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A controlled Lagrangian approach is presented for the stabilization of an inverted pendulum mounted on a cart. The stabilization strategy
consists in forcing the closed-loop system to behave as an Euler-Lagrange system, with a fixed inertia matrix. For carrying it out, it is
necessary to adequately shape the potential and kinetic energies of the closed-loop system. The idea behind this procedure is to make ¢
energy-balance between the overall energy of the pendulum system and the dissipation energy produced by the action of the control force
The resulting closed-loop system is locally asymptotically stable about its unstable equilibrium point with a very large attraction domain.
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En este trabajo se presenta el problema de la estabdizatg un gndulo invertido sobre un carro mediante el lagrangiano controlado.

La estrategia de estabilizaci consiste en forzar al sistema en lazo cerrado a que se comporte como un sistema Euler-Lagrange, donde la
matriz caractdstica de inercia es constante. Para lograr esto, es necesario modelar adecuadamentédsetergal y ciatica del

sistema en lazo cerrado. La idea fundamental de este procedimiento es hacer un balancetedenéedayeneig de todo el sistemay la

enerda disipada mediante los movimientos horizontales del carro. El sistema obtenido en lazo cerrado es localmente estebimastat
alrededor de su punto de equilibrio inestable, con un dominio de draouiy grande.

Descriptores: Sistema Euler-Lagrange, balanceo de eremgtodo de Lyapunov.

PACS: 45.20.Jj

1. Introduction up the pendulum to the upright vertical position, with the cart
resting at the origin. This control problem has been dealt with

The controlled Lagrangian approach is a useful method th:ﬂom two ditferent approaches. The first approach is based

allows us to stabilize a broad class of physical systems tha] n the mathgmatical foundations of the nonlinear theory, and
can be described by the Euler-Lagrange motion equation%. € secon(:] |sf.based on Sﬁft-comput.mg Eonftrﬁl m_ethodsl.( In
Loosely speaking, it consists in looking for an external in_regard o the first approach we mep.tlon't € foflowing WOrKs.

put that forces the closed-loop systemfollow a convenient In Ref. 4 the authors solve the stabilization problem based on

Euler-Lagrange system with a suitable stability property. Fo}h?n(;r?gsrm”erg L;g;int%':{]t&e;hg?ex gggjsl:ir;(;t'oﬁo\\llvvgc:ro?;z
instance, in some cases, it is useful for the closed-loop systeﬁy y prop Y '  they

to be asymptotically stable around one unstable equilibriun(w“‘annOt guarantee regulation of the cart position. A similar

point. In other cases, it is necessary for the system to foIIowwork’ with similar tools, was presented in Refs. 1 and 10,

periodic orbits or simply diminish the effect of undesirable with the advantages of guaranteeing, for a large domain of

vibrations. An advantage to this method is that the Originalstab|llty, the asymptotic convergence of all the state variables.

system can be seen as an energy transformation device, whéPeRefl'_ 11 the au;horzsolve thehsta_l? |I|tzr?t|on Zrotkr)llem t;]y us-
the action of the controller may be interpreted, in terms of9 @ Lyapunov-based approach. 10 this end, they shape a

energy, as another system interconnected with the proces an_didate Lyap.u'npv function that would make it possible to
in order to modify as desired the behavior of the overall en érive the stabilizing controller. Related to the secon_d ap-
ergy. In general, it is desirable for the total energy of thepro"’“?h we only rgfer the reader to Refs. 12 to 15, not without
closed-loop system to go to zero or to one positive constanp}ebnetf:'ggléhtit’cgn?rirlﬁ:zl' dt:e_(s:g w%r]lés ?;\f ;2‘;??8’?(?:9‘9
depending on the requirements of the problem (see Refs. (1 vice withodl W

to 8). Here, we are focusing on the asymptotic stabilization o]elther the full parametric physical model or all the state vari-

an inverted pendulum mounted on a cart with a restricted do@bIeS; however, they cannot ensure asymptotic stability for

main of attraction. This mechanical device consists of a freéhe wh_ole_statg, an_d _computlng the corresponding domain of
vertical rotating pendulum with a pivot point mounted on aattractmn Is quite difficult.

cart. The cart can be moved horizontally by means of a hor- Our approach focuses mainly on proposing a simple con-
izontal force. The stabilization problem consists of bringingtrol strategy for bringing the pendulum to the top position



