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The maximum force between a permanent magnet and a superconductor in the Meissner state has been calculated. The calculation was
performed assuming the superconductor to be a perfect diamagnet and neglecting the London penetration depth. The resulting force takes
into account the geometric dimensions of both the magnet and the superconductor. This constitutes an important improvement for the
description of the maximum force attainable in these systems. The method can be applied in cases with azimuthal symmetry.
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Se calcuĺo la máxima fuerza entre un iḿan permanente y un superconductor en el estado Meissner. El cálculo se realiźo suponiendo que el
superconductor es un diamagneto perfecto y despreciando la longitud de penetración de London. La fuerza resultante toma en cuenta las
dimensiones geoḿetricas tanto del iḿan como del superconductor. Esto constituye una mejora importante para la descripción de la ḿaxima
fuerza obtenible en estos sistemas. El método puede ser aplicado en casos con simetrı́a azimutal.

Descriptores:Levitación; YBCO; efecto Meissner.

PACS: 85.25.Ly; 74.25.Ha

1. Introduction

Levitation of a permanent magnet over a high-Tc supercon-
ducting sample is a fascinating demonstration of the mag-
netic properties of these materials. This characteristic can be
applied mainly to superconducting bearings [1]. Two main
regimes of the superconducting levitation are typically de-
fined. In the first case, the magnetic induction is expelled
from the superconductor because of the Meissner effect. Un-
der these circumstances the repulsive force reaches its max-
imum possible value, but the levitation is unstable. The sec-
ond situation corresponds to the mixed state, where a partial
penetration of magnetic lines occurs. The repulsive force di-
minishes because of this penetration, but due to the pinning
of the magnetic lines in the inhomogeneities of the supercon-
ducting material, a desired mechanical stability is achieved.

The force in a magnet-superconductor system depends
mainly on the quality of the sample, particularly on its ca-
pability to screen the external field. This is determined by the
critical density current (Jc) of the material: the higher theJc,
the greater the repulsion. However, the physical characteris-
tics of the magnet are important also. The critical current den-
sity can be increased by lowering the temperature of the sam-
ple. For example, Moon [2] reported a seven-fold increase
of the force on a melt-textured superconductor when it was
cooled from 77 to 10 K. Also, implantation of high-energy
particles in the superconductor improves the effectiveness of
the pinning centers and increases theJc value. The high-
Tc superconductor most commonly found in the literature
in experimental studies of magnetic forces is YBa2Cu3Ox

(YBCO), but also there are some reports on SmBa2Cu3Ox

(SmBCO).
Some calculations of the levitation force between a per-

manent magnet and a superconductor in the mixed state have
been performed [3-5]. In these papers, the authors used nu-
merical methods. The calculations are parameterized by the
Jc value.

To answer the question of how much the levitation force
can be increased, one must go to the Meissner limit where
a complete exclusion of magnetic field is assumed. This is
equivalent to neglecting the London penetration depth, or tak-
ing an infinite Jc. Furthermore, it is desirable to obtain ana-
lytical expressions of this maximum force.

The simplest model of the vertical force considers the
magnet to be a point dipole, and the superconductor to be
a perfectly screened semi-infinite sample [6]. Models which
considered finite one-dimensional superconductors were re-
ported later [7,8]. There exist only a few studies about forces
on finite superconductors in the Meissner state [9,10].

Another model [11] studied the interaction between a
point dipole (magnet) and a finite-size superconducting sam-
ple by integrating the dipole-dipole interactions all over the
sample. Only the horizontal and vertical orientation of the
magnetic moment of the magnet were considered in that
study.

In the last few years, the dipole-dipole interaction model
has been used in several papers. For example, it was useful
to analyze the vertical force at any orientation of the mag-
net [12, 13]. Also, it was used to calculate the levitation
force [14] and the lateral force [15] between a small magnet
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and a cylindrical superconducting sample, between a small
magnet and a superconducting ring [16], and between a small
magnet and a superconducting square [17]. Vertical vibra-
tions in these systems have also been studied following this
model [18].

