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In this paper, the synchronization problem of coupled 2D-grid scroll attractor families in master-slave configuration is studied numerically.
In particular, we consider, for synchronization purposes, the chaos generator model of 3×3-scroll grid attractors by appealing to Generalized
Hamiltonian forms and observer design from nonlinear control theory. A potential application to the transmission of encrypted information
is also given.
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Este trabajo versa sobre la comunicación secreta de información anaĺogica y digital. El encriptado se produce por sincronı́a de caos, la cual
se obtiene de formas hamiltonianas y el diseño de un observador no lineal. En particular, se emplean circuitos caóticos generadores de una
familia de atractores con enrollamientos de 3×3 en cuadŕıcula 2D, como consecuencia produciendose incremento en la seguridad del cifrado
en la transmisíon de informacíon confidencial.

Descriptores: Sincronizacíon de caos; atractor caótico con enrollamientos de 3×3 en cuadŕıcula 2D; sistema hamiltoniano generalizado;
observador; comunicación secreta.
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1. Introduction

Generations of multi-scroll chaotic attractors have received
considerable attention for more than a decade; such interest
is both theoretical and practical [1-9], because of their poten-
tial application to communications, cryptography, and neural
networks [8] have also received attention.

On the other hand, in the past decades, chaotic synchro-
nization has received a tremendous increase in interest (see
e.g.Refs. 10 to 17). This property is supposed to have inter-
esting applications in different fields, particularly in design-
ing secure communication systems [18-27]. Private commu-
nication schemes are usually composed of a chaotic system
as transmitter with another chaotic system as receiver, where
the confidential information is imbedded into the transmit-
ted chaotic signal by direct modulation, masking, or another
technique. At the receiver end, if chaotic synchronization is
achieved, then it is possible to extract the hidden information
from the transmitted signal.

The main goal of this paper is the synchronization of 2D-
grid scroll attractor families. In particular, the model 3×3-
scroll grid attractor is chosen as chaos generator. This objec-
tive is achieved by using the Hamiltonian systems and non-
linear observer approach from nonlinear control theory [14].
In addition, chaos synchronization of multi-scroll attractors is
applied to transmit encrypted analog and digital information.

This paper is organized as follows: In Sec. 2, a summary
on chaos synchronization via Hamiltonian systems approach
is provided. Mathematical models for generating families of
scroll grid chaotic attractors are briefly introduced in Sec. 3,
while in Sec. 4, we show chaos synchronization of coupled
3×3-grid scroll attractors. In Sec. 5, we carry out a stability
analysis of the synchronization error. In Sec. 6, we present an
application to chaotic communication, where we transmit en-
crypted analog and digital confidential information. Finally,
some conclusions are given in Sec. 7.

2. Summary of chaos synchronization: Hamil-
tonian systems approach

Consider the dynamical system

ẋ = f (x) (1)

wherex ∈ Rn is thestate vectorandf : Rn → Rn is a
nonlinear function.

In Ref. 14, it is reported how system (1) can be written in
the followingGeneralized Hamiltonian canonical form:

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
+ F (x) , x ∈ Rn, (2)

whereH (x) denotes a smoothenergy functionwhich is glob-
ally positive definite inRn. The gradient vectorof H, de-
noted by∂H/∂x, is assumed to exist everywhere. We use
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quadraticenergy functionH(x) = (1/2) xTMx with M
being a constant, symmetric positive definite matrix. In this
case,∂H/∂x = Mx. The matricesJ (x) andS(x) satisfy,
for all x ∈ Rn, the following properties:J (x)+J T (x) = 0
andS(x) = ST (x). The vector fieldJ (x)∂H/∂x exhibits
the conservativepart of the system and it is also referred to
as theworklesspart, orwork-lessforces of the system, and
S(x) denotes theworkingor nonconservativepart of the sys-
tem. For certain systems,S(x) is negative definiteor nega-
tive semidefinite. Thus, the vector field is referred to as the
dissipative part of the system. If, on the other hand,S(x) is
positive definite, positive semidefinite, or indefinite, it clearly
represents the global, semi-global, or localdestabilizingpart
of the system, respectively. In the last case, we can always
(although nonuniquely) decompose such an indefinite sym-
metric matrix into the sum of a symmetric negative semidef-
inite matrixR(x) and a symmetric positive semidefinite ma-
trix N (x). Finally, F(x) represents alocally destabilizing
vector field.

