ba, where By
stands for the binding energy of tfh& =N subsystem. Since
thisZEN state has isospiBy2 it can not decay int&AA due
to isospin conservation so that it would be stable. This stable
state appears in spite of the fact that the last update of the
ESCO08c NijmegerE= 1Sy(I = 1) potential has not bound
states, as it is however predicted by several models in the lit-
erature. If bound states would exist for tB& system the
three-body state would become deeply bound as it happens
for theZN N system. Thd = 1/2 channels are also attrac-
tive but they are not bound.

Let us finally mention that our results for three-body sys-
tems containing &N subsystem has been recently repro-

duced by means of the configuration-space Faddeev equa-
tions [62].

J =3/21 = 1/2 ENN channels. (b) Fredholm determinant
fortheJ =1/2 1 =3/2ENN channel.
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1.2 20

T ZEENN (DIF=(2)0~

0.0

B (MeV)
I~
()

Fredholm determinant

EEN I=1/2
0.0 T | |
-17.5 -12.5 -1.5 -

(a) E MeV) Number of Gaussians

=
<
=

4 6 8 10 12 14

_l\.)
hn
(o]

0.50 FIGURE 5. Binding energy of thé¢)J* = (2)0T ZEN N state as
a function of the number of Gaussians in the variational calculation.
I=1/2
0.25 1 The binding energy of th&=N N state has been calcu-
lated by means of the variational method with generalized
Gaussians described in Sec. 2. The method has been used
0.00 in the four-body sector to study the possible existence of
tetraquarks [64—66] and tested against the hyperspherical har-
monic formalism with comparable results [51, 52]. We show
in Fig. 5 the binding energy of thd)J* = (2)0* ZENN
-0.25 state as a function of the number of Gaussians in the vari-
ational calculation. As we can see the result is almost sta-
ZIN =312 ble considering 12 Gaussians, although we have pushed fur-
-0.50 | ‘—‘ ""I | ther our calculation with a negligible gain of binding in the
- _ i _ ; second decimal digit. The lowest threshold for this state is
15 L3 13 23 2B, = 3.2 MeV, whereB; is the binding energy of th®*

(b) E (MeV) EN state (see Table Ill). Thus, the state lies 7.4 MeV below
FIGURE 4. (a) Fredholm determinant for thd = 1/2 and  (N€ESNN mass, with a separation energy of 4.2 MeV with
J = 3/2 1 = 1/2 Z=N channels. (b) Fredholm determinant respectto an asymptotic state made of Wo=N dibaryons.

Fredholm determinant

fortheJ = 1/2 I = 3/2 ZEN channel. One can also study the behavior of the root mean square
radius (RMS) of the four-body system, defined in the usual
4.2. Four-body systems way,
. . R 1/2
In the previous section we have seen that all three-body sys- 2?21 m; <(Fi — RCM)2>
tems made ofV's and=’s in the maximal isospin channel, RMS = T
i.e., systems consisting only of neutrons and negafigeor i1 M
protons and neutrat’s, are bound. As mentioned above, )
the uniqueness of these systems is a consequence of the two- _1 (riw) (r2s) mz/my
body interactions betweeN N, =N and=Z pairs being all 2\ 1+mz/my =1+ mz/my

in the isospin 1 channel. Thus, the strong de€ay — AA is 1/2

forbidden. Therefore, such states, if bound, would be stable 9 ms/my

under the strong interaction. This is why we now proceed to +(rvn-z=) (1+ m:/mN)2> : (33)
study four-body systems madedfs and='s in the maximal N

isospin channell = 2. The most favorable configuration to The results are shown in Fig. 6, where besides the RMS
minimize the effect of the Pauli principle is tBE=N N sys-  radius we have also calculated the root mean square radii
tem, that due to identity of twdV's and two='s can only  of the different Jacobi coordinates. As seen in Table lll,
exist withJ = 0 [63]. only the!Sy(I = 1) NN and=Z channels contribute to the
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3.0
EENN (DJP=(2)0" 5 X
<r\n\_2>"‘5
B
20 N <r—_2>1,«’1 ~
_— M % -10 |
g - =
= TN m
~ e SR
1.0 4 RMS -20
}
nnAA (HJP=(1)0*
-30 I I I
0.0 | | T T I T 1.0 1.1 1.2 13 1.4
2 4 6 8 10 12 14 Our

Number of Gaussians
FIGURE 6. Root mean square radii of thfé) J” = (2)0t ZENN FIGURE 7. Binding energy of thé/)J” = (1)0" nnAA state as
state as a function of the number of Gaussians in the variational function of the multiplicative factoy 1, in the attractive part of
calculation. See text for details. VA (r) interaction forgn v = gaa = 1.

