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Stationary oscillations in a damped wave equation from isospectral
Bessel functions
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Using the isospectral partners of the Bessel functions derived by Reyeset al. [1], we find, on one hand, that these functions show non-typical
supersymmetric (SUSY) behavior and, on the other, that the isospectral partner of the classical wave equation is equivalent to that of a
damped system whose oscillations do not vanish in time, but show a non-harmonic shape.
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Usando las compañeras isoespectrales de las funciones de Bessel obtenidas por Reyeset al.[1], encontramos, por un lado, que estas funciones
muestran un comportamiento atı́pico de SUSY, mientras que, por otro lado, la compañera isoespectral de la ecuación de onda cĺasica es
equivalente a la de un sistema amortiguado cuyas oscilaciones no desvanecen con el tiempo, sino que obtienen una forma que no es armónica.
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1. Introduction

In quantum mechanics (QM), the number of problems that
can be exactly solved is very limited, and one can only hope
to get the approximate solution using a variety of methods, or
turn to a modified problem which can be described in terms of
the known exact problems. In fact, one of the main virtues of
supersymmetric (SUSY) quantum mechanics is that there one
can find an infinite number of one-parameter problems which
possesses the same spectra as the known exact ones. If SUSY
cannot be applied, one can still find isospectral solutions by
using the classical factorization method, or the interwinning
method, to look for new equations with the old spectra.

In classical mechanics, the only problem that can be di-
rectly compared to quantum mechanics is that described by
the classical wave equation

(
∇2 − 1

v2

)
ψ(x, y; t) = 0, (1)

but it has been stated before that there is no SUSY partner for
this equation [2]. In fact, a factorization of the Bessel equa-
tion a la Infeld and Hull cannot be found [3]. However, the
Bessel equation,

d2Jn(r)
dr2

+
1
r

dJn(r)
dr

+
(

1− n2

r2

)
Jn(r) = 0 , (2)

with n ≥ 0, which arises from the wave equation after sepa-
ration of variables, still possesses a factorization in terms of
raising and lowering operators defined by the equations [4]

A+
n Jn(r) =

(
d

dr
− n

r

)
Jn(r) = −Jn+1(r) , (3)

A−n+1Jn+1(r) =
(

d

dr
+

n + 1
r

)
Jn+1(r) = Jn(r) , (4)

respectively.

Following the work of Mielnik [5], who finds a family of
potentials that posses the same spectrum as that of the one-
dimensional harmonic oscillator, and the work of Piña [6] on
the factorization of some special functions found in mathe-
matical physics, Reyeset al. [1] are able to derive second-
order differential equations that are ‘isospectral’ to the equa-
tions described in the Sturm-Liouville theory. Note that since
the ‘spectral’ parametern appears inA+

n andA−n , contrary to
SUSYQM [5], it shows up in the partner equation in a more
complicated fashion than the original equation.

As one can see, obtaining the isospectral partner of the
Bessel equation is the first step toward an isospectral classi-
cal wave equation, this being the main purpose of this letter.
But, before proceeding in this direction, we first show that the
partner functions of the Bessel functions show a unique and
unusual SUSY behavior. Then, we show that the isospectral
classical wave equation that comes from the isospectral part-
ner of the Bessel equation resembles the problem of damped
waves, which nevertheless do not vanish in time, but show
non-harmonic shapes due to this damping term.
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2. Isospectral Bessel Equation

In Ref. 1, the isospectral partner of the Bessel equation was
found to be

d2J̃n+1

dr2
+

1
r

dJ̃n+1

dr
+

(
1− (n + 1)2

r2

)
J̃n+1

= −4n

r2

[
(2n + 1)γr2n + 1

]

(γr2n + 1)2
J̃n+1, (5)

where, as is usual in SUSYQM,n ≥ 0 and the lowest ly-
ing eigenvalue is lost. Here,γ is the parameter of the partner
functions, with0 ≤ γ < ∞.

The term on the right of Eq.(5) corresponds to the extra
potential function term in a typical SUSYQM problem, with
the difference that in this case, the integral defining this term
is exactly solvable. This also happens in the partner Bessel
functions, which were found to be

J̃n+1(r; γ) = −Jn+1(r) +
2n

r

(
γr2n + 1

)−1
Jn(r) . (6)

Notice that the fact that these functions are explicitely
found allows one to take a closer look at their properties, and
by doing so we are here able to show that there exists a non-
typical SUSY behavior for the isospectral Bessel functions,
in the following sense.

