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FAX: +(52) 55 5586-2936

Recibido el 7 de diciembre de 2006; aceptado el 4 de junio de 2008

A controlled Lagrangian approach is presented for the stabilization of an inverted pendulum mounted on a cart. The stabilization strategy
consists in forcing the closed-loop system to behave as an Euler-Lagrange system, with a fixed inertia matrix. For carrying it out, it is
necessary to adequately shape the potential and kinetic energies of the closed-loop system. The idea behind this procedure is to make an
energy-balance between the overall energy of the pendulum system and the dissipation energy produced by the action of the control force.
The resulting closed-loop system is locally asymptotically stable about its unstable equilibrium point with a very large attraction domain.
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En este trabajo se presenta el problema de la estabilización de un ṕendulo invertido sobre un carro mediante el lagrangiano controlado.
La estrategia de estabilización consiste en forzar al sistema en lazo cerrado a que se comporte como un sistema Euler-Lagrange, donde la
matriz caracterı́stica de inercia es constante. Para lograr esto, es necesario modelar adecuadamente las energı́as potencial y cińetica del
sistema en lazo cerrado. La idea fundamental de este procedimiento es hacer un balanceo de energı́a entre la energı́a de todo el sistema y la
enerǵıa disipada mediante los movimientos horizontales del carro. El sistema obtenido en lazo cerrado es localmente estable asintóticamente
alrededor de su punto de equilibrio inestable, con un dominio de atracción muy grande.

Descriptores: Sistema Euler-Lagrange, balanceo de energı́a, ḿetodo de Lyapunov.

PACS: 45.20.Jj

1. Introduction

The controlled Lagrangian approach is a useful method that
allows us to stabilize a broad class of physical systems that
can be described by the Euler-Lagrange motion equations.
Loosely speaking, it consists in looking for an external in-
put that forces the closed-loop systemi to follow a convenient
Euler-Lagrange system with a suitable stability property. For
instance, in some cases, it is useful for the closed-loop system
to be asymptotically stable around one unstable equilibrium
point. In other cases, it is necessary for the system to follow
periodic orbits or simply diminish the effect of undesirable
vibrations. An advantage to this method is that the original
system can be seen as an energy transformation device, where
the action of the controller may be interpreted, in terms of
energy, as another system interconnected with the process,
in order to modify as desired the behavior of the overall en-
ergy. In general, it is desirable for the total energy of the
closed-loop system to go to zero or to one positive constant,
depending on the requirements of the problem (see Refs. 1
to 8). Here, we are focusing on the asymptotic stabilization of
an inverted pendulum mounted on a cart with a restricted do-
main of attraction. This mechanical device consists of a free
vertical rotating pendulum with a pivot point mounted on a
cart. The cart can be moved horizontally by means of a hor-
izontal force. The stabilization problem consists of bringing

up the pendulum to the upright vertical position, with the cart
resting at the origin. This control problem has been dealt with
from two different approaches. The first approach is based
on the mathematical foundations of the nonlinear theory, and
the second is based on soft-computing control methods. In
regard to the first approach we mention the following works.
In Ref. 4 the authors solve the stabilization problem based on
the controlled Lagrangian method in conjunction with some
symmetry properties that the system satisfies. However, they
cannot guarantee regulation of the cart position. A similar
work, with similar tools, was presented in Refs. 1 and 10,
with the advantages of guaranteeing, for a large domain of
stability, the asymptotic convergence of all the state variables.
In Ref. 11 the authors solve the stabilization problem by us-
ing a Lyapunov-based approach. To this end, they shape a
candidate Lyapunov function that would make it possible to
derive the stabilizing controller. Related to the second ap-
proach we only refer the reader to Refs. 12 to 15, not without
mentioning that, in general, these works have the advantage
of been able to control the device without the need to know
either the full parametric physical model or all the state vari-
ables; however, they cannot ensure asymptotic stability for
the whole state, and computing the corresponding domain of
attraction is quite difficult.

