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Within the context of Finite-Time Thermodynamics (FTT) we study the optimum operating conditions of an endoreversible engine model.
In this model we consider different heat transfer modes from the hot reservoir to the working fluid, while the mode of heat transfer from
the working fluid to the cold reservoir is governed by a Newtonian heat transfer law. In our analysis we use two modes of performance,
the maximum power regimen and the so-called ecological function. We calculate the optimum temperatures of the working fluid and the
optimum efficiency in terms of the relevant system parameters. We show how the efficiency under a maximum ecological function is greater
than the maximum efficiency under maximum power conditions.

Keywords: Finite time-thermodynamics; endoreversible engine; optimization.

Dentro del contexto de la Termodimica de Tiempos Finitos (TTF) se estudian las condiciones de oper@miima de un modelo de
maquina érmica endorreversible. En el modelo se consideran diferentes modos de transferencia de caloré&tetalieate a la sustancia
de trabajo, mientras que la transferencia de éaaig la sustancia de trabajo al alfeadrio es& dominada principalmente por una ley de
enfriamiento tipo Newton. En nuestro estudio consideramos dosieegs de operami, el de naxima potencia y el de axima funcon
ecobgica. Calculamos las temperatutgsimas de la sustancia de trabajd, @mo la eficiencidptima de la raquina érmica en funén

de paametros representativos del modelo. Se muestra que la eficigtaiza bajo un &gimen de operagh ecobgica es siempre mayor
que la correspondiente eficiencia bajo @gimen de operagh de naxima potencia.

Descriptores: Termodiramica de tiempos finitos; aguina endorreversible; optimizaai.

PACS: 44.90.+c

1. Introduction power output) and the entropy generation rate of the power

) o plants (low entropy production) in terms of the maximization
As is well known, the upper bound on the efficiency of a ther-of the following expression:

mal engine operating between two heat reservoirs is the so-

called Carnot efficiency, which is given by E=W —To, ?)
Ty,
ne=1- Ty’ 1) whereWV is the plant’s power outpuf;, is the absolute tem-

perature of the cold reservoir aadis the total entropy pro-
whereT}, andTy are the absolute temperatures of the coldyy,ction of the endoreversible power plant model. In general,

and hot reservoirs, respectively. On the other hand, the et 4ximization of the ecological function given by Eq. (3)
f|c:|epcy of an endorev§r3|ble Carnot engine working unqe'ieads to engine performance with a power output of approx-
maximum power conditions and considering a Newtomaqmmmy 75% of the maximum power output and an entropy

heat transfer law is given by [1] production of approximately 25% of the entropy produced
T under maximum power conditions. Furthermore, the ecolog-
noa=1-— ,/T—L. (2) ical criterion has another important property: the efficiency

H

under maximum ecological conditions is approximately the

The above equation is known in the literature as thesemisum of the efficiencies corresponding to the maximum

Curzon and Ahlborn efficiency and it was also obtained bypower regime, given by Eq. (2), and the Carnot efficiency,
Chambadal and Novikov at the end of the 50’s [2]. In 1991 given by Eq. (1), respectively. Recently Cretral.[4,5] have

within the context of FTT an ecological performance crite-recognized that the former ecological function is an exergy-
rion for heat engines was proposed by Angulo-Brown [3].based ecological function (for the cagg = Ty, Ty being

This ecological criterion combines the power output (highthe environment temperature). The ecological efficiency [3]
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is given by the low reservoir. In Sec. 3, we analyze the case when the
heat transfer from the hot reservoir to the working fluid is
1 Ty (Ty + Ty) given by a heat transfer law of the Dulong-Petit type. Finally,
e~ 5 (nc +mneca) =1- ooz (4 in Sec. 4 we present our conclusions.