In this work we present an analytical generalization of
the dipole-dipole interaction model to calculate the maximum
vertical repulsive force between a finite permanent magnet
and a finite cylindrical superconductor in a perfect Meiss-
ner state. We compared our results with experiments and
with other calculations. The model applies indistinctly to any
compound.

2. The model

In Fig. 1 we show the reference system and geometry used
for our calculation. A cylindrical magnet of radiusR and
thicknessL has its uniform volume magnetization~M = M~k
oriented vertically. The upper base of the magnet lies in the
z=0 plane, and a cylindrical superconductor of radiusRs and
thicknessLs is coaxially located below the magnet. The gap
between magnet and superconductor isa.

We assume that under the magnetic field~H(~r) produced
by the magnet, the superconductor in the Meissner state ac-

FIGURE 1. Diagram of a cylindrical permanent magnet with uni-
form magnetizationM (parallel to z axis), radiusR and thickness
L placed a distancea above a cylindrical superconductor of radius
Rs and thicknessLs.

quires a volume magnetization− ~H(~r)/4π, in such a way that
~B(~r) = ~0 in every point inside the superconductor. Here, we
shall neglect any demagnetizing effect due to the finite size
of the superconducting sample. Such approximation is quite
common in the literature, and we believe that this does not
affect the relevant features of the system. The perfectly dia-
magnetic volumedV is equivalent to a dipole of magnetic
momentd~µ = − ~H(~r)dV/4π. In this way, the interaction be-
tween magnet and superconductor is equivalent to the sum of
all the dipole-magnet contributions.

Every dipoled~µ is subject to an infinitesimal forced~F
due to the magnet, given by:

d~F = ∇(d~µ · ~H) (1)

Therefore, by Newton’s third law, the total force on the
magnet will be~F = − ∫

d~F :

~F =
1
4π

∫
∇[ ~H(~r)]2dV (2)

The integration must be performed over the entire volume
of the superconductor.

Now the problem is to evaluate the magnetic field of the
magnet. Since there are no electrical currents in the magnet,
we can use~H(~r) = −∇Φ(~r), whereΦ(~r) is a potential satis-
fying the Laplace equation. The potential evaluated at points
located along the axis of the cylindrical magnet is given by:

Φ(axis) = 2πM [
√

(z − L)2 + R2 −
√

z2 + R2 + L] (3)

Next, we recall a useful property of the solutions to the
Laplace equation in the case of azimuthal symmetry [19]. If
the function is evaluated in the axis of symmetry and it can be
expanded in powers ofz (in our case,z is always positive),
i.e.,

Φ(axis) =
∞∑

`=0

[A`z
` + B`z

−(`+1)], (4)

then the function at any point in space(r, θ) is obtained by
substitutingz by r and multiplying each power ofr` and
r−(`+1) by the Legendre polynomialP`(cos θ):

Φ(~r) = Φ(r, θ) =
∞∑

`=0

[A`r
` + B`r

−(`+1)]P`(cos θ) (5)

Therefore, all we need in order to determine the coeffi-
cientsA` andB` is to expand the potentialΦ(axis) given in
Eq. (3) in powers ofz.

Once expansion (5) is performed, it is convenient to
change from spherical variables(r, θ) to cylindrical variables
(ρ, φ) before integral (2) is performed. Integration overφ
gives a factor2π, and integration overz is reduced to evaluat-
ing the integrand at the limitsz1 = a+L andz2 = a+L+Ls.
Therefore, we only need to integrate at the variableρ. All op-
erations were performed using Mathematica.

This method can be followed to calculate the magnetic
field produced by magnets with a similar symmetry, rings,
spheres, cones, etc.
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2.1. Expansion of the potential

There are at least two different regimes ofz > L to consider:

(a) z > L + R (far region), whereA` = 0, B` 6= 0, and

(b) max(R,L) < z < L + R (intermediate region), with
A` 6= 0, B` 6= 0. In addition, ifL < R, there is a third
region:

(c) L < z < R (near region), whereA` 6= 0, B` = 0.

