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Within the context of Finite-Time Thermodynamics (FTT) we study the optimum operating conditions of an endoreversible engine model.
In this model we consider different heat transfer modes from the hot reservoir to the working fluid, while the mode of heat transfer from
the working fluid to the cold reservoir is governed by a Newtonian heat transfer law. In our analysis we use two modes of performance,
the maximum power regimen and the so-called ecological function. We calculate the optimum temperatures of the working fluid and the
optimum efficiency in terms of the relevant system parameters. We show how the efficiency under a maximum ecological function is greater
than the maximum efficiency under maximum power conditions.

Keywords: Finite time-thermodynamics; endoreversible engine; optimization.

Dentro del contexto de la Termodinámica de Tiempos Finitos (TTF) se estudian las condiciones de operación óptima de un modelo de
máquina t́ermica endorreversible. En el modelo se consideran diferentes modos de transferencia de calor del almacén caliente a la sustancia
de trabajo, mientras que la transferencia de energı́a de la sustancia de trabajo al almacén fŕıo est́a dominada principalmente por una ley de
enfriamiento tipo Newton. En nuestro estudio consideramos dos regı́menes de operación, el de ḿaxima potencia y el de ḿaxima funcíon
ecoĺogica. Calculamos las temperaturasóptimas de la sustancia de trabajo, ası́ como la eficienciáoptima de la ḿaquina t́ermica en funcíon
de paŕametros representativos del modelo. Se muestra que la eficienciaóptima bajo un ŕegimen de operación ecoĺogica es siempre mayor
que la correspondiente eficiencia bajo un régimen de operación de ḿaxima potencia.

Descriptores: Termodińamica de tiempos finitos; ḿaquina endorreversible; optimización.

PACS: 44.90.+c

1. Introduction

As is well known, the upper bound on the efficiency of a ther-
mal engine operating between two heat reservoirs is the so-
called Carnot efficiency, which is given by

ηC = 1− TL

TH
, (1)

whereTL andTH are the absolute temperatures of the cold
and hot reservoirs, respectively. On the other hand, the ef-
ficiency of an endoreversible Carnot engine working under
maximum power conditions and considering a Newtonian
heat transfer law is given by [1]

ηCA = 1−
√

TL

TH
. (2)

The above equation is known in the literature as the
Curzon and Ahlborn efficiency and it was also obtained by
Chambadal and Novikov at the end of the 50’s [2]. In 1991,
within the context of FTT an ecological performance crite-
rion for heat engines was proposed by Angulo-Brown [3].
This ecological criterion combines the power output (high

power output) and the entropy generation rate of the power
plants (low entropy production) in terms of the maximization
of the following expression:

E = W − TLσ, (3)

whereW is the plant’s power output,TL is the absolute tem-
perature of the cold reservoir andσ is the total entropy pro-
duction of the endoreversible power plant model. In general,
maximization of the ecological function given by Eq. (3)
leads to engine performance with a power output of approx-
imately 75% of the maximum power output and an entropy
production of approximately 25% of the entropy produced
under maximum power conditions. Furthermore, the ecolog-
ical criterion has another important property: the efficiency
under maximum ecological conditions is approximately the
semisum of the efficiencies corresponding to the maximum
power regime, given by Eq. (2), and the Carnot efficiency,
given by Eq. (1), respectively. Recently Chenet al.[4,5] have
recognized that the former ecological function is an exergy-
based ecological function (for the caseTL = T0, T0 being
the environment temperature). The ecological efficiency [3]
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is given by

ηE ≈ 1
2

(ηC + ηCA) = 1−
√

TL (TL + TH)
2T 2

H

. (4)