In the context of observer design, we consider aspecial
class of Generalized Hamiltonian forms with outputy(t),
given by

ẋ = J (y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F (y) , x ∈ Rn, (3)

y = C ∂H

∂x
, y ∈ Rm,

whereS is a constant symmetric matrix, not necessarily of a
definite sign.I is a constant skew symmetric matrix, andC
is a constant matrix.

We denote theestimateof the statex(t) by ξ(t), and con-
sider the Hamiltonian energy functionH(ξ) to be the partic-
ularization ofH in terms ofξ(t). Similarly, we denote by
η(t) the estimated output, computed in terms ofξ(t). The
gradient vector∂H(ξ)/∂ξ is, naturally, of the formMξ with
M being a constant, symmetric positive definite matrix.

A nonlinear state observerfor the Generalized Hamilto-
nian form (3) is given by

ξ̇ = J (y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F (y) + K(y − η),

ξ ∈ Rn, (4)

η = C ∂H

∂ξ
, η ∈ Rm,

whereK is theobserver gain.
The state estimation error, defined ase(t)=x(t)−ξ(t),

and the output estimation error, defined asey(t)=y(t)−η(t),
are governed by

ė = J (y)
∂H

∂e
+ (I + S −KC) ∂H

∂e
, e ∈ Rn, (5)

ey = C ∂H

∂e
, ey ∈ Rm,

where ∂H/∂e actually stands, with some abuse of nota-
tion, for the gradient vector of themodifiedenergy function,

∂H(e)/∂e = ∂H/∂x − ∂H/∂ξ = M(x − ξ) = Me. We
set, when needed,I + S = W.

Definition 1 (Chaotic synchronization) [17] The slave system
(nonlinear state observer) (4) synchronizes with the chaotic
master system in Generalized Hamiltonian form (3), if

lim
t→∞

‖x(t)− ξ(t)‖ = 0, (6)

no matter which initial conditionsx(0) andξ(0) have,where
the state estimation errore(t) = x(t) − ξ(t) corresponds to
thesynchronization error.

A necessary and sufficient condition for global asymp-
totic stability to zero of the estimation error (5) is given by
the following theorem.

Theorem 1 [14] The statex(t) of the nonlinear system (3)
can be globally, exponentially, asymptotically estimated by
the stateξ(t) of the observer (4) if and only if there exists a
constant matrixK such that the symmetric matrix

[W −KC] + [W −KC]T = [S −KC] + [S −KC]T

= 2
[
S − 1

2
(
KC + CT KT

)]

is negative definite.

3. Families of scroll grid chaotic attractors

Recently, a family ofn-scrolls was reported (in Ref. 8) that
was more general than the family ofn-double scroll attrac-
tors, which generates chaos with a simple circuit implemen-
tation. The generated chaotic attractors of this family are
called scroll grid attractors. For these families it is possi-
ble to cover the whole state space with scrolls. Such fami-
lies of multi-scrolls are classified according to the location of
their equilibrium points in1D, 2D, and3D-scroll attractor
families. Below, we describe some chaos generator models,
which give origin to families of multi-scroll attractors.

3.1. 1D-grid scroll attractor family

In this family, the equilibrium points are located on a straight
line, and the generated scrolls originate around that line along
thex1 state variable direction in state space. In addition, the
x1 state is also the variable on which the nonlinearity in the
model operates. In the current literature, the so-called 1D-
grid scroll attractor family is also known asn-scroll attrac-
tors [3].

Consider the following chaos generator model [4]:





ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −a (x1 + x2 + x3 − f2 (x1))

(7)
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where

f (ζ) =
{

1, ζ ≥ 0,
−1, ζ < 0 (8)

the state vectorx = (x1, x2, x3)
T ∈ R3 and ζ ∈ R. For

this chaos generator model, a double-scroll like attractor for
a = 0.8 was reported in Ref. 4. Recently, a generalization of
the previous model (7)-(8) for generating multi-scroll attrac-
tors was reported in Ref. 6, by taking the nonlinearity

f1 (x2) =
Mx2∑

i=1

g (−2i+1)
2

(x2) +
Nx2∑

i=1

g (2i+1)
2

(x2) , (9)

where

gθ (ζ) =





1, ζ ≥ θ, θ > 0,
0, ζ < θ, θ > 0,
0, ζ ≥ θ, θ < 0,
−1 ζ < θ, θ < 0

(10)

where nonlinearity (10) is parameterized in fewer unknowns.
A generalization of the chaos generator model (7) can be sys-
tematically obtained by introducing additional breakpoints in
the nonlinearity, where each breakpoint can be implemented
by using (10). For this reason, the nonlinearity (10) is called
thecore function.