330 C. AGUILAR-IBANEZ, O. OCTAVIO GUTIERREZ F., AND H. SOSSA A.

and the cart to the zero position simultaneously, by forcing

the closed-loop system to behave as a locally stable Euler- m
Lagrange system, with a constant inertia matrix. The main
contribution of this work is building the closed-loop poten- 9 mg

tial and kinetic energies for the entire system by solving two

restricted equations, which are very easy to solve in compari-
son to other energy-based approaches (see the previous worlk
of Refs. 1, 3, and 10). On the other hand, the new potential
energy (related to the total energy of the system) allows us to q
determine the domain of attraction of the closed-loop system.
As a matter of fact, the latter can be adjusted adequately ta

keep the two position variables moving inside a certain ad-

missible set. f
The rest of the paper is organized as follows. Section 2

presents the dynamic model of tHeC. In Sec. 3, a suitable O O

target system is presented in order to shape the needed potel

tial and kinetic energies. Section 4 depicts the stability anal- _

ysis of the closed-loop system and Sec. 5 presents some cornCURE 1. The inverted pendulum cart system.

puter simulations, while the conclusions are given in Sec. 6'Problem statement: The objective is to bring the pendulum

to its unstable upright position with the cart resting at the ori-

gin by using the control Lagrangian approach, restricting the

pendulum angle and the cart position to movement inside the

Consider the traditional inverted pendulum mounted on a cafgmissible set. This set can be synthesized by analyzing the

(IPC) (see Fig. 1), which is described by the following nor- gomain of attraction of the obtained closed-loop system.
malized set of differential equations:

2. The inverted pendulum cart system

cosB+ 6 — sinf = 0, 3. Control Lagrangian approach
1
(14 68)G + cos 00 — 0%sin 0 = f, @ Under the assumption that the pendulum angle position is ini-
tialized over the horizontal plane, we attempt to asymptot-
- -CITIE ically stabilize the pendulum about its unstable equilibrium
that the pendulum forms with the verticdl,is the force ap-  point. For that purpose we propose a simple controlled La-
plied to the cart, acting as a control input, and a structural  grangian approach to solve it. Intuitively, we wished to find a
parameter related to the mass of the cart and the pendulurggntroliery that would transform the original system (3) into
respectively [9]. As the damping force in the actuated coOrgnother nonlinear Euler-Lagrange system, with some desired

dinateq can be easily compensated, we do not include thigapility properties. That is, we are looking for a control law

wheregq is the cart normalized displacemefitjs the angle

term. After applying the following feedback,
f =cosfsinf — 0%sinf + v(2 + sin 0 + 9),
into system (1), we obtain

0 = sinf — cos v,

5 @)
q=nv.
Evidently, the above system may be expressed as:
X =—F(0) + G(0)v, (3)
where
O I R Il O

andx stands fox” = (6, ¢). Note that the system (2) has

two equilibrium points, whem = 0 andd<|0, 2], one being
an unstable equilibrium poirtt, 0, ¢, §)=(0, 0,0,0) and the
other being a stable equilibrium poift, 6, ¢, ¢)=(=, 0,0, 0).

v such that the closed-loop system can be written in the form
Md}"{ = *Kd(x)x - VJ:Vd(X)v (5)

whereM, is strictly symmetric positive definitivel{,(x) is
symmetric and positive semi-definitive, ahfl(x) is a local
positive function with a local minimum. We refer to sys-
tem (5) as a “target system”. For our convenience, func-
tion V4(x) is selected in such a way th®t,V,;(0) = 0 and
V2V4(0) > 0. That is to say,V,(x) is a locally strictly
convex function around the origin. Evidently, the two sys-
tems (3) and (5) are equivalent systems, for a given control
law v if the solution of both systems are the same. That is,
(x(t),v(t)) is a solution of (3), if and only if x(¢) is a solu-
tion of (5).