Within the context of endoreversible thermal engines, their
performance analysis has mainly been done by considering a
heat transfer law of cooling of the Newton type. In addition,
the use of the same heat transfer law in both thermal cou-
plings (see Fig. 1) with hot and cold reservoirs has been very
common [6–9]. However, some authors have considered
other heat transfer laws, for instance, a Stefan-Boltzmann
law [10–12], or a phenomenological heat transfer law
that comes from Irreversible Thermodynamics of the form
∆T−1 [13,14] and a Dulong-Petit heat transfer law [15–17],
although taking again the same heat transfer law in both
hot and cold couplings, respectively. In this work, follow-
ing Sahin’s procedure [18], we study the optimum operating
conditions of an endoreversible engine model. We consider
several heat transfer laws from the hot reservoir to the work-
ing fluid, while the mode of heat transfer from the working
fluid to the cold reservoir is a Newtonian heat transfer law in
all the cases considered. In our analysis we use two modes of
performance, the maximum power regime and the so-called
ecological function. The paper is organized as follows: In
Sec. 2, we consider that the heat transfer from the hot reser-
voir to the working fluid is simultaneously produced by radia-
tion and conduction, while the mode of heat transfer from the
working fluid to the cold reservoir is a Newtonian heat trans-
fer law. In this section, we also study the limiting cases when
a Newtonian heat transfer law is considered in both the hot
and cold reservoirs. In this section, we also consider the case
when the heat transfer from the hot reservoir is assumed to
be dominated by radiation, while the conduction heat trans-
fer law is assumed to be the main mode of heat transfer to

FIGURE 1. Simplified endoreversible solar-driven heat engine
model.

the low reservoir. In Sec. 3, we analyze the case when the
heat transfer from the hot reservoir to the working fluid is
given by a heat transfer law of the Dulong-Petit type. Finally,
in Sec. 4 we present our conclusions.

2. Optimum operation conditions

2.1. Heat transfer radiation and heat transfer conduc-
tion on the hot side

The endoreversible engine model is shown in Fig. 1. In this
model,Ta andTb are the hot and cold sides’ working fluid
temperatures, respectively. In this part, we consider that the
heat transfer from the hot reservoir to the working fluid is
produced by radiation and conduction simultaneously (see
Fig. 1), that is,

QH = CHR

(
T 4

H − T 4
a

)
+ CHC (TH − Ta) (5)

whereCHR andCHC are the thermal conductances in the hot
side reservoir. On the other hand, the mode of heat transfer
from the working fluid to the cold reservoir is a Newtonian
heat transfer law, that is,

QL = CLC (Tb − TL) , (6)

whereCLC is the thermal conductance in the cold side reser-
voir. According to the first law of thermodynamics, the power
output for this heat engine is,

W = QH −QL = ηthQH , (7)

whereηth = 1− (Tb/Ta), andW andQ′s are divided by the
cycle’s period. Applying the second law of thermodynamics
to the reversible part of the model in Fig. 1, we obtain

QH

Ta
=

QL

Tb
. (8)

By using Eqs. (5) and (6) in Eq. (8), a relationship be-
tweenTa andTb is obtained as follows,

Tb =
TL

1− CHR

CLC

(
T 4

H−T 4
a

Ta

)
− CHC

CLC

(
TH−Ta

Ta

) . (9)

Then, the power output given by Eq. (7) becomes [19]

W=
[
CHR

(
T 4

H−T 4
a

)
+CHC (TH−Ta)

] (
1−Tb

Ta

)
(10)

Substituting Eq. (9) into Eq. (10), the non-dimensional
power outputW̄ = W/CLCTH can be written as

W̄ =
[
rR

(
1− θ4

)
+ rC(1− θ)

]

×
[

(θ − rT )− rR

(
1− θ4

)− rC(1− θ)
θ − rR (1− θ4)− rC(1− θ)

]
, (11)

whereθ = Ta/TH , rC = CHC/CLC , rR = CHRT 3
H/CLC

andrT = TL/TH . The optimum temperaturesTa andTb un-
der maximum power conditions can be obtained by taking the
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derivative of Eq. (11) with respect toTa, that is,dW̄/dθ = 0.
After lengthy algebra the resultant equation to be solved for
Ta is found to be,

0 = 4r3
Rθ11 + r2

R (9rC + 8) θ8 − 8r2
R (rR + rC) θ7

+ 2rR

(
3r2

C + 5rC + 2
)
θ5

− rR [2 (4 + 5rC) (rR + rC) + 3rT ] θ4

+ 4rR (rC + rR)2 θ3 + rC (1 + rC)2 θ2

− 2
(
rC + r2

C

)
(rC + rR) θ + (rC + rR)