Our approach focuses mainly on proposing a simple con-
trol strategy for bringing the pendulum to the top position
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and the cart to the zero position simultaneously, by forcing
the closed-loop system to behave as a locally stable Euler-
Lagrange system, with a constant inertia matrix. The main
contribution of this work is building the closed-loop poten-
tial and kinetic energies for the entire system by solving two
restricted equations, which are very easy to solve in compari-
son to other energy-based approaches (see the previous works
of Refs. 1, 3, and 10). On the other hand, the new potential
energy (related to the total energy of the system) allows us to
determine the domain of attraction of the closed-loop system.
As a matter of fact, the latter can be adjusted adequately to
keep the two position variables moving inside a certain ad-
missible set.

The rest of the paper is organized as follows. Section 2
presents the dynamic model of theIPC. In Sec. 3, a suitable
target system is presented in order to shape the needed poten-
tial and kinetic energies. Section 4 depicts the stability anal-
ysis of the closed-loop system and Sec. 5 presents some com-
puter simulations, while the conclusions are given in Sec. 6.

2. The inverted pendulum cart system

Consider the traditional inverted pendulum mounted on a cart
(IPC) (see Fig. 1), which is described by the following nor-
malized set of differential equations:

cos θq̈ + θ̈ − sin θ = 0,

(1 + δ)q̈ + cos θθ̈ − θ̇2 sin θ = f,
(1)

whereq is the cart normalized displacement,θ is the angle
that the pendulum forms with the vertical,f is the force ap-
plied to the cart, acting as a control input, andδ is a structural
parameter related to the mass of the cart and the pendulum,
respectively [9]. As the damping force in the actuated coor-
dinateq can be easily compensated, we do not include this
term. After applying the following feedback,

f = cos θ sin θ − θ̇2 sin θ + v(2 + sin2 θ + δ),

into system (1), we obtain

θ̈ = sin θ − cos θv,

q̈ = v.
(2)

Evidently, the above system may be expressed as:

ẍ = −F (θ) + G(θ)v, (3)

where

F (θ) =
[ − sin θ

0

]
, G(θ) =

[ − cos θ
1

]
, (4)

andx stands forxT = (θ, q). Note that the system (2) has
two equilibrium points, whenv = 0 andθ∈[0, 2π], one being
an unstable equilibrium point(θ, θ̇, q, q̇)=(0, 0, 0, 0) and the
other being a stable equilibrium point(θ, θ̇, q, q̇)=(π, 0, 0, 0).

FIGURE 1. The inverted pendulum cart system.

Problem statement:The objective is to bring the pendulum
to its unstable upright position with the cart resting at the ori-
gin by using the control Lagrangian approach, restricting the
pendulum angle and the cart position to movement inside the
admissible set. This set can be synthesized by analyzing the
domain of attraction of the obtained closed-loop system.

3. Control Lagrangian approach

Under the assumption that the pendulum angle position is ini-
tialized over the horizontal plane, we attempt to asymptot-
ically stabilize the pendulum about its unstable equilibrium
point. For that purpose we propose a simple controlled La-
grangian approach to solve it. Intuitively, we wished to find a
controllerv that would transform the original system (3) into
another nonlinear Euler-Lagrange system, with some desired
stability properties. That is, we are looking for a control law
v such that the closed-loop system can be written in the form

Mdẍ = −Kd(x)ẋ−∇xVd(x), (5)

whereMd is strictly symmetric positive definitive,Kd(x) is
symmetric and positive semi-definitive, andVd(x) is a local
positive function with a local minimum. We refer to sys-
tem (5) as a “target system”. For our convenience, func-
tion Vd(x) is selected in such a way that∇xVd(0) = 0 and
∇2

xVd(0) > 0. That is to say,Vd(x) is a locally strictly
convex function around the origin. Evidently, the two sys-
tems (3) and (5) are equivalent systems, for a given control
law v if the solution of both systems are the same. That is,
(x(t),v(t)) is a solution of (3), if and only if ,x(t) is a solu-
tion of (5).

Therefore, the two systems (3) and (5) are equivalent, if
the following equality is satisfied:

−F (θ) + G(θ)v = −M−1
d (Kd(x)ẋ +∇xVd(x)) (6)

It should be noticed that ifG is invertibleii, then we can ob-
tain directly the desired controllerv, for any givenKd, and
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Vd. However,G is not invertible because it is a single col-
umn. That is, controlv only acts in the range space ofG.
From this, we have the following constraint equation:

0 = G⊥M−1
d ∇xVd(x)−G⊥F (θ)+G⊥M−1

d Kd(x)ẋ. (7)

This is followed by multiplying both sides of (6) by the an-
nihilator ofG.iii Consequently, if the unknown functionsKd

andVd are obtained for a givenF , then controlv can be com-
puted directly by

v =
−GT M−1

d (Kd(x)ẋ +∇xVd(x)) + GT F (θ)
1 + cos2 θ

. (8)

Clearly, the above restricted equation can be split into two
restricted partial differential equations, given by:

0 = G⊥
[
M−1

d ∇xVd(x)− F (θ)
]
, (9)

and

0 = G⊥M−1
d Kd(x)ẋ, (10)

where the controlv can be obtained via relation (8).