Therefore, the two systems (3) and (5) are equivalent, if
the following equality is satisfied:

—F(0) + G(0)v = —M; " (Ka(x)% + V,Va(x))  (6)

It should be noticed that if7 is invertiblg?, then we can ob-
tain directly the desired controller, for any givenK,, and

Rev. Mex. . 54 (4) (2008) 329-335



CONTROLLED LAGRANGIAN APPROACH TO THE STABILIZATION OF THE INVERTED PENDULUM SYSTEM 331

V4. However,G is not invertible because it is a single col- whereg is any smooth function and
umn. That is, controb only acts in the range space 6f
From this, we have the following constraint equation:

2 2
0= G M7V, Va(x)—GLF(0)+ G- M7 Ky(x)%. (7)  s=dq+ %9 PG Sl
2

p2y/ =1+ pi3
This is followed by multiplying both sides of (6) by the an-
nihilator of G.** Consequently, if the unknown functiors; % tanh~1 < L+ po tan 9) . (14)
andV, are obtained for a giveR, then controb can be com- V=14 p3 2
puted directly by

 =GTM; (Ka(x)% + V,Va(x)) + GTF(0) ®) Then, Egs. (9) and (10) are simultaneously fulfilled, for all
v 1+ cos? 6 ' 0€l,=(-0,0,) by
Clearly, the above restricted equation can be split into two
restricted partial differential equations, given by: 6, = cos™! <1) ' (15)
0=G* [M; 'V, Vi(x) - F(0)], 9) Ha
and Functiong can be selected almost any way we wish. For
= GiMd*le(x)ic, (10) example, we can introduce any saturation function _such as
g(s) = tanh(s) or g(s) = s%. Here, we use the simple
where the controb can be obtained via relation (8). quadratic function.

Property: The proposed Euler-Lagrange system (5) is a dis—Comment 1: As V, V4(0) = 0 andV2V;(0) > 0, then the
sfipative. system with respect to the total stored energy funcéet formed de(x;”<'a (with o > ()xand small énough) is
tion defined as: a convex set’ On the other hand, if the closed-loop kinetic
E(x,%) = lede + Va(x), (11)  energy function is a globally strictly convex function, then

2 the setF(z,x) < « defines a compact set. This property

since the time derivative df, with respect to the trajectories is important in order to apply the LaSalle theorem. Figure 2

of (5), leads to: shows the level curves defined by the obtaifg¢r). No-
. . L OVa(x) . . tice that whene > 3, the set{z € R?: Vy(z) < 3} is no
B(x,%) = %" Mg% + XTT = —x"Kq(0)%. longer either a convex set or a compact set. On the other,

whena < 1, the sef{z € R? : V() < 1} is a compact set.
The physical meaning of it is that any solution that fulfills
E(x,z) < 1 will always remain inside this compact set.

Due to the fact thai(4(¢) > Oforall 6 € I C (—7/2,7/2),
then we have thal’ is semi-definite negative.

Remark 1: The closed-loop system, given by (3) and (8), is
stable if and only if the target system (5) is stable. This was 1.5
the main reason for selecting the target system as we did.
Thus, we can usf as a candidate Lyapunov function to an-
alyze the stability of the closed-loop system.
Let us find the unknown matrice®/;, K; and the un-
known functionV; that satisfy the two restricted conditions. 0.5
To do so, we introduce the following lemma:

Lemma L Tacking)M; ' and K4(f) as

Md1:|: 1 —uz];

—H2 M3 -0.5

(p2 71#3 cos 0‘)(19@2(0) ko (9) (12)
Kd(e) = _]:2 CQO:’ (1—p2 cos 0)ka(60) ’

2( ) 2 — 3 cos 6
whereps > 1, us > p3, k2(6) > 0 and 1.5
1 -6 -4 -2 0 2 4 6
Vi(x) = — In(—1+
a(x) 11 ( H2) q

1 In(—1 + pocosf) + ﬁg(52)7 (13) FIGURE 2. Level curves fora = 0.25, « = 0.5, « = 1.0 and
o 2 a=3.
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4. Closed-loop stability analysis because we have assumed thatx) € Q. Therefore, we
i ~have thatc = 0 and alsax is a fixed constant vector on the
FromProperty 1 andRemark 1, we find that system (5) is  setg. Let us definex = %" Thenx is one of the two equi-
stable in the sense of Lyapunov, since librium points of the system (3). In other words= (0, 0) or
- N LT . X = (6 = m, ¢ = 0). But from definitions of the invariant set
B(x, %) = —x" Kq(0)%. (16) Q, given in (18), necessarily = 0. Hence,M = 0. That is,