× [rC (rC + rR)− rT ] . (12)

The solution to Eq. (12) can be found numerically. It should
be noted that the physically meaningful root ofθ in Eq. (12)
is that which is located between0 and 1. When the heat
transfer by radiaton is not considered in the hot side, that is,
rR → 0, Sahin [18] showed that the optimum operation con-
dition is given by

θ → rC +
√

rT

1 + rC
, (13)

this equation indicates that asrT (i.e. TL) increasesθ in-
creases, that is, the optimum value ofTa for a fixed value of
TH . SinceTa/TL = θ/rT and using Eq. (13), Sahin [18]
also showed that,

Ta

TL
=

rC +
√

rT

rT (1 + rC)
(14)

and

Tb

TL
=

rC +
√

rT√
rT (1 + rC)

; (15)

thus the efficiency for this case approaches the Curzon-
Alborn efficiency given by Eq. (1), that is,

ηCA = 1−√rT .

To investigate the optimum operation conditions under
the maximum ecological function, we calculate the total en-
tropy production. Applying the second law of thermody-
namic to the model of Fig. 1, the total entropy production
σ can be expressed as

σ =
QL

TL
− QH

TH
(16)

Using Eqs. (3), (11) and (16), the non-dimensional ecologi-
cal functionĒ = E/CLCTH can be expressed as,

Ē =
[
rR

(
1− θ4

)
+ rC(1− θ)

]

×
[
1 + rT − 2rT

θ − rR (1− θ4)− rC(1− θ)

]
. (17)

In the previous equation we used Eqs. (5) and (6). Analo-
gously to the maximum power conditions, the optimum tem-
peraturesTa andTb under maximum ecological conditions

is obtained by differentiating (17) with respect toTa, that is,
dĒ/dθ = 0, and the resultant equation to be solved forTa is
found to be

0 = 4r3
Rθ11 + r2

R (9rC + 8) θ8 − 8r2
R (rR + rC) θ7

+ 2rR

(
3r2

C + 5rC + 2
)
θ5

− rR

[
2 (4 + 5rC) (rR + rC) +

6rT

1 + rT

]
θ4

+ 4rR (rC + rR)2 θ3 + rC (1 + rC)2 θ2

− 2rC (1 + rC) (rC + rR) θ

+ (rC + rR)
[
rC (rC + rR)− 2rT

1 + rT

]
. (18)

Analogously to the maximum power conditions, the so-
lution to Eq. (18) is obtained numerically, and the physically
meaningful root ofθ in Eq. (18) is also located between0
and1. However, whenrR → 0, the optimum operation con-
ditions are now given by

lim
rR→0

θ =
rC (1 + rT ) +

√
2rT (1 + rT )

(1 + rC) (1 + rT )
(19)

Therefore, by using Eq. (9) we can obtain that efficiency
for this case approaches the ecological efficiency given by
Eq. (4), that is

lim
rR→0

η → ηE = 1−
√

rT (1 + rT )
2

.

2.1.1. Numerical calculations

For a numerical calculation, the temperature of a typical low
temperature reservoir is taken asTL=300K. Then, the effi-
ciency under maximum ecological conditions and optimum
values of the temperaturesTa andTb can be studied. We com-
pared our obtained results with those obtained by Sahin [18]
under maximum power conditions. In Fig. 2a, we show
the variation ofθ with respect torR for three different val-
ues ofrT andrC = 0.1. We can see as the radiation term
(rR) increases,θ increases and approaches1, under both
the maximum power and maximum ecological conditions.
This means that the optimal temperatureTa gets closer to
the source temperatureTH as radiation increases. For higher
values ofrT , the ratio of the optimum temperatureTa to the
source temperatureTH is higher in general. In Fig. 2b, we
show the effect of the convection(rC) on the optimum tem-
perature variationθ for a fixed value ofrR = 0.1 and for
three different values ofrT . We can see howθ reaches a weak
minimum and then increases asrC increases, and higher val-
ues ofrT yields higher values ofθ. In Figs. 3a and 3b, we
show the variation of optimum temperaturesTa andTb ver-
susrR (with rC = 0.1) andrC (with rR = 0.1), respectively.
As we can see, in Fig. 3a whilerR tends to1, the differ-
ence betweenTa andTL increases. However,Tb approaches
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a constant value asrR increases. In Fig. 3b, the optimum
temperature variations with respect torC are given for fixed
values ofrR = 0.1 andrT = 0.1. As we can see,Tb/TL