Property: The proposed Euler-Lagrange system (5) is a dis-
sipative system with respect to the total stored energy func-
tion defined as:

E(x, ẋ) =
1
2
ẋT Mdẋ + Vd(x), (11)

since the time derivative ofE, with respect to the trajectories
of (5), leads to:

Ė(x, ẋ) = ẋT Mdẍ + ẋT ∂Vd(x)
∂x

= −ẋT Kd(θ)ẋ.

Due to the fact thatKd(θ) ≥ 0 for all θ ∈ Is ⊂ (−π/2, π/2),
then we have thaṫE is semi-definite negative.

Remark 1: The closed-loop system, given by (3) and (8), is
stable if and only if the target system (5) is stable. This was
the main reason for selecting the target system as we did.
Thus, we can useE as a candidate Lyapunov function to an-
alyze the stability of the closed-loop system.

Let us find the unknown matricesMd, Kd and the un-
known functionVd that satisfy the two restricted conditions.
To do so, we introduce the following lemma:

Lemma 1: TackingM−1
d andKd(θ) as

M−1
d =

[
1 −µ2

−µ2 µ3

]
;

Kd(θ) =

[
(µ2−µ3 cos θ)k2(θ)

1−µ2 cos θ k2(θ)
k2(θ)

(1−µ2 cos θ)k2(θ)
µ2−µ3 cos θ

]
,

(12)

whereµ2 > 1, µ3 > µ2
2, k2(θ) > 0 and

Vd(x) =
1
µ2

ln(−1 + µ2)

− 1
µ2

ln(−1 + µ2 cos θ) +
kp

2
g(s2), (13)

whereg is any smooth function and

s = q +
µ3

µ2
θ +

2(µ3 − µ2
2)

µ2

√
−1 + µ2

2

× tanh−1

(
1 + µ2√
−1 + µ2

2

tan
θ

2

)
. (14)

Then, Eqs. (9) and (10) are simultaneously fulfilled, for all
θ ∈ Iµ = (−θµ, θµ), by

θµ = cos−1

(
1
µ2

)
. (15)

Functiong can be selected almost any way we wish. For
example, we can introduce any saturation function such as
g(s) = tanh(s) or g(s) = s2. Here, we use the simple
quadratic function.

Comment 1: As∇xVd(0) = 0 and∇2
xVd(0) > 0, then the

set formed byVd(x) ≤ α (with α > 0 and small enough) is
a convex set.iv On the other hand, if the closed-loop kinetic
energy function is a globally strictly convex function, then
the setE(x, ẋ) ≤ α defines a compact set. This property
is important in order to apply the LaSalle theorem. Figure 2
shows the level curves defined by the obtainedVd(x). No-
tice that whenα ≥ 3, the set

{
x ∈ R2 : Vd(x) ≤ 3

}
is no

longer either a convex set or a compact set. On the other,
whenα ≤ 1, the set

{
x ∈ R2 : Vd(x) ≤ 1

}
is a compact set.

The physical meaning of it is that any solution that fulfills
E(x,

.
x) ≤ 1 will always remain inside this compact set.

FIGURE 2. Level curves forα = 0.25, α = 0.5, α = 1.0 and
α = 3.
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4. Closed-loop stability analysis

FromProperty 1 andRemark 1, we find that system (5) is
stable in the sense of Lyapunov, since

Ė(x, ẋ) = −ẋT Kd(θ)ẋ. (16)

Thus, to guarantee the asymptotic stability of the closed-loop
system, we need to use LaSalle’s invariance theorem. First of
all, we need to ensure that angleθ belongs to the setIµ.v For
that purpose, it is sufficient that the initial condition(x0, ẋ0)
with θ0 ∈ Iµ belonging to a neighborhood of the origin such
that

E(x0, ẋ0) < Vd(θµ, 0) = Cµ, (17)

whereθµ was defined previously.