The potential was expanded to a maximum power` = 4
in the far region. We considered that the convergence of the
series with this number of terms was good enough for our
purpose. The explicit expression forΦ(axis) in this region is

Φ(axis) = 2πM

[
LR2

2z
+

L2R2

2z3
+

L2R2 − 3LR3

16z4

+
2L4R2 − 3L2R4

32z5

]
. (6)

In this expansion, the constant terms were not included
since they disappear in the calculation of the force. When we

take the limit corresponding to a small magnet, the leading
term of the complete potential in this region is given by

Φ(r, θ) = πMR2L
cos θ

r2
, (7)

which corresponds to the potential of a point dipole with
magnetic momentµ = πMR2L located at the origin. This
limit case was discussed extensively in Ref. 11, where the
repulsive forceFµ was demonstrated to be

Fµ =
3µ2

8
[g(a)− g(a + Ls)], (8)

where

g(x) =
1
x4
− R2

s + 3x2

3(R2
s + x2)3

. (9)

In the intermediate and near regions, the convergence of
the series was slower than in the far region. Our criterion was
to take as many terms in the series expansion as the computer
could handle to calculate the vertical force (up to` = 8 and
` = 7, respectively). In this way, the series expansion of the
potential in the intermediate region is

Φ(axis) = 2πM

[
− R2

2z
+ z

(
−1− L

R
+

L3

2R3
− 3L5

8R5
+

5L7

16R7

)
+ z2

(
1

2R
− 3L2

2R3
+

15L4

16R5
− 35L6

32R7

)
+

R4

8z3

+z3

(
L

2R3
− 5L3

4R5
+

35L5

16R7

)
+ z4

(
− 1

8R3
+

15L2

16R5
− 175L4

64R7

)
− R6

16z5
+ z5

(
− 3L

8R5
− 35L3

16R7

)

+z6

(
1

16R5
− 35L2

32R7

)
+

5R8

128z7
+ z7

(
5L

16R7

)
+ z8

(
− 5

128R7

)
− 7R10

256z9

]
(10)

Finally, the series expansion of the potential in the near region was

Φ(axis) = 2πM

[
z

(
−L

R
+

L3

2R3
− 3L5

8R5
+

5L7

16R7

)
+ z2

(
− 3L2

2R3
+

15L4

16R5
− 35L6

32R7

)
+ z3

(
L

2R3
− 5L3

4R5
+

35L5

16R7

)

+ z4

(
15L2

16R5
− 175L4

64R7

)
+ z5

(
− 3L

8R5
− 35L3

16R7

)
+ z6

(
− 35L2

32R7

)
+ z7

(
5L

16R7

) ]
(11)

As a typical case, we tookR=1.25 cm,L=1.5 cm. With
these values, we calculated the exactΦ(axis)/2πM from
Eq. (3), and compared it with the approximate expansion,
Eq. (4). The result is presented in Fig. 2 as a function of the
magnet-superconductor separation. As we mentioned above,
the potential was expanded to a maximum power` = 4 in the
far region, defined above 1.25 cm. In the intermediate region,
defined between 0 and 1.25 cm, the potential was expanded
up to` = 8. The near region was not defined in this case.

The series expansion is discontinuous atR=1.25 cm,i.e.,
at the boundary between regions. As we shall see, results of
the vertical force are poor when part of the superconductor is
located on this boundary. For this reason, we shall conclude

that our calculation is more reliable when the superconductor
lies in a region free of discontinuities, for example in the far
region. The final expressions of the force are too long and te-
dious to write here, therefore we shall use graphics to present
its dependence with the geometrical dimensions of the prob-
lem.

3. Results and discussion
3.1. Force as a function of the separation

There exist many experimental studies of this type, com-
monly carried out at 77 K. We shall test the validity of
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our model by comparing the calculated force with experi-
mental data [20]. In that work, a melt-textured supercon-
ducting sample of YBCO withRs = 1 cm, Ls= 1 cm, and
Jc(77K) around4 × 105 A/cm2 was used. The magnet had
M = 829.7G, R=1.25 cm andL=1.5 cm. Therefore, the po-
tential shown in Fig. 2 corresponds to this magnet. First, we
shall discuss the far region (a > R).