Due to the location of the equilibrium points, this strange
attractor family is called1D-grid scroll attractors. In the at-
tractors generated, the scrolls are located around the equi-
librium points. The number of generated scrolls is equal
to the number of equilibrium points, which corresponds to
Mx1 +Nx1 +1. For example; 3-scroll, 5-scroll, and 10-scroll
attractors are generated by using model (7) with nonlinearity
(9)-(10) fora = 0.4 and for (Mx1 = Nx1 = 1), (Mx1 = 0,
Nx1 = 4), and (Mx1 = 4, Nx1 = 5), respectively.

3.2. 2D-grid scroll attractor family

In this family, the equilibrium points are located on thex1 and
x2 state variables. The generated scrolls are located along the
x1 andx2 state variable directions in state space. Thex1 and
x2 states are the variables on which the nonlinear functions
operate. In the current literature, this family is known as the
2D-grid scroll attractor family[7].

We consider the chaos generator model proposed in
Ref. 1, described by




ẋ1 = x2 − f1 (x2) ,
ẋ2 = x3,
ẋ3 = −a (x1 + x2 + x3 − f2 (x1))

(11)

with double nonlinear functions:

f1 (x2) =
Mx2∑

i=1

g (−2i+1)
2

(x2)
Nx2∑

i=1

g (2i+1)
2

(x2) , (12)

f2 (x1) =
m−1∑

i=1

βgpi (x1) (13)

where

FIGURE 1. (a) 3×3-grid scroll attractor in 2D and (b) time series
of chaotic behavior.

pi = Mx2 +
1
2

+ (i− 1) (Mx2 + Nx2 + 1) ,

i = 1, 2, . . . , m− 1,

β = Mx2 + Nx2 + 1.

In Ref. 7 it is shown that the equilibrium points are
located in the (x1, x2)-plane, and that this family has
m×(Mx2 +Nx2 +1) equilibrium points. For this reason, this
chaos generator model has been calledstrange attractor fam-
ily m×(Mx2 + Nx2 + 1)-scroll grid attractors. For example,
some generated 2D-grid scroll chaotic attractors: 2×2-scroll,
2×3-scroll, 4×4-scroll, and 4×5-scroll grid attractors, and
their corresponding nonlinearities are given in [7,8]. Below,
we show the family of 3×3-scroll grid chaotic attractor of
particular interest to us for synchronization purposes.

3.3. 3×3-grid scroll attractor

For chaos generator model (11) with nonlinear functions (12)
and (13), and consideringa = 0.8, andMx2 = 0, Nx2 = 2,
andm = 3, we have the particular nonlinear functions:

f1 (x2) = g 1
2

(x2) + g 3
2

(x2) , (14)

f2 (x1) = 3
(
g 1

2
(x1) + g 7

2
(x1)

)
,

which corresponds to thefamily of chaotic attractors with
3×3-grid scroll attractor in 2D (see Fig. 1). In the next
section, we shall synchronize the 2D-grid scroll attractors
defined by (11)-(13) with nonlinearities (14), by using the
methodology presented in Sec. 2.
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4. Synchronization of multi-scroll chaotic at-
tractors

The chaos generator model (11)-(13) in Generalized Hamil-
tonian form, according to Eq. (3) (asmaster model) is given
by




ẋ1

ẋ2

ẋ3


 =




0 1
2a

1
2

− 1
2a 0 1
− 1

2 −1 0


 ∂H

∂x

+




0 1
2a − 1

2
1
2a 0 0
− 1

2 0 −a


 ∂H

∂x
+



−f1 (x2)

0
af2 (x1)


 (15)

with nonlinearitiesf1 (x2) and f2 (x1) given by (14). We
take as Hamiltonian energy function

H (x) =
1
2

[
ax2

1 + ax2
2 + x2

3

]
(16)

and as gradient vector

∂H

∂x
=




a 0 0
0 a 0
0 0 1







x1

x2

x3


 =




ax1

ax2

x3


 .