increases whileTa/TL initially decreases to a minimum and
then increases asrC increases and the gap betweenTa and
Tb also increases. In Fig. 4a, we show the variation of the
efficiencies under maximum power and maximum ecological
conditions versusrR for three different values ofrC and for
a fixed value ofrT = 0.1. As we can observe, for all the
interval of values ofrR the efficiency under maximum eco-
logical conditions is greater than the efficiency under maxi-
mum power conditions. The difference in the efficiencies is
greater for smallerrC values and asrR increases, the effi-
ciencies reach a maximum and then decrease. In Fig. 4b, the
effect the convection on the efficiencies is given for a fixed
value ofrT = 0.1 and for three different values ofrR. Anal-
ogously to figure 4a, in this case for the entire interval of
values ofrC , the efficiency under maximum ecological con-
ditions is greater than the efficiency under maximum power
conditions.

FIGURE 2. a) Numerical rootsθ of Eqs. (12) and (18), at max-
imum power and maximum ecological function, respectively,vs.
rR, with rC = 0.1. b) Numerical rootsθ of Eqs. (12) and (18), at
maximum power and maximum ecological function, respectively,
vs. rC , with rR = 0.1. In both cases for several values ofrT .

FIGURE 3. a) Optimal temperaturesTb andTa vs.rR for rC=0.1.
b) Optimal temperaturesTb andTa vs. rC for rR = 0.1. In both
casesrT = 0.1.

2.2. Heat transfer by radiation on the hot side

We now consider that the heat transfer from the hot reservoir
to the working fluid is given only by radiation while the heat
transfer from the working fluid to the cold reservoir is a New-
tonian heat transfer law (see Fig. 1), which can be expressed
as

QH = CH

(
T 4

H − T 4
a

)
(20)

QL = CL (Tb − TL) , (21)

respectively, whereCH andCL are the thermal conductances
for the hot and cold side reservoirs respectively. Substituting
Eqs. (20) and (21) into Eq. (8), the relationship betweenTa

andTb is now given by

Tb =
TL

1− CH

CL

(
T 4

H−T 4
a

Ta

) (22)

Then, the non-dimensional power outputW̄ = W/CLTH

can now be written as

W̄ = rC

(
1− θ4

)
[

θ − rC

(
1− θ4

)− rT

θ − rC (1− θ4)

]
, (23)

whereθ = Ta/TH , rC = CHT 3
H/CL andrT = TL/TH .

Analogously to the previous subsection, the optimum tem-
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FIGURE 4. a) Optimal efficiencyη vs. rR, with rT = 0.1 for
rC = 0.1, rC = 0.5 andrC = 0.9, respectively. b) Optimal ef-
ficiency η vs. rC , with rT = 0.1, for rR = 0.1, rR = 0.5 and
rR = 0.9, respectively.

peraturesTa andTb under maximum power conditions can
be also obtained by differentiating Eq. (23) with respect to
Ta, that is,

dW̄

dθ
= 4r2

Cθ11 + 8rCθ8 − 8r2
Cθ7

+ 4θ5 − (8rC + 3rT ) θ4

+ 4r2
Cθ3 − rT = 0. (24)

On the other hand, by using Eqs. (16) and (23) in the
ecological function given by Eq. (3), we obtain the non di-
mensional ecological function̄E = E/CLTHas

Ē = rC

(
1− θ4

)

×
[

(1 + rT ) θ − rC (1 + rT )
(
1− θ4

)− 2rT

θ − rC (1− θ4)

]
; (25)

in this case, the optimum temperaturesTa andTb under max-
imum ecological conditions are also obtained by

dĒ

dθ
= 2r2

C (1 + rT ) θ11 + 4rC (1 + rT ) θ8

− 4r2
C (1 + rT ) θ7 + 2 (1 + rT ) θ5

− (4rC + 3rT + 4rCrT ) θ4

+ 2r2
C (1 + rT ) θ3 − rT = 0. (26)

In the same way as in the previous section, the solution to
Eqs. (24) and (26) is obtained numerically, and the physi-
cally meaningful roots ofθ are also located between0 and1.