Thus, to guarantee the asymptotic stability of the closed-loof€ largest invariant set/ contained inside the sétis con-

system, we need to use LaSalle’s invariance theorem. First gitituted Dy the single equilibrium poittk = 0,x = 0). Ac-
all, we need to ensure that angl@elongs to the sett,.” For cording to LaSalles’s theorem, all the closed-loop solutions

that purpose, it is sufficient that the initial conditiagy, xo) starting inQ2 asymptotically converge towards the largest in-

with 6, € I,, belonging to a neighborhood of the origin such Variant s/, which is given by ¢ = 0,x = 0). B .
that In summary, we present the main proposition of this pa-

per:
E(xq,%0) < Va(0,,0) = Cy, a7 - . .
Proposition 1. Consider the system (3) in closed-loop
whered,, was defined previously. with (8), where M, K; and V, are selected according to
Lemma 1. Then, the closed-loop system is locally asymp-

Remark 2 : The above inequality defines a stability region totically stable with its domain of attraction defined by the
for the closed-loop system. That is, if the initial condition set( (18).

fulfills the inequalityE'(zo,%o) < Cy, with 6y € 1, then The locally exponential stability of the closed-loop sys-
necessarily(t) € I,,. According to this fact, we can define a tem around the origin can be easily probed by simple lin-
compact sef? as:* earization, but for space limitations we omit this demonstra-

O N . tion. Nevertheless, we can say that the closed-loop system is
={(x,%) : B(x,%) < Oy} (18)  robust with respect to small un-modeled dynamics. That is,

The set has the property that all solutions of the closed- even in the case when the damping force is small enough and
loop system (5) that begin i always remain irf2 the system is initialized close to the origin, the system stills
Continuing with the stability analysis, in order to apply achieving the desired unstable equilibrium point. It can be

LaSalles's Theorem, we must define the following invariantS€en in the numerical simulations presented in the following
' section.
set:

S ={(x,%) € Q: —xTK,(0)x = 0}. (19) Remark 3: If the two position variables are initialized inside
of Q2 (seeRemark 2 with zero velocities, then we can tuning
Now, let M be the largest invariant set §i LaSalle’s theo- the control parameters ensuring that the cart position and the
rem guarantees that every solution starting in a compact s@endulum angle position remain inside of certain admissible
Q) approaches\/ ast — oo [16]. Therefore, we need to SetQ C (2, where

compute the largest invariant set in S. o ) _
Let us then compute the largest invariant &&in S. To Q@={x=(0,9) cQ:]0] <6, <m/2and|q| <7}

do so, we first rewrites' as Of courseg must be selected according to the physical re-
striction on the cart movement. In other words, it is possi-

2
S =< (x,%x) € Q: —ky(0)3(0) <9’+1q> =0, (20) Dble to bring all the states to the upright unstable position,
B(0) restricting the angle position and the cart movement to con-

finement within the admissible et
where the free functiok. (0) is different from zero, and %

B(g) = 2= Hscosh). 5. Simulation results
1 — pocosf

To test the performance of the obtained control law we car-
ried out some numerical simulations using the MATLAB
system. The controller parameters were fixeduas= 2,
pus = 5, ko = 1 andk, = 0.25, and the initial conditions

1 were set a®, = —1.05[rad], §, = 0.1[radkec], ¢o = 3
@‘1 andgy = 0. To show the damping force effect we simulated

the system once again under the same initial conditions, but

That is, on the sef the variable®) andg do not change their  we includes the linear term “0.4” in the non-actuated co-
sign. Now, if the variableg andq are different from zero and ordinate. Figures 3 and 4 show the closed-loop response of
have the same sign inside of the Setthen(d, ¢) tendsto go  each state when damping is not present and when damping is
outside the invariant s&2. But this case is a contradiction

Note that on the se$, we must have thad € I, so that
£(0) > 0, in S (recalling thatus > u2). Therefore, from the
definition of S (20), we have that

0+ =0, with £(f) >0, ontheset S.
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FIGURE 3. Closed-loop behavior of the variablésandd, for two FIGURE 4. Closed-loop behavior of the position and velocity of the
values of3. Continuous line and dotted line indicate thtat= 0 cart, for two values of3. Continuous line and dotted line indicate
andg = 0.1, respectively. that = 0 andg = 0.1, respectively.

present, respectively. In the first case the closed-loop rethe closed-loop system to be dissipative. Physically, the ini-
sponse is represented by a continuous line and the secotidl pendulum energy is dissipated by the convenient cart hor-
case is represented by a dotted line. Also we can see iizontal movements, until the pendulum achieves the top po-
these figures that the damping force effect produces widesition and the cart rests at the origin.

oscillations around the origin. As we can see our strategy is

quite robust with respect to the dissipation force, because the

resulting closed-loop system is locally exponentially stable
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suming that the pendulum is initialized above the horizontal

plane. The idea behind this is to introduce an adequate feed-

back that allows us to re-write the original system as a stable .