The destabilizing vector field calls forx1 andx2 signals to be
used as the outputs, of the master model (15). We usey = x2

in (15). The matricesC, S, andI are given by

C =
[

0 1
a 0

]
,

S =




0 1
2a − 1

2
1
2a 0 0
− 1

2 0 −a


 , I =




0 1
2a

1
2

− 1
2a 0 1
− 1

2 −1 0


 .

The pair(C,S) is observable. Therefore, the nonlinear state
observer for (15), to be used as theslave model, is designed
according to Eq. (4) as




ξ̇1

ξ̇2

ξ̇3


 =




0 1
2a

1
2

− 1
2a 0 1
− 1

2 −1 0


 ∂H

∂ξ

+




0 1
2a − 1

2
1
2a 0 0
− 1

2 0 −a


 ∂H

∂ξ
+



−f1 (y)

0
af2 (ξ1)




+




k1

k2

k3,


 ey. (17)

With gainki, i = 1, 2, 3 to be selected in order to guarantee
asymptotic exponential stability to zero of the state recon-
struction error trajectories (i.e., synchronization errore (t)).
From Eqs. (15) and (17) we have that the synchronization

error dynamics is governed by




ė1

ė2

ė3


 =




0 1
2a

1
2

− 1
2a 0 1
− 1

2 −1 0


 ∂H

∂e

+




0 1
2a − 1

2
1
2a 0 0
− 1

2 0 −a


 ∂H

∂e
+




k1

k2

k3


 ey. (18)

5. Stability of the synchronization error

In this section, we examine the stability of the synchroniza-
tion error (18) between the master model (15) described in
Hamiltonian form and the slave model (17), corresponding
to the designed nonlinear observer. According to the above-
mentioned Theorem 1, for this particular case, we have the
stability condition

2
[
S − 1

2
(
KC + CT KT

)]
< 0

that is,

2




0 1−k1
2a − 1

2
1−k1
2a −k2

a − k3
2a

− 1
2 − k3

2a −a

0


 < 0. (19)

By applying the Sylvester’s Criterion -which provides a test
for negative definite matrices, we have that the above 3×3-
matrix will be negative definite , if we choosek1, k2, andk3

such that the condition (19) holds,i.e.:

k1 6= 1, (20)

k3 < −
a

[
k2 + (1− k1)

2
]

1− k1
.

FIGURE 2. Synchronization between state trajectories of mas-
ter (15) and slave (17) models.
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FIGURE 3. 3×3-grid scroll attractor, generated by master
model (15).

FIGURE 4. 3×3-grid scroll attractor, generated by slave
model (17).

FIGURE 5. Chaotic communication scheme using two transmission
channels.

When we have selected K= (k1, k2, k3)
T with

k1=k2=k3=2, which satisfies (20), and considering the ini-
tial conditionx (0) = (0.1, 0.1, 0), ξ (0) = (0.2, 0.2, 0), for
a = 0.8 andMx2 = 0, Nx2 = 2, m = 3, we carry out
the following numerical simulations by using a fourth-order
Runge-Kutta integration algorithm with time step 0.01. Nev-
ertheless, it is interesting to note that multistep algorithms
can be more efficient for the data computation, as is shown
in Ref. 28. Figure 2 shows the state trajectories between the
master and slave models (15) and (17), respectively, and their
synchronization. Figures 3 and 4 show the 3×3-grid scroll
chaotic attractors generated by the master (15) and slave (17)
models, respectively, and their synchronization.
Remark 1.We do not take the outputy = x1, given that this
selection cannot satisfy the condition of Theorem 1.

FIGURE 6. Secret communication process of an audio message:
original audio message (top of figure), transmitted chaotic signal
(middle of figure), and recovered audio message at the receiver end.

6. Secret communication

In this final part, we apply the synchronization of two mod-
els generating multi-scroll attractors to private communica-
tion of confidential information. In particular, we transmit
encrypted analog and digital information.