In Fig. 3, we can see that the maximum possible force
calculated with our model is slightly above the experimental
result in this region. The highest difference between them is
31%. This means that the sample is able to screen magnetic
fields efficiently at large distances. Also, we can say that if

FIGURE 2. Magnetic scalar potential produced by a cylindrical
magnet withR=1.25 cm,L=1.5 cm, evaluated along its axis. Con-
tinuous line corresponds to the exact expression given by Eq. (3).
Dotted line corresponds to the series expansion, Eqs. (6) and (10).
The discontinuity of the series at the limit between regions becomes
critical when part of the superconductor lies in it, causing a signi-
ficative error in the calculus.

FIGURE 3. Dependence of force on magnet-superconductor sepa-
rationa in the far region. Circles are experimental data reported in
Ref. 13. Continuous line corresponds with our theoretical limit us-
ing the potential given in Eq. (6), showing a reasonable agreement
with the experiment. The dotted line corresponds to the less real-
istic result for a magnetic point dipole, Eqs. (8) and (9). The inset
shows the force calculated in a wider range of distances includ-
ing the intermediate region. The bending of the curve is observed
around the discontinuity of the potential, see Fig. 2.

the sample is altered to improve the actual force, the increase
will be relatively low. This result is particularly important in
the design of levitation systems.

As shown in Fig. 3 also, the model of a point dipole lo-
cated at the same distance, Eqs. (8)-(9), predicts a higher
limit. Therefore, our model takes into account the size of the
magnet reasonably well, and represents an improved approx-
imation for the maximum force.

The inset of Fig. 3 shows an extended graph over the
whole range of distances. The theoretical curve falls between
0.7 and 1.25 cm of separation, as the 1-cm thick superconduc-
tor is located partially in the region of discontinuity (around
1.25 cm). The maximum deviation from the original trend is
observed at a separation of 1 cm, where the nearest quarter
of the sample lies in the problematic area. More terms can be
taken in the series expansion to reduce this effect, however
the calculation becomes extremely complicated.

As the separation distance is reduced and only the far-
thest parts of the superconductor remain in the discontinuous
zone, the trend of the curve is recovered. But now, magnetic
lines start to penetrate the sample and cause it to transit to the
mixed state. Because of this, the difference between the ex-
periment and our calculated curve increases. The calculated
value at a zero distance is 45 N, a little more than twice the
experimental result. Measurements performed at low tem-
peratures would increase the force, and a better agreement is
expected.

We tested our model in two more cases. For uni-
formity, we shall refer to results obtained ata=R.
Otani [21] measuredF=16.7 N with a SmBCO sample of
Jc=7 × 104 A/cm2, while we predict a 20.3 N value (dif-
ference of 21%). Chunet al. [5] obtainedF = 0.5N for a
poor-quality YBCO sample (Jc=3× 103 A/cm2), while the
maximum expected value is 1.4 N (difference of 180%). We
can conclude that our calculation for large distances provides
a tool for evaluating the quality of a superconducting sample.
Roughly speaking, the calculated repulsive force will reason-
ably agree with the value measured at 77 K, ifJc is higher
than 5× 104 A/cm2.

3.2. Dependence of force with the dimensions of the su-
perconductor

Early works [22] showed that the repulsive force increases
with the thickness of the superconductor. After a typical ini-
tial linear increase, the force lowers the pace until a saturation
is reached. We present in Fig. 4 experimental data measured
at 77 K by Leblond [20], and our theoretical limit. In this
case, parameters are a=0, M=828.7 G, R=1.25 cm, L=1.5 cm,
and Rs=1 cm. The superconductor was a YBCO sample with
Jc= 20,000 A/cm2 under a magnetic field of 8 T. The differ-
ence between the theoretical values and experimental data is
expected, since the sample is penetrated by magnetic lines in
the actual experimental conditions. However, we can see that
the maximum force predicted with our model has the same
trend as the experimental one.
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We did not find any experimental work regarding the de-
pendence of the repulsive force on the radius of the super-
conductor. However, this was modeled in the mixed state by
Teshima [3], with Jc as a parameter. In Fig. 5 we present
Teshima’s results and ours. In this case, the parameters are
a=0.1 cm, M=875.4 G, R=1.8 cm, L=2.5 cm, and Ls=2.5 cm.
Similarly to the variation with Ls, the repulsive force in-
creases with Rs and saturates to a certain value, which de-
pends on Jc. Our calculated curve with an infinite Jc always
remains above the other curves, as it should be.