Euler-Lagrange system with a constant inertia matrix (5)A Appendix

To this end, we need to build adequate potential and kinetic

closed-loop energy functions, which are obtained by solving’roof of Lemma 1: We first check the first restricted con-

two restricted equations. Afterward, the stabilizing controllerditions related to the potential ener§fy. Substitutingh/; !

is proposed in such a way that the total energy function is and F'(6), defined previously in the first matrix of (12) and

non-increasing function. That is, the obtained control causethe first matrix of (4), respectively, in Eq. (9). We have, after
recalling thatG+ = (1, cos #): the following
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_ oV,
G [M; 1V, Va(x) — F(0)] = 7;(1 — 13 cos 0)
+ %(*Hz + pscosf) +sinf =0. (A1)

We can easily check that the following function
1
Va(x) = k1 — ™ In(—1+ pocosf) + @,(s), (A.2)
2

is one solution of th&DE given in (A.1), wherek, is a con-
stant,s is an auxiliary variable given in (14), anbl, is any
arbitrary function. To guarantee that the potential enéfgy
is locally positive definite in a neighborhood »f= 0, it is
enough that
Va(0) =0, V,V4(0) =0,

V2V4(0) > 0.  (A.3)

Applying the above conditions (A.3) into (A.2), we obtain

k= In(—1+ p12) /12, ®,(0) = 0,

q)p(o) > 07,”2 > 17,”3 > ,ugv

so that®,, may be fixed as

C. AGUILAR-IBANEZ, O. OCTAVIO GUTIERREZ F., AND H. SOSSA A.

with k&, > 0. That is, we have validated the expressiofvpf
given by (A.2), which is strictly positive and well-defined, if

—1+ pocosf > 0.

Evidently the above inequality is satisfied, for all
0e(—0,,0,), with 6, defined in (15). Consequently, the pro-
posedV; satisfies the restricted Eq. (9), for élkc 1,,. Now,
we proceed to show that the propod€g guarantees the sec-
ond restricted condition. From (10), we can sel&gt pro-
vided that

G M Kq(x) = 0. (A.4)
Substituting/ ! previously defined inLemma 1, into the
first set of linear equations of (A.4), we have thiat=8=0
andds; = 0. In the same manner, we can easily show that
the previous defined matriceld ! and K, (both matrices
in (12)), fulfill the second set of linear equations of (A.4). Be-
sides, K, is semi-definite positive, if the free functidn ()
is strictly positive, for alld € I,,. Indeed, from the two in-
equalities given in (13), it follows thak ;(9) is strictly pos-
itive in I,,. Finally, it is worth mentioning that the two re-
stricted equations have been easily solved almost in algebraic
form. Notice that if we employ the methodology based on the
matching condition of the controlled Lagrangian, it is neces-
sary to solve three ordinary differential equations related to
the kinetic energy shaping, and one nonlinear partial differ-
ential equation related to the potential energy [1, 3, 10].

x. Corresponding author, caguilar@cic.ipn.mx.

1. The original system (or physical plant) interconnected with the

control action is referred to the closed-loop system.
3. Here, we us& to denoteG(0).
iii. Recalling thalG* satisfiesG-G = 0.
iw. The largestt > 0, such thatVy(z) < « is a compact set,

4. A.M. Bloch, N.E Leonard, and J.E.MarsdéBEE Trans Auto-
matic Control45 (2000) 2253.

5. C.C. Chung, J. Hausehutomatica36 (2000) 287.

6. |. Fantoni and R. LozandJonlinear control for the underactu-
acted mechanical systef8pringer-Verlag, London 2002).

7. K.J. Astrom and K. Furutajutomatica36 (2000) 287.

allows us to have one estimated of the stability domain, since

E(x,%x) < a defines an invariant compact set, due to the fact 8.

that £ is a non-increasing function.
v. Recalling from Lemma 1 that the signs &f and £ are well

defined, for all§ € I,. That is we need to guarantee that 9

0(t) € I, ,forall¢t > 0.

vi. This set will be used later to apply LaSalle’s invariance Theo-10.

rem.

vii. We use the symbaj to indicate that the variablg is a con-
stant.
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