Within the context qf endore\{ersible thermal engine.s, theirzl Optimum operation conditions

performance analysis has mainly been done by considering a

heat transfer law of cooling of the Newton type. In addition,2.1. Heat transfer radiation and heat transfer conduc-

the use of the same heat transfer law in both thermal cou- tion on the hot side

plings (see Fig. 1) with hot and cold reservoirs has been ver ) ) ) o _
common [6-9]. However, some authors have considereé-he endoreversible engine model is shown in Fig. 1. In this
other heat transfer laws, for instance, a Stefan-Boltzmanf0del, 7, andT) are the hot and cold sides’ working fluid
law [10-12], or a phenomenological heat transfer lawi€mperatures, respectively. In this part, we cons!der thgt Fhe
that comes from Irreversible Thermodynamics of the formheat transfer from the hot reservoir to the working fluid is
AT-1[13,14] and a Dulong-Petit heat transfer law [15_17]'produced b)_/ radiation and conduction simultaneously (see
although taking again the same heat transfer law in botfrig: 1), thatis,

hot and cold couplings, respectively. In this work, follow- C 4 4

. . ! i ’ ) = Ty —T,)+ Cuc (Ty — T, 5

ing Sahin’s procedure [18], we study the optimum operating Q@ AR ( = “) e (Tu ) ®)
conditions of an endoreversible engine model. We considefhereCy r andC - are the thermal conductances in the hot
several heat transfer laws from the hot reservoir to the workside reservoir. On the other hand, the mode of heat transfer
ing fluid, while the mode of heat transfer from the working from the working fluid to the cold reservoir is a Newtonian
fluid to the cold reservoir is a Newtonian heat transfer law inheat transfer law, that is,

all the cases considered. In our analysis we use two modes of

performance, the maximum power regime and the so-called Qr=Crc(Th —T1), (6)
ecological function. The paper is organized as follows: InwhereCLC is the thermal conductance in the cold side reser-

Sec. 2, we consider that the heat transfer from the hot reser-_. . : :
. : o ~~~voir. According to the first law of thermodynamics, the power
voir to the working fluid is simultaneously produced by radia-

tion and conduction, while the mode of heat transfer from theompUt for this heat engine is,

working fluid to the cold reservoir is a Newtonian heat trans- W =Qu—Qr=nnQn, (7)

fer law. In this section, we also study the limiting cases when

a Newtonian heat transfer law is considered in both the howheren, = 1 —(T,/T5), andi¥ andQ’s are divided by the
and cold reservoirs. In this section, we also consider the cag®/cle’s period. Applying the second law of thermodynamics
when the heat transfer from the hot reservoir is assumed &9 the reversible part of the model in Fig. 1, we obtain

be dominated by radiation, while the conduction heat trans- Qu QL
fer law is assumed to be the main mode of heat transfer to T T, (8)
T By using Egs. (5) and (6) in Eq. (8), a relationship be-
ry tweenT, andT, is obtained as follows,
Ty oofoeeee- B Ty,
= 1-— Cur <T141_T<;1) _CLC<TH7TU.)' (9)
ﬂ Qx Crc Ta CrLc Ta
7 Then, the power output given by Eq. (7) becomes [19]
T
W= [Can (T4-T2) +Cue (Ta-1.)] (1-11) @0
VAN T Substituting Eq. (9) into Eq. (10), the non-dimensional
; ; power outpufV = W/Cr Ty can be written as
E ﬂ Q. E W = [TR (1—94) —|—Tc(1—9)]
TL N I ] 1
: ; 0 — — 1—-6*%) —rc(1—6
: : | Oz (1) —re20))
. . = 0—rr(l—0%) —rc(l—0)
iy AS N S

wheref = Ta/TH, rc = CHC/CLCy rR = CHRT]?;I/CLC
FIGuRe 1. Simplified endoreversible solar-driven heat engine andrr = T /Tx. The optimum temperaturd3, and7}, un-
model. der maximum power conditions can be obtained by taking the
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derivative of Eq. (11) with respect f,, that is,dW /df = 0. is obtained by differentiating (17) with respectp, that is,
After lengthy algebra the resultant equation to be solved forlE'/df = 0, and the resultant equation to be solvedfpris