2.2.1. Numerical calculations

For the numerical calculation, the temperature of a typical
low temperature reservoir is taken asTL=300K, and we com-
pared our results obtained under maximum ecological con-
ditions with those obtained by Sahin [18] under maximum
power conditions. In this section, our analysis is done in two
cases by fixing one of the parametersrT andrC in each case
and studying the effect of the other on the efficiencies and
the optimum temperatures. In Fig. 5, the roots of Eqs. (24)
and (26) are shown as a function of the parameterrC by us-
ing three different values ofrT . We observe that under max-
imum power conditions asrC is increased from 0 to∞, θ
varies between 0.494 and 1 forrT = 0.1; between 0.649
and 1 forrT = 0.3 and between0.757 and1 for rT = 0.5
respectively. In the case of maximum ecological conditions
we can observe that asrC increases from0 to ∞, θ varies
between 0.576 and 1 forrT = 0.1; between 0.749 and1 for
rT = 0.3; and between 0.841 and1 for rT = 0.5, respec-
tively. In Fig. 6, we show the variation of the efficiencies
versusrC for a fixed value ofrT = 0.3. In this figure, the
Carnot (0.7) and Curzon and Ahlborn (0.452) efficiencies are
also included for comparison. As we can see in Fig. 6, for
the entire interval of values ofrC the efficiency under maxi-
mum ecological conditions is bigger than the efficiency under
maximum power conditions.The optimum temperature vari-
ations with respect torC are shown in Fig. 7. The optimum
values ofTa andTb increase asrC increases. As we can see
under maximum power conditions, asrC varies from 0 to∞,
Ta increases from 649 to 1000K, andTb increases from 300
to 547K, while under maximum ecological conditions, asrC

varies from0 to ∞, Ta increases from 742.4 to 1000K, and
Tb increases from 300 to 547K. On the other hand, to study
the effect ofrR on both the efficiencies and the optimum tem-
perature values, the value ofrC is now fixed. In Figs. 8 we
show the variation ofθ with respect torT for different values
of rC under both the maximum power and ecological con-
ditions. As we can see under both the maximum power and
ecological conditions,θ sharply increases and reaches 1 asrT

approaches 1. However, under maximum power conditions at
rT = 0, θ takes on values of 0.237, 0.738 and 0.976 for the
fixed values ofrC equal to 0.1, 1 and 10, respectively, while
under maximum ecological conditions,θ takes on values of
0.237, 0.738 and 0.976 for the fixed values ofrC equal to 0.1,
1 and 10, respectively. The variation of the efficiencies with
respect torT is shown in Fig. 9. Analogously to the pre-
vious case, in this situation, for the entire interval of values
of rT the efficiency under maximum ecological conditions is
greater than the efficiency under maximum power conditions.
The differences between the efficiencies is greater for small
values ofrT . Which is expected for typical heat engines. Fi-
nally, the variation of the optimum temperatures with respect
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to rT is given in Fig. 10. We can observe, under both the
maximum power and the ecological conditions, a consider-
able gap that is to be expected betweenTa andTb for small
values ofrT . However, this difference decreases to zero as
rT approaches 1.

FIGURE 5. Numerical roots of Eq.(24), maximum power, and
Eq.(26), maximum ecological function,vs. rC , with rT = 0.1,
rT = 0.3 andrT = 0.5.

FIGURE 6. Optimal efficiencies (maximum power and maximum
ecological function)vs. rC , with rT = 0.3. Also ηC andηCA are
plotted.