6.1. Chaotic encoding by using two transmission chan-
nels

We resort to a communication scheme for chaotic masking
by using two transmission channels. It is well-known that,
with this scheme, we achieve faster synchronization and pri-
vacy; one channel is used to synchronize master and slave
chaos generator models (15) and (17) via coupling signal
y (t) = x2 (t). Meanwhile, the other channel is used to trans-
mit hidden audio messagem (t), which is recovered at the
receiver end, by means of the comparison between signals
s (t) = x3 (t) + m (t) andξ3 (t) (see Fig. 5). On the other
hand, Fig. 6 illustrates the secret communication process of
an audio message: the private audio messagem (t) to be hid-
den and transmitted (top of figure), the transmitted chaotic
signals (t) = x3 (t) + m (t) (middle of figure), and the re-
covered audio messagem′ (t) at the receiver end (bottom of
figure). The confidential audio message used is a fragment of
the song “Billie Jean”.
Remark 2. In this cryptosystem, the processes of encryp-
tion and synchronization are completely separated with no
interference between them. So, encrypted information does
not interfere with synchronization, therefore not increasing
the sensitivity of synchronization to external errors. As a
result, this cryptosystem gives faster synchronization (by the
observer gain selected) and security (due to the complex sig-
nal useds(t)). For greater security, it is possible to incorpo-
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FIGURE 7. Digital communication scheme.

FIGURE 8. (a) Confidential jpg image message to be hidden and transmitted. (b) Chaotic encrypted image through a public channel. (c)
Recovered jpg image message at the receiver end.

rate a complex encryption function similar to the technique
reported in Ref. 20.

6.2. Chaotic encoding for jpg image transmission

The chaotic communication scheme to transmit hidden jpg
images is shown in Fig. 7. The private transmission is
achieved by using the chaotic switching technique. A binary
signalm (t) is used to modulate one parameter of the trans-
mitter. According to the value ofm (t), at any given time
t, the transmitter has either the parameter valuep or p′. For
example, if it is a ‘0’ bit, then the transmitter has the param-
eter valuep, otherwise the parameter value isp′. So,m (t)
controls a switch whose action changes the parameter val-
ues betweenp andp′ in the transmitter, while the receiver
always has the parameter valuep. The synchronization error
ey (t) = x2 (m (t))− ξ2 (t) determines if the received signal
y (m (t)) corresponds to a ‘0’ or ‘1’ bit. Thus, when trans-
mitter and receiver synchronize, it can be interpreted as a ‘0’
bit, and when transmitter and receiver do not synchronize, it
will be interpreted as a ‘1’ bit.

In our case, to transmit an encrypted jpg image via
chaotic switching, leta be the parameter to be modulated in
the transmitter (15). The binary informationm(t) is added

to a as follows: a (t) = a + r · m (t), wherer = 0.001.
Previously, in the encryption process, the jpg image mes-
sage is converted to a binary sequence of numbers, to obtain
m (t). Let us consider the jpg image shown in Fig. 8a as
the confidential message to be transmitted. Figure 8b illus-
trates the chaotic encrypted jpg image transmission through
a public channel, when the parametera in the transmitter is
switched betweena (1) = 0.8 anda (0) = 0.801. Mean-
while, at the receiver end, the synchronization error detection
ey (t) = x2 (m (t)) − ξ2 (t) is achieved for the recovered
binary sequencem′ (t) after a filtering stage. Finally, from
m′ (t), the recovered jpg image message is shown in Fig. 8c.
The rule for obtaining the binary sequencem′ (t) is based on
ey (t) for each bit period to assign a ‘0’ or ‘1’ bit, as follows:
when ey (t) 6= 0, the it is a ‘1’ bit and wheney (t) = 0,
then it is a ‘0’ bit. Note that an eavesdropper will obtain the
encrypted image shown in Fig. 8b from the chaotic signal
x2 (m (t)).

Remark 3.It is a secure cryptosystem, where the hidden in-
formationm(t) in the transmitted signaly (m (t)) cannot be
reconstructed by means of the techniques reported in the lit-
erature,e.g. [29,30]. Nevertheless, if we wish to increase the
encryption security even more, then we can appeal to multi-
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step parameter modulation as reported in Ref. 20. A com-
plete analysis of such issues will appear elsewhere.

7. Concluding remarks

In this paper, we have presented synchronization between
two chaos generator models of the 3×3-scroll chaotic attrac-
tor in 2D. By means of computer simulations, we have il-
lustrated the chaotic synchronization of the mentioned mod-
els coupled in master-slave configuration. The approach can
be easily implemented in the experimental setup, and shows
great potential for actual communication systems in which
the encoding is required to be secure.

In a forthcoming article we shall be concerned with the
physical implementation of the synchronization of chaos
models generating multi-scroll chaotic attractors. Of course,
an important issue will show (by means of a complete anal-
ysis) that the proposed cryptosystems are secure in the sense
of the attacks reported in Refs. 29 and 30.
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