T, is found to be, found to be
0=4rR0" + 1% (9rc +8)0° — 8% (rp +1¢) 07 0 =4r30™ + 1% (9rc +8)0° — 8% (rr +7c)6”
+2rp (3rg + bre +2) 6° +2rg (3rd + 5rc +2) 6°

—rr[2(4+5rc) (rr +7rc) + 3rr] 0

67’T 4
—7rp |2(4+ 5r 0
7R[ (4 + TC)(TR+TC)+1+7~T}

+4rp (’I"C + TR)2 63 +rc (1 + Tc)2 62

2 93 2 52
72(Tc+7%) (ro +7r)0 + (ro +7r) +drp(re+rR) 0 +rc(1+rc)° 0

— 2r¢ (1 + Tc) (’)”C + TR)9

X [rc (re +rRr) —rr]. (12)
. . 27"T
The solution to Eq. (12) can be found numerically. It should + (re+7R) [rc (re +rr) — Ty ] . (18)
be noted that the physically meaningful rootéah Eq. (12) T
is that which is located betwedhand 1. When the heat Analogously to the maximum power conditions, the so-

transfer by radiaton is not considered in the hot side, that iSytion to Eq. (18) is obtained numerically, and the physically
rr — 0, Sahin [18] showed that the optimum operation con-meaningful root off in Eq. (18) is also located betweén
dition is given by and1. However, whemrr — 0, the optimum operation con-
0 M’ 13) ditions are now given by

I+ro re(L+rr)+/2rr (14 7r7)
this equation indicates that ag (i.e. 77) increased in- B R (1+re)(1+77)
creases, that is, the optimum valu€igffor a fixed value of
Ty. SinceT,/Tr = 6/rr and using Eq. (13), Sahin [18] Therefore, by using Eq. (9) we can obtain that efficiency

(19)

also showed that, for this case approaches the ecological efficiency given by
Eq. (4), thatis
To _ Tot VT (14)
T, rr(l+rc) B e — ] rr (1+rr)
and a0l P 2 ’
T,  retVrr o (15) 2.1.1. Numerical calculations

T, ro(l+7re)’

. . For a numerical calculation, the temperature of a typical low
thus the _eff'c'e”CY for this case approaches the Curzont'emperature reservoir is taken Ag=300K. Then, the effi-
Alborn efficiency given by Eq. (1), that is, ciency under maximum ecological conditions and optimum

nea =1— /. values of the temperaturés and7; can be studied. We com-
pared our obtained results with those obtained by Sahin [18]
To investigate the optimum operation conditions underunder maximum power conditions. In Fig. 2a, we show
the maximum ecological function, we calculate the total enthe variation off with respect tor for three different val-
tropy production. Applying the second law of thermody- ues ofrr andrc = 0.1. We can see as the radiation term
namic to the model of Fig. 1, the total entropy production(rr) increasesf increases and approachgsunder both
o can be expressed as the maximum power and maximum ecological conditions.
This means that the optimal temperatfg gets closer to
o= Qv _Qn (16)  the source temperatui@; as radiation increases. For higher
T Tu values ofrr, the ratio of the optimum temperatufg to the
Using Egs. (3), (11) and (16), the non-dimensional ecologisource temperaturéy is higher in general. In Fig. 2b, we

cal functionE = E/CrcTg can be expressed as, show the effect of the convectigmnc) on the optimum tem-
B perature variatiord for a fixed value ofrg = 0.1 and for
E= [TR (1 - 94) +ro(l - 9)] three different values ofr. We can see hoWreaches a weak
Wy minimum and then increases#®as increases, and higher val-
X |1+rp — . (17)  ues ofrr yields higher values of. In Figs. 3a and 3b, we