FIGURE 7. Optimal temperaturesTb andTa, vs.rC with rT = 0.3.

FIGURE 8. Numerical rootsθ of Eq. (24), maximum power and
Eq. (26) maximum ecological function,vs. rT , with rC = 0.1,
rC = 1 andrC = 10.

FIGURE 9. Optimal efficienciesvs. rT with rC = 0.1. Also ηC

andηCA are plotted.

3. Optimum operation conditions with heat
transfer of the Dulong-Petit type on the hot
side

It has been recognized in the literature [20] that a more re-
alistic description of the heat exchange between the working
substance and its reservoirs would include aT 4 term (Stefan-
Boltzmann radiation). An attempt to describe combined
conductive-convective and radiative cooling by a power-law
relationship is given by the so-called Dulong-Petit law of
cooling [20], which is

dQ

dt
= α (Ta − T )n

, (27)

wheredQ/dt is the rate of heat loss per unit area from a
body at temperatureT , α is a thermal conductance,Ta is
the temperature of the fluid surrounding the body, andn is an
exponent with a value between1.1 and1.6 [20]. Some au-
thors have stablished thatn = 5/4 based on studies made by
Lorentz and Langmuir. As O’Sullivan asserts in his original
1879 paper, Stefan took the results of Dulong and Petit (DP),
along with experiments by Tyndall, and pointed out that the
DP model was in agreement with hisT 4 law [20]. In the
present paper we use the DP law of cooling withn = 5/4.
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Now, we consider that the heat transfer from the hot reser-
voir to the working fluid is given by a heat transfer law of
the Dulong-Petit type, while the heat transfer from the cold
reservoir is a Newtonian heat transfer law in the same way as
in the previous section (see Fig. 1), which can be expressed
as

QH = CH (TH − Ta)
5
4 (28)

Substituting Eqs. (6) and (28) into Eq. (8), the relationship
betweenTa andTb is now given by

Tb =
TL

1− CH

CL

(
(TH−Ta)

5
4

Ta

) (29)

Using Eqs. (6), (7), (28) and (29), the non-dimensional power
outputW̄ = W/CLTH can now be written now as

W̄ = rC(1− θ)
5
4

[
θ − rC(1− θ)

5
4 − rT

θ − rC(1− θ)
5
4

]
, (30)

whereθ = Ta/TH , rC = CHT
1
4

H/CL andrT = TL/TH .
Analogously to the previous section, the optimum tempera-
turesTa andTb under maximum power conditions can also
be obtained by taking the derivative of Eq. (30) with respect
to Ta, that is,

rT (4 + θ)− 5
(
θ − rC(1− θ)5/4

)2

= 0 (31)

On the other hand, using Eqs. (16) and (30) in the ecolog-
ical function given by Eq. (3), we obtain the non-dimensional
ecological function as

Ē = rC(1− θ)
5
4

×
[

(1 + rT ) θ − rC (1 + rT ) (1− θ)
5
4 − 2rT

θ − rC(1− θ)
5
4

]
; (32)

in this case, the optimum temperaturesTa andTb under max-
imum ecological conditions are also obtained by

5
(
θ − rC(1− θ)5/4

)2

+ rT

(
5

(
θ − rC(1− θ)5/4

)2

− 2(4 + θ)
)

= 0. (33)

In the same way as in the previous section, the solution of
Eqs. (31) and (33) is found numerically, and the physically
meaningful roots ofθ are also located between0 and1.

3.0.2. Numerical calculations

In a similar way to Sec. 2.2.1, for a numerical calculation, the
temperature of a typical low temperature reservoir is taken
asTL = 300K. In this section, our analysis is done in two
cases by fixing one of the two parametersrT andrC in each
case and studying the effect of the other on the efficiencies

FIGURE 10. Optimal temperaturesTa andTb vs.rT with rC=0.1.

FIGURE 11. Numerical rootsθ of Eq.(31), maximum power and
Eq.(33), maximum ecological function,vs. rC , with rT = 0.1,
rT = 0.3 andrT = 0.5.