In summary, the maximum force calculated with our
model depends on the dimensions of the superconductor in
good correspondence with previous reports. The fact that the

FIGURE 4. Dependence of force on the superconductor thickness
Ls. Circles are experimental data reported in Ref. 13 at 77K with
a=0. The superconducting sample was made of YBCO and had
Jc=2× 104 A/cm2 at this temperature under 8 T. Continuous line
represents the calculated limit for an infiniteJc.

FIGURE 5. Dependence of force on the superconduc-
tor radius Rs. Continuous heavy line represents our calcu-
lated limit for an infinite Jc. The other curves correspond
to calculations published in Ref. 7 in the mixed state at
a=0.1 cm. Open circles: Jc=5,000 A/cm2, filled circles:
Jc=20,000 A/cm2. Continuous light lines are guides for the eye.

FIGURE 6. Dependence of force on the magnet radiusR. Contin-
uous heavy line represents our calculated limit for an infiniteJc.
The other curves correspond to calculations published in Ref. 7 in
the mixed state ata=0.1 cm. Open circles:Jc=5,000 A/cm2, filled
circles: Jc=20,000 A/cm2. Continuous light lines are guides for
the eye.

force saturates for certain values of Ls and Rs is another im-
portant result for designing levitation systems, particularly
for optimizing the superconducting material used.

3.3. Dependence on the dimensions of the magnet

In this section we analyze the dependence of force on the
magnet size. First, we present the influence of the magnet ra-
dius in Fig. 6. Teshima’s results [3] are included for compar-
ison. The parameters are a=0.1 cm, M=875.4 G, L=2.5 cm,
Rs=2.4 cm, and Ls=2.5 cm. It can be seen that, similarly
to the dependence on Rs, the force increases and reaches a
maximum, depending on the Jc value. However, for larger
values of R, the force starts to decrease. The existence of
this maximum is a result of the competition between two op-
posite effects. On one hand, the force trends to grow with
the increase of magnetic material. On the other hand, as R
becomes larger, the magnetic field produced by the magnet
becomes more uniform. Since the force depends on the field
gradient, the second effect tends to lower it.

We did not plot the limit curve in Fig. 6 because for small
values of R the superconductor lies in a region where the dis-
continuities of the potential affect the calculation in an im-
portant way. This means that our results in this region have a
poor confidence.

Finally, we show the dependence of force on the magnet
thickness in Fig. 7, using a=0.3 cm, M=780.9 G, R=0.25 cm,
Rs=0.5 cm, and Ls=0.48 cm. We calculated this curve in the
far region to avoid any discontinuity. It can be seen that F(L)
behaves similarly to F(R),i.e., there is a maximum at a cer-
tain position. Again, arguments on the opposite effects as a
function of L are applied in this case to describe the peak.

Rev. Mex. F́ıs. 54 (4) (2008) 293–298
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FIGURE 7. Dependence of the force on the magnet thicknessL.

4. Conclusions

We developed an analytical method to calculate the maxi-
mum possible force between a permanent magnet and a su-
perconductor with azimuthal symmetry in the Meissner state.
The magnetic scalar potential was expanded in a power se-
ries in three different regions. The application of the method

is limited when the superconductor passes through a disconti-
nuity of this series. The basic assumption of the model is that
the magnetic field is fully excluded from the superconductor,
or equivalently the sample has an infinite critical current den-
sity. No experimental parameter other than geometric lengths
and magnetization is required. The agreement between the-
ory and experimental data at large distances allows us to use
this calculation as a diagnostic tool for the quality of the su-
perconducting sample. In addition, the model describes rea-
sonably well the dependencies of the force on dimensions
of the magnet and superconductor. In particular, the force
increases monotonically with the size of the superconductor
and reaches a saturation value. However, it has a maximum
as a function of the magnet dimensions.
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