0—rp(1-0%)—rc(1-0) show the variation of optimum temperatutEs and 7}, ver-
In the previous equation we used Eqgs. (5) and (6). Analosusrg (withrc = 0.1) andre (with rg = 0.1), respectively.
gously to the maximum power conditions, the optimum tem-As we can see, in Fig. 3a whilez tends tol, the differ-
peraturesl, and T, under maximum ecological conditions ence betweeff, and7}, increases. HoweveTry, approaches
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a constant value asy increases. In Fig. 3b, the optimum
temperature variations with respectito are given for fixed 8
values ofrp = 0.1 andry = 0.1. As we can se€l;, /1L, I
increases whild, /Ty, initially decreases to a minimum and
then increases as; increases and the gap betweEnand

T, also increases. In Fig. 4a, we show the variation of the
efficiencies under maximum power and maximum ecological 4 |
conditions versusy, for three different values aof- and for ’
a fixed value ofrr = 0.1. As we can observe, for all the
interval of values of-r the efficiency under maximum eco- 2
logical conditions is greater than the efficiency under maxi-

6 L

mum power conditions. The diﬁerencg in the efficiencie_s is 0‘_0 0.2 0.4 0.6 0.8 1:0
greater for smaller values and asy increases, the effi- a) N
ciencies reach a maximum and then decrease. In Fig. 4b, the " ———— — — ——— —
effect the convection on the efficiencies is given for a fixed 70 ;
value ofrp = 0.1 and for three different values of;. Anal- i
ogously to figure 4a, in this case for the entire interval of 6 ¢
values ofr¢, the efficiency under maximum ecological con-
ditions is greater than the efficiency under maximum power 5 o
conditions. a4t ,
3 To :
ot _______:r_l- —————————————— B
! 1 "_—_4— I L L 1 ' L 1 L L L 1 L -
3 b) 0.2 0.4 r, 0.6 0.8 1.0
| FIGURE 3. a) Optimal temperatureég, andT, vs.rr for rc=0.1.
//’ T T T MP b) Optimal temperature®, and7, vs. r¢ for rr = 0.1. In both
077 7 7T T fr=0.1 casesr = 0.1.
0 r e P ———— ;=03
0.6/ 7 -~ — =05 . .
c L0 ME 2.2. Heat transfer by radiation on the hot side
o5,/ .. _____ r;=0.1
}tl/ — —— -1;=03 We now consider that the heat transfer from the hot reservoir
04/ =05 - to the working fluid is given only by radiation while the heat
| g g y by
. e ‘ — - transfer from the working fluid to the cold reservoir is a New-
0.0 0-2 04 'k e 08 1.0 tonian heat transfer law (see Fig. 1), which can be expressed
b) ‘ as
O — e Qu=Cu (Th - T}) (20)
08— ——-==— =T I Qr=Cr (T, —1T1), (21)
0 - ///””/4 e respectively, wher€'y; andC, are the thermal conductances
07L . ——"7 e ] for the hot and cold side reservoirs respectively. Substituting
- - /,/—*”’ Egs. (20) and (21) into Eqg. (8), the relationship betw&gn
06/ mm === I ME andT, is now given by
' Tl rr=0.1-— — ;=01 T
N T — 17=03 ——— ;=03 _
o5L 7 _ rl=0.5 — I7=0.5] T 1—Cu (Tﬁf—Té) (22)
00 02 04 _ 06 08 1.0 e\ Ta
C

Then, the non-dimensional power outdit = W/C; Ty

can now be written as

0—rc(1—60%) —rp
9 —Trc (1 — 94)

V_Vzrc(l—94)[ ] (23)

FIGURE 2. a) Numerical root® of Egs. (12) and (18), at max-
imum power and maximum ecological function, respectivesy,
r'r, With e = 0.1. b) Numerical root# of Egs. (12) and (18), at Whered = T, /Ty, r¢ = CyTy/Cr andry = T1/Th.
maximum power and maximum ecological function, respectively, Analogously to the previous subsection, the optimum tem-
vs.rc, with rg = 0.1. In both cases for several valuesrof.
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0.80- - T
T~ ME
e
d e L T e e e e T Smsme
076" 51 ]
. re=0.
N S e MP ———1=05
<~ Iy =09
7/ ~
0.72 -/ Tl TTT T Neca
e 1
j//r T e
U
0.0 0.2 04 i 0.6 0.8 1.0
a) R
— — :
0.80 L™
“~ee_ ME
N —:-:"_"‘_-_——_—..,..
0.76 | \
N rn=0.1
\ R
n \\\ — — }= 0.5
0721 .. MP re=0.9
8 \\\:::;\“\.-‘_"r—-——_—_-_——_
0.68¢ | | |
0.0 0.2 0.4 0.6 0.8 1.0
b) I