FIGURE 12. Optimal efficiencies (maximum power and maximum
ecological function)vs.rC , with rT = 0.3.

and the optimum temperatures. In Fig. 11, the roots of
Eqs. (31) and (33) are shown as a function of the parameter
rC by using three different values ofrT . We observe that
under maximum power conditions asrC is increased from0
to ∞, θ varies between0.299 and 1 for rT = 0.1, 0.525
and1, respectively, forrT = 0.3, and between0.685 and1
for rT = 0.5. In the case of maximum ecological conditions
we can observe that asrC increases from0 to ∞, θ varies
between0.405 and1 for rT = 0.1; between0.658 and1 for
rT = 0.3; and between0.801 and1 for rT = 0.5, respec-
tively. In Fig. 12, we show the variation of the efficiencies
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versusrC for a fixed value ofrT = 0.3. In this figure,
the values of both the Carnot (0.7) and Curzon and Ahlborn
(0.452) efficiencies are also included for comparison. As we
can see in Fig. 12, for all the interval of values ofrC the
efficiencies satisfy the relationηMP < ηCA < ηE < ηC ,
whenrC = 0, ηMP = 0.423 andηE = 0.542. The opti-
mum temperature variations with respect torC are shown in
Fig. 13. The optimum values ofTa andTb increase asrC

increases. As we can see under maximum power conditions,
asrC varies from0 to ∞, Ta increases from520 to 729K,
andTb increases from300 to 410K, while under maximum
ecological conditions, asrC varies from0 to∞, Ta increases
from 655 to 800K, andTb increases from300 to 360K. On
the other hand, to study the effect ofrR on both the efficien-
cies and the optimum temperature values, the value ofrC is
now fixed. In Fig. 14 we show the variation ofθ with respect
to rT for different values ofrC . As we can observe for both
the maximum power and ecological conditions,θ sharply
increases and reaches1 asrT approaches1. However, under
maximum power conditions atrT = 0, θ takes on values of
0.237, 0.738 and0.976 for the fixed values ofrC equal to
0.1, 1 and10, respectively, while under maximum ecological
conditions,θ takes on values of0.237, 0.738 and0.976 for
the fixed values ofrC equal to0.1, 1 and10, respectively.

FIGURE 13. Optimal temperaturesTb and Ta, vs. rC with
rT = 0.3.

FIGURE 14. a) Numerical rootsθ of Eq. (31), maximum power and
Eq. (33) b) maximum ecological function,vs. rT , with rC = 0.1,
rC = 1 andrC = 10.

FIGURE 15. Optimal efficienciesvs.rT with rC = 0.1.

FIGURE 16. Optimal temperaturesTa andTb vs.rT with rC=0.1.

The variation of the efficiencies with respect torT is shown
in Fig. 15; in this case, for the entire interval of values of
rT the efficiency under maximum ecological conditions is
greater than the efficiency under maximum power conditions
and it also satisfies the relationηMP < ηCA < ηE < ηC .
Finally, the variation of the optimum temperatures with re-
spect torT is given in Fig. 16. We can observe, for both the
maximum power and the ecological conditions, a consider-
able gap that is to be expected betweenTa andTb for small
values ofrT . However, this difference decreases to zero as
rT approaches1.

4. Conclusions

Within the context of Finite-Time Thermodynamics we ana-
lyzed the optimum operating conditions of an endoreversible
engine model. Practically all of the thermal engine FTT-
models published until now [21–24] have considered the
same heat transfer law at both couplings between the reser-
voirs and the working fluid. In the model presented here, we
considered different heat transfer laws from the hot reservoir
to the working fluid, while the mode of heat transfer from
the working fluid to the cold reservoir is a Newtonian linear
law in all cases. We calculated the optimum temperatures
of the working fluid and the optimum efficiency in terms of
the relevant system parameters by considering two modes of
performance, the maximum power regime and the so-called
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ecological function. We show how the efficiency under max-
imum ecological function is greater than the maximum ef-
ficiency under maximum power conditions. This result has
systematically been observed in all kinds of thermal engine
models operating under ecological conditions. This property
is considered to be concomitant with ecological goals from a
long-term energy conversion point of view.
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