In Ref. 1 it was thought that the partner functions were
not regular atr = 0. This is not the case, however. One can
see thatJ̃1 = −J1, and that forn > 0 we can use one of the
recursion relations among the Bessel functions, namely,

2n

r
Jn(r) = Jn+1(r) + Jn−1(r) , (7)

to find that the partner Bessel functions are regular atr = 0,
since then

J̃n+1(r; γ) =
−γr2n

γr2n + 1
Jn+1(r) +

1
γr2n + 1

Jn−1(r) . (8)

Now, this is a very unique feature of the Bessel partner func-
tions. In SUSYQM the partner function of ordern + 1,
ψ̃n+1(x; γ), is related to the original function of preceding
orderψn(x) through a differential operator. Here, the partner
function of ordern + 1 is related to two Bessel functions, of
ordersn − 1 andn + 1 (see Fig. 1.) Moreover, one can see
that the limits of the parameterγ give

J̃n+1(r; γ=0) = Jn−1(r) , (9)

while
J̃n+1(r; γ =∞) = −Jn+1(r) . (10)

Therefore, the partner Bessel functionJ̃n+1(r; γ), transforms
from Jn−1(r) to−Jn+1(r) asγ goes from 0 to∞. This is its
most unusual characteristic, to be related to a Bessel function
of two orders less than its own.

FIGURE 1. Typical SUSY isospectral function generating scheme
(left), and the way Bessel isospectral partners are generated (right),
in terms of then−1 andn+1 orders of the original functions.

3. Stationary oscillations in a damped wave
equation

In order to connect the partner Bessel funcions to the wave
equation, we begin writing Eq.(5) forkr instead ofr:

r2 d2J̃n+1

dr2
+ r

dJ̃n+1

dr
+

(
k2r2 − (n + 1)2

)
J̃n+1

= gn+1(kr; γ)J̃n+1 , (11)

where

gn+1(u; γ) = −4n
[
(2n + 1)γu2n + 1

]

(γu2n + 1)2
. (12)

Now, we multiply by a function of the polar angleθ,
H(θ), and assume that this function satisfies the equation

d2H

dθ2
+ (n + 1)2H = 0 , (13)

in order to write the wave equation
(
∇2 − 1

v2

)
ψ̃n+1(r, θ; t; γ)

=
gn+1(kr; γ)

r2
ψ̃n+1(r, θ; t; γ), (14)

whereψ̃n+1(r, θ; t; γ) = J̃n+1(kr; γ)H(θ)eiωt.
This is the wave equation derived from the isospectral

Bessel functions in Ref. 1, possessing a damping term
gn+1(kr; γ)/r2 which, though singular atr = 0, allows for
stationary solutions whose radial part is the partner Bessel
function (8). It is the kind of equation that may help in our
understanding of neuronal activity, where such equations ap-
pear [7].
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FIGURE 2. Partner Bessel functions:̃J2 (left), evolving fromJ0, γ = 0, to−J2, γ = ∞, andJ̃3, evolving fromJ1 to−J3 (right). Note
how the damping term affects the typical harmonic shapes of the Bessel functions, except whenγ = 0 andγ = ∞.

One may ask then, how is this damping term reflected in
the stationary waves? The answer comes from our discussion
above, about the waỹJn+1 is determined byJn−1 andJn+1.
Notice that forγ = 0, the damping term reduces to4n/r2

and is absorbed into the ordinary Bessel equation (2), and
that forγ = ∞ the damping term reduces to zero. For other
values ofγ, the damping term modifies the Bessel functions,
making them lose their typical harmonic shapes, as can be
seen in Fig. 2, where drastic changes in the harmonic shapes
are seen asγ increases towards infinity, especially forr close
to zero.

4. Conclusion

In this letter we have shown that it is possible to find an
isospectral partner of the classical wave equation. By using

the isospectral partners of the Bessel functions from Ref. 1,
we have shown that the arising wave equation contains a
damping term, whose action does not destroy the station-
ary waves, but makes them acquire non-harmonic shapes.
Since the Bessel equation cannot be supersymmetrized [2],
this may be the only way one can find an isospectral partner
of the wave equation.
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