FIGURE 4. a) Optimal efficiencyy vs. rg, with r0 = 0.1 for
rc = 0.1, /¢ = 0.5 andr¢c = 0.9, respectively. b) Optimal ef-
ficiencyn vs. r¢, with rr = 0.1, forrg = 0.1, rg = 0.5 and

rr = 0.9, respectively.

In the same way as in the previous section, the solution to
Egs. (24) and (26) is obtained numerically, and the physi-
cally meaningful roots of are also located betwe&rand1.

2.2.1. Numerical calculations

For the numerical calculation, the temperature of a typical
low temperature reservoir is taken’Bs=300K, and we com-
pared our results obtained under maximum ecological con-
ditions with those obtained by Sahin [18] under maximum
power conditions. In this section, our analysis is done in two
cases by fixing one of the parametefsandr in each case
and studying the effect of the other on the efficiencies and
the optimum temperatures. In Fig. 5, the roots of Egs. (24)
and (26) are shown as a function of the parameteby us-

ing three different values ofr. We observe that under max-
imum power conditions ag¢ is increased from 0 teo,
varies between 0.494 and 1 foy = 0.1; between 0.649
and 1 forrr = 0.3 and betwee®.757 and1 for rr = 0.5
respectively. In the case of maximum ecological conditions
we can observe that ag; increases fron) to oo, 6 varies
between 0.576 and 1 fefr = 0.1; between 0.749 and for

rr = 0.3; and between 0.841 andfor »r = 0.5, respec-
tively. In Fig. 6, we show the variation of the efficiencies
versusrq for a fixed value ofr = 0.3. In this figure, the
Carnot (0.7) and Curzon and Ahlborn (0.452) efficiencies are
also included for comparison. As we can see in Fig. 6, for
the entire interval of values of- the efficiency under maxi-

peraturesl, and 7}, under maximum power conditions can mum ecological conditions is bigger than the efficiency under
be also obtained by differentiating Eq. (23) with respect tomaximum power conditions.The optimum temperature vari-
T,, thatis,

— = 420"+ 8rc6® — 8207
+ 465 — (8r¢ + 3rp) 04
+4r20° —rp = 0.

(24)

ations with respect toc are shown in Fig. 7. The optimum
values ofT,, andT, increase asc increases. As we can see
under maximum power conditions, as varies from 0 tox,

T, increases from 649 to 1000K, af{ increases from 300

to 547K, while under maximum ecological conditionsyas
varies from0 to oo, T, increases from 742.4 to 1000K, and
T, increases from 300 to 547K. On the other hand, to study
the effect ofr g on both the efficiencies and the optimum tem-

On the other hand, by using Egs. (16) and (23) in theyeratyre values, the value of is now fixed. In Figs. 8 we

ecological function given by Eqg. (3), we obtain the non di-

mensional ecological functioR = E/CTxas

E=rc(1-06Y

(I+r7)0—rc(1+7r7) (1—6%) —2rp

in this case, the optimum temperatufésandT;, under max-

0—7"0(1—94) ;

imum ecological conditions are also obtained by

ar _
o

2re (L+r7) 0" +dre (1 +77) 68
— g (L4+7r7) 0" +2(1+7rp) 6°

— (4r¢ + 3rp + drorr) 04

+2r& (1+7r7) 0> —rp = 0.