(1)J" = (2)0* ZEENN state. As discussed in Sec. 3, al- this modification would produce an almostA bound
though they are attractive, thé (I = 1) NN and==chan-  gate in free space, in particular it would give rise to
nels do not present a bound state, giving the largest mtern@IlAA — —29.15 fm andry®2 = 1.90 fm. The four-body
radii. In the= N subsystem one finds contributions from the syggcem would also becomg bound taking a fadt@rin the
1So(I = 1) and®Sy (I = 1) channels, the last one presenting x v interaction. However, such modification would make
the D* bound state, which is the responsible of the smallest,q 1S, NN potential as strong as thes; [53] and thus
radius in the= — N relative coordinate. The RMS gets fully e singlets—wave would develop a dineutron bound state,
stabilized with 14 Gaussians with a value of 1.18 fm. a{VSN — 6.07 fm and TO{VSN — 1.96 fm. The situation is
We have finally evaluated the b'”dI'D”g energy of theg|ightly different when dealing with th& NV interaction. We
AANN system with quantum numbe(g).J~ = (1)07 [67].  have used a common factgr » for attractive part of the two
The system is unbound appearing just above threshold angy; partial waves! S, and®S;. We show in Fig. 7 the bind-
thus it does not seem to be Borromean, a four-body boung~|g energy of thé])J” = (1)0+ AANN state as a function
state without two- or three-body stable subsystems. An ungs ine multiplicative factogx, for gnny = gaa = 1. As
bound result was also reported in Ref. 68, although in thig,ne can see the four-body system develops a bound state for
case the authors made use of repulsive gaussian-type poteﬁ\—m = 1.1, giving rise to theAN low-energy parameters:

tials for any of the two-body subsystems (see the figure ORAN = —5.60 fm, ro?Y = 2.88 fm, af = —2.91 fm,

pag. 475) what does not allow for the existence of any bo“”%ndrogg = 2.99 fm, far from the values constrained by the
1

state. existing experimental data.

We have studied the dependence of the binding on the o
strength of the attractive part of the different two-body inter- ~ Réference 14 tackled the same problem by fitting low-

actions entering the four-body problem. For this purpose wé&nergy parameters of older versions of the Nijmegen-RIKEN
have used the following interactions, potential [30, 69] or chiral effective field theory [55, 70],

by means of a single Yukawa attractive term or a Morse
(34) Pparametrization. The method used to solve the four-body

problem is similar to the one we have used in our calculation,
with the same parameters given in Table Il. The systenthus the results might be directly comparable. Our improved
hardly gets bound for a reasonable increase of the strength description of the two- and three-body subsystems and the
the theAA, gaa, interaction. Although one cannot exclude introduction of the repulsive barrier for tHe, NN partial
that the genuiné\A interaction in dilute states as the one wave, relevant for the study of the triton binding energy (see
studied here could be slightly stronger that the one reported@able Il of Ref. 71), leads to a four-body state just above
in Ref. 20, however, one needs, > 1.8 to get a bound threshold, that cannot get bound by a reliable modification in
state, what would destroy the agreement with the ESC08c Nithe two-body subsystems. As clearly explained in Ref. 14,
jmegenA A phase shifts. Note also that this is a very sensitivethe window of Borromean binding is more an more reduced
parameter for the study of doublé-hypernuclei [40] and for potentials with harder inner cores.

e—HaAr e MBT

+ B

VBIB2 (T) = —Y9B1B; A
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5. Summary body systems we note that there appear bound states in all

systems made oN’'s and ='s with maximal isospin. The
This manuscript intends to summarize our recent work ors@me conclusion has been obtained in the four-body system,
few-body systems made ai’s, A’s and ='s based on concluding a==N N bound state with quantum numbers
the most recent updates of the ESCO8c Nijmegen potentidl/)/~ = (2)0*, lying 7.4 MeV below theSENN thresh-
in the different strangeness sectors, accounting for the redld with aroot mean square radius of 1.18 fm. We have also
cent experimental information. We have solved the threeStudied thg7)J” = (1)0* AANN state, it does not present
and four-body bound state problems by means of Faddee¥bound state. Thus, thé four-body system does not seem
equations and a generalized Gaussian variational methotP be Borromean.
respectively. The hypertritonpgpA (1)JF=(1/2)1/27, is
bound by 144 keV, and the recently discussedA
(INJP=(1/2)1/2* system is unbound. We have found that
the ZEN N system presents bound states with quantum numThis work has been partially funded by COFAA-IPN
bers(I)JF=(3/2)1/2* and(1/2)3/2%, the last one being (México), by Ministerio de Econofa, Industria y Compet-
a deeply bound state lying 15 MeV below th& thresh- itividad and EU FEDER under Contracts No. FPA2016-
old. The=ZZN system presents a bound state with quan-77177 and FPA2015-69714-REDT, by Junta de Castilla y
tum numbers)J”=(3/2)1/2%, in spite of having used the Ledn under Contract No. SA041U16, by Generalitat Va-
most recent update of the ESC08c Nijmegen potential thdenciana Prometeoll/2014/066, and by USAL-FAPESP grant
does not predicE= bound states. In the case of the three-2015/50326-5.
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