Remark 2 : The above inequality defines a stability region
for the closed-loop system. That is, if the initial condition
fulfills the inequalityE(x0, ẋ0) < Cµ, with θ0 ∈ Iµ, then
necessarilyθ(t) ∈ Iµ. According to this fact, we can define a
compact setΩ as:vi

Ω = {(x, ẋ) : E(x, ẋ) < Cµ} (18)

The setΩ has the property that all solutions of the closed-
loop system (5) that begin inΩ always remain inΩ.
Continuing with the stability analysis, in order to apply
LaSalles’s Theorem, we must define the following invariant
set:

S = {(x, ẋ) ∈ Ω : −ẋT Kd(θ)ẋ = 0}. (19)

Now, letM be the largest invariant set inS. LaSalle’s theo-
rem guarantees that every solution starting in a compact set
Ω approachesM as t → ∞ [16]. Therefore, we need to
compute the largest invariant setM in S.

Let us then compute the largest invariant setM in S. To
do so, we first rewriteS as

S =

{
(x, ẋ) ∈ Ω : −k2(θ)β(θ)

(
θ̇+

1
β(θ)

q̇

)2

=0

}
, (20)

where the free functionk2(θ) is different from zero, and

β(θ) =
(µ2 − µ3 cos θ)
1− µ2 cos θ

.

Note that on the setS, we must have thatθ ∈ Iµ, so that
β(θ) > 0, in S (recalling thatµ3 > µ2

2). Therefore, from the
definition ofS (20), we have that

θ̇ +
1

β(θ)
q̇ = 0, with β(θ) > 0, on the set S.

That is, on the setS the variableṡθ and
.
q do not change their

sign. Now, if the variableṡθ andq̇ are different from zero and
have the same sign inside of the setS, then(θ, q) tends to go
outside the invariant setΩ. But this case is a contradiction

because we have assumed that(x, ẋ) ∈ Ω. Therefore, we
have thatẋ = 0 and alsox is a fixed constant vector on the
setS. Let us definex = x.vii Thenx is one of the two equi-
librium points of the system (3). In other words,x = (0, 0) or
x = (θ = π, q = 0). But from definitions of the invariant set
Ω, given in (18), necessarilyx = 0. Hence,M = 0. That is,
the largest invariant setM contained inside the setS is con-
stituted by the single equilibrium point(x = 0, ẋ = 0). Ac-
cording to LaSalles’s theorem, all the closed-loop solutions
starting inΩ asymptotically converge towards the largest in-
variant setM, which is given by (x = 0, ẋ = 0). ¥

In summary, we present the main proposition of this pa-
per:

Proposition 1: Consider the system (3) in closed-loop
with (8), where Md, Kd and Vd are selected according to
Lemma 1. Then, the closed-loop system is locally asymp-
totically stable with its domain of attraction defined by the
setΩ (18).

The locally exponential stability of the closed-loop sys-
tem around the origin can be easily probed by simple lin-
earization, but for space limitations we omit this demonstra-
tion. Nevertheless, we can say that the closed-loop system is
robust with respect to small un-modeled dynamics. That is,
even in the case when the damping force is small enough and
the system is initialized close to the origin, the system stills
achieving the desired unstable equilibrium point. It can be
seen in the numerical simulations presented in the following
section.

Remark 3: If the two position variables are initialized inside
of Ω (seeRemark 2) with zero velocities, then we can tuning
the control parameters ensuring that the cart position and the
pendulum angle position remain inside of certain admissible
setQ ⊂ Ω, where

Q = {x = (θ, q) ⊂ Ω : |θ| < θµ < π/2 and |q| < q}.
Of courseq must be selected according to the physical re-
striction on the cart movement. In other words, it is possi-
ble to bring all the states to the upright unstable position,
restricting the angle position and the cart movement to con-
finement within the admissible setQ.