(25)

(26)

show the variation of with respect to-r for different values

of r& under both the maximum power and ecological con-
ditions. As we can see under both the maximum power and
ecological conditions] sharply increases and reaches tas
approaches 1. However, under maximum power conditions at
rr = 0, 6 takes on values of 0.237, 0.738 and 0.976 for the
fixed values ofr equal to 0.1, 1 and 10, respectively, while
under maximum ecological condition$ takes on values of
0.237,0.738 and 0.976 for the fixed valuespfequal to 0.1,

1 and 10, respectively. The variation of the efficiencies with
respect tory is shown in Fig. 9. Analogously to the pre-
vious case, in this situation, for the entire interval of values
of rp the efficiency under maximum ecological conditions is
greater than the efficiency under maximum power conditions.
The differences between the efficiencies is greater for small
values ofrr-. Which is expected for typical heat engines. Fi-
nally, the variation of the optimum temperatures with respect
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1.0

to v is given in Fig. 10. We can observe, under both the T
maximum power and the ecological conditions, a consider- g _ B et bl S
able gap that is to be expected betw@grand T}, for small 2 e 7T T ME
values ofrr. However, this difference decreases to zero as y P re=0.1
ro approaches 1. o0 T — - re=t
06 . 7 —rc=10
' MP
6 'I,' _______ r.=0.1
I 04 "”I - = rC=
¥ —— 1c=10
0.95 - S — e
b 0.2 0.4 0.6 0.8 1.0
rT
0.90 // / J MP FIGURE 8. Numerical rooty) of Eq. (24), maximum power and
-, _____7 rr=0.1 Eq. (26) maximum ecological functions. rr, with rc = 0.1,
,/ /l —_ rT=O.3 rc = 1 andrg = 10.
v ——17=05 10
0.85, ' N
L7 . . A N
L I L\ X r=0.1
1 2 5 10 . 20 50 ARG c
c n AN ——="Tve
i i NN T Nue
FIGURE 5. Numerical roots of Eq.(24), maximum power, and 06+ T]\\ AN
Eq.(26), maximum ecological functions. r¢, with rr = 0.1, t GRS : \\\
rr = 0.3 andrr = 0.5. ()4- :\\\\\
Y
. 02 Sl
0.70 ¢ I TN
, Ne BN
t S
063 ¢ =03 00 02 04 p 06 08 10
0.60 ——= e
-t . Nyp FIGURE 9. Optimal efficienciesss. rr with r¢ = 0.1. Also nc
[ and are plotted.
055~ ———————————————— eadep
0.50 | 3. Optimum operation conditions with heat
0.45 b===mn transfer of the Dulong-Petit type on the hot
. [ ) nCA . L | Slde
1 2 5 10 20 50

It has been recognized in the literature [20] that a more re-
FIGURE 6. Optimal efficiencies (maximum power and maximum alistic description of the heat exchange between the working
substance and its reservoirs would includ&*aerm (Stefan-
An attempt to describe combined
conductive-convective and radiative cooling by a power-law
relationship is given by the so-called Dulong-Petit law of
cooling [20], which is

ecological functionys. r¢, with r = 0.3. Alsonc andnc 4 are

plotted. Bo

1000
TaTy (K) T

=03
800 ©
ME

g -——-MP

600 |

———

=

ltzmann radiation).

aQ _

s (T, —T)", (27)

where d@/dt is the rate of heat loss per unit area from a
body at temperaturd’, « is a thermal conductancd,, is
the temperature of the fluid surrounding the body, anslan
exponent with a value betwednl and1.6 [20]. Some au-

FIGURE 7. Optimal temperaturées, andT,, vs.r¢ with r- = 0.3.

400 F

50

thors have stablished that= 5/4 based on studies made by
Lorentz and Langmuir. As O’Sullivan asserts in his original
1879 paper, Stefan took the results of Dulong and Petit (DP),
along with experiments by Tyndall, and pointed out that the
DP model was in agreement with H&' law [20]. In the
present paper we use the DP law of cooling with= 5/4.
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Now, we consider that the heat transfer from the hot reser-
voir to the working fluid is given by a heat transfer law of 900 ¢
the Dulong-Petit type, while the heat transfer from the cold Ta:Tp (K)
reservoir is a Newtonian heat transfer law in the same way as 200 [
in the previous section (see Fig. 1), which can be expressec
as
Qu = Cn (T — T} 28) %00
Substituting Egs. (6) and (28) into Eq. (8), the relationship 300 [ D T
betweerl, andT, is now given by 0.0 0.2 0.4 I 06 0.8 1.0
T, = ) - (29) FIGURE 10. Optimal temperatures, andTy vs. rr with rc=0.1.
| Cu ((THTQ)4>
CL Ta
1.00F —
Using Egs. (6), (7), (28) and (29), the non-dimensional power /’:///;?,—?‘:i?ff"‘
output = W/C Ty can now be written now as - — =
PR 090 — -T2 = ME
W=re(-gi (PO gy g LT T i " o3
0 —rc(l—0)3 2N — _1-05
e Ve . T
. 080" 7.~
wheref = Ta/TH, ro = OHTfI/OL andry = TL/TH. e L MPr -01
Analogously to the previous section, the optimum tempera- Y I rT;0 3
turesT,, and7}, under maximum power conditions can also ¢70: . - r¥=0:5
be obtained by taking the derivative of Eq. (30) with respect il . , ‘ ‘ ‘
to Ty, that is, 2 5 10 A 20 50 100

) (9 —re(l— 9)5/4>2 —0 (31) FIGURE 11. Numerical roqtsﬁ of Eq_.(31), maximum power and
Eq.(33), maximum ecological functions. r¢, with rr = 0.1,

On the other hand, using Egs. (16) and (30) in the ecolog!” = 0-3 andrr = 0.5.

ical function given by Eq. (3), we obtain the non-dimensional 070 F-

ecological function as Ne
= 5 06510 r=0.3
E=rc(1-0)3 ——-"ue
oeOF .
(40 =rc(+rm (=0 =2rr] = o e
0 —rc(l—0) ’ P ]
in this case, the optimum temperatutigésand7;, under max- 05010 1
imum ecological conditions are also obtained by n ]
0 45 7__CL_____ T T TS ST mEA e m———
2 Y e ——————— 1
0—rc(l—0 5/4) ‘ ‘ ‘ ‘ ‘ ‘ J
5( re(l—9) 1 2 5 10 20 50 100

2
+rr (5 (0 —re(l— 9)5/4) —2(4+ 9)) =0. (33) FIGURE 12.Optimal efficiencies (maximum power and maximum
ecological functionys. r¢, with rr = 0.3.

In the same way as in the previous section, the solution of ) i
Egs. (31) and (33) is found numerically, and the physicallyand the optimum temperatures. In Fig. 11, the roots of

meaningful roots of are also located betweérand1. Egs. (31) and (33) are shown as a function of the parameter
rc by using three different values ofr. We observe that
3.0.2. Numerical calculations under maximum power conditions as is increased frond

to oo, 0 varies betweer).299 and1 for rr = 0.1, 0.525
In a similar way to Sec. 2.2.1, for a numerical calculation, theand 1, respectively, for- = 0.3, and betweet).685 and1
temperature of a typical low temperature reservoir is takerfor rr = 0.5. In the case of maximum ecological conditions
asT;, = 300K. In this section, our analysis is done in two we can observe that ag: increases front) to oo, 6 varies
cases by fixing one of the two parametefsandr¢ in each  betweer.405 and1 for r = 0.1; betweern).658 and1 for
case and studying the effect of the other on the efficienciesr = 0.3; and betweer®).801 and1 for »r = 0.5, respec-
tively. In Fig. 12, we show the variation of the efficiencies
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versusr¢ for a fixed value ofr = 0.3. In this figure, 10

the values of both the Carndi.{) and Curzon and Ahlborn ‘§ r=01
(0.452) efficiencies are also included for comparison. Aswe 087 \\\ Me . ]
can see in Fig. 12, for all the interval of valuesqf the n \\ N ———"e
efficiencies satisfy the relatiopy;p < nca < 78 < 710, 06 \\\\\ """ Mwe
whenre = 0, nyp = 0.423 andng = 0.542. The opti- \I\ ~

mum temperature variations with respecttpare shown in 04/ MNea : \1:\\ 1
Fig. 13. The optimum values d&f, andT, increase asc I \1\\ R

increases. As we can see under maximum power conditions 5| \\1\\ ~ ]
asrc varies from0 to oo, T, increases frond20 to 729K, ‘\ﬁl\\\\
and T, increases fron300 to 410K, while under maximum ‘ L L ‘ e
ecological conditions, ag; varies from0 to oo, T, increases 00 0.2 04 r 0.6 08 10

from 655 to 800K, andT} increases fron300 to 360K . On
the other hand, to study the effectigf on both the efficien-
cies and the optimum temperature values, the valug,aé
now fixed. In Fig. 14 we show the variation &fvith respect
to rr for different values of-. As we can observe for both
the maximum power and ecological conditiorssharply
increases and reachessr, approaches. However, under
maximum power conditions at- = 0, 6 takes on values of
0.237, 0.738 and 0.976 for the fixed values of-< equal to
0.1, 1 and10, respectively, while under maximum ecological
conditions,d takes on values di.237, 0.738 and0.976 for
the fixed values of¢ equal to0.1, 1 and 10, respectively.

1000,
Ta. T, (K) ¢
800 —_
L~ ME
i ———-MP
600 |
[ T e T
400~ "~
1 2 5 10, 2 50 100
C
FIGURE 13. Optimal temperature§;, and Ty, vs. rc with
rr = 0.3.
1.0 T T — === |
‘;g===75=:r::=1=::7;“‘—’ ":5gffﬁ:”’ 1
- - -
0.8 e T ]
o | P ME
///// /// ,// ——— —— =01
08, 7 7 R
7 ,/’ —— I‘c= 10
// ,r'/

Ly MP ]
oar /.~ ro=0.1
r,l,/ —_——Te=1
]I, _— rC=10

0.2¢ l ‘ L L
0.0 0.2 04 . 0.6 0.8 1.0
T

FIGURE 14. a) Numerical root# of Eq. (31), maximum power and
Eqg. (33) b) maximum ecological functiows. rr, with rc = 0.1,
rc = 1 andrge = 10.

FIGURE 15. Optimal efficiencievs.rr with r = 0.1.
1000
Tava (K) -

800

600 |

400 P

0.0

0.8

1.0

FIGURE 16. Optimal temperatureg, andTy vs. rr with ro=0.1.

The variation of the efficiencies with respectrip is shown

in Fig. 15; in this case, for the entire interval of values of
rr the efficiency under maximum ecological conditions is
greater than the efficiency under maximum power conditions
and it also satisfies the relation;p < nca < N < nc.
Finally, the variation of the optimum temperatures with re-
spect tory is given in Fig. 16. We can observe, for both the
maximum power and the ecological conditions, a consider-
able gap that is to be expected betwé&&rand T}, for small
values ofrr. However, this difference decreases to zero as
rr approaches.

4. Conclusions

Within the context of Finite-Time Thermodynamics we ana-
lyzed the optimum operating conditions of an endoreversible
engine model. Practically all of the thermal engine FTT-
models published until now [21-24] have considered the
same heat transfer law at both couplings between the reser-
voirs and the working fluid. In the model presented here, we
considered different heat transfer laws from the hot reservoir
to the working fluid, while the mode of heat transfer from
the working fluid to the cold reservoir is a Newtonian linear
law in all cases. We calculated the optimum temperatures
of the working fluid and the optimum efficiency in terms of
the relevant system parameters by considering two modes of
performance, the maximum power regime and the so-called
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ecological function. We show how the efficiency under max-Acknowledgments

imum ecological function is greater than the maximum ef-

ficiency under maximum power conditions. This result hasThis work was supported in part by COFAA and EDI-IPN-
systematically been observed in all kinds of thermal engind/1€xico.

models operating under ecological conditions. This property
is considered to be concomitant with ecological goals from a
long-term energy conversion point of view.
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