5. Simulation results

To test the performance of the obtained control law we car-
ried out some numerical simulations using the MATLABTM

system. The controller parameters were fixed asµ2 = 2,
µ3 = 5, k2 = 1 andkp = 0.25, and the initial conditions
were set asθ0 = −1.05[rad], θ̇0 = 0.1[rad/sec], q0 = 3
andq̇0 = 0. To show the damping force effect we simulated
the system once again under the same initial conditions, but
we includes the linear term “0.1̇θ” in the non-actuated co-
ordinate. Figures 3 and 4 show the closed-loop response of
each state when damping is not present and when damping is
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FIGURE 3. Closed-loop behavior of the variablesθ andθ̇, for two
values ofβ. Continuous line and dotted line indicate thatβ = 0
andβ = 0.1, respectively.

present, respectively. In the first case the closed-loop re-
sponse is represented by a continuous line and the second
case is represented by a dotted line. Also we can see in
these figures that the damping force effect produces wider
oscillations around the origin. As we can see our strategy is
quite robust with respect to the dissipation force, because the
resulting closed-loop system is locally exponentially stable
around.

6. Conclusions

The controlled Lagrangian approach is used for the stabi-
lization of theIPC around its unstable equilibrium point, as-
suming that the pendulum is initialized above the horizontal
plane. The idea behind this is to introduce an adequate feed-
back that allows us to re-write the original system as a stable
Euler-Lagrange system with a constant inertia matrix (5).
To this end, we need to build adequate potential and kinetic
closed-loop energy functions, which are obtained by solving
two restricted equations. Afterward, the stabilizing controller
is proposed in such a way that the total energy function is a
non-increasing function. That is, the obtained control causes

FIGURE 4. Closed-loop behavior of the position and velocity of the
cart, for two values ofβ. Continuous line and dotted line indicate
thatβ = 0 andβ = 0.1, respectively.

the closed-loop system to be dissipative. Physically, the ini-
tial pendulum energy is dissipated by the convenient cart hor-
izontal movements, until the pendulum achieves the top po-
sition and the cart rests at the origin.
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A Appendix

Proof of Lemma 1: We first check the first restricted con-
ditions related to the potential energyVd. SubstitutingM−1

d

andF (θ), defined previously in the first matrix of (12) and
the first matrix of (4), respectively, in Eq. (9). We have, after
recalling thatG⊥ = (1, cos θ): the following
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334 C. AGUILAR-IBAÑEZ, O. OCTAVIO GUTIERREZ F., AND H. SOSSA A.

G⊥
[
M−1

d ∇xVd(x)− F (θ)
]

=
∂Vd

∂θ
(1− µ2 cos θ)

+
∂Vd

∂q
(−µ2 + µ3 cos θ) + sin θ = 0. (A.1)

We can easily check that the following function

Vd(x) = k1 − 1
µ2

ln(−1 + µ2 cos θ) + Φp(s), (A.2)

is one solution of thePDE given in (A.1), wherek1 is a con-
stant,s is an auxiliary variable given in (14), andΦp is any
arbitrary function. To guarantee that the potential energyVd

is locally positive definite in a neighborhood ofx = 0, it is
enough that

Vd(0) = 0, ∇xVd(0) = 0, ∇2
xVd(0) > 0. (A.3)

Applying the above conditions (A.3) into (A.2), we obtain

k1 = ln(−1 + µ2)/µ2, Φ
′
p(0) = 0,

Φ
′′
p (0) > 0, µ2 > 1, µ3 > µ2

2,

so thatΦp may be fixed as

Φp(z) =
kp

2
z2,

with kp > 0. That is, we have validated the expression ofVd,
given by (A.2), which is strictly positive and well-defined, if

−1 + µ2 cos θ > 0.

Evidently the above inequality is satisfied, for all
θ∈(−θµ, θµ), with θµ defined in (15). Consequently, the pro-
posedVd satisfies the restricted Eq. (9), for allθ ∈ Iµ. Now,
we proceed to show that the proposedKd guarantees the sec-
ond restricted condition. From (10), we can selectKd, pro-
vided that

G⊥M−1
d Kd(x) = 0. (A.4)

SubstitutingM−1
d , previously defined inLemma 1, into the

first set of linear equations of (A.4), we have thatd11=β=0
andd22 = 0. In the same manner, we can easily show that
the previous defined matricesM−1

d andKd (both matrices
in (12)), fulfill the second set of linear equations of (A.4). Be-
sides,Kd is semi-definite positive, if the free functionk2(θ)
is strictly positive, for allθ ∈ Iµ. Indeed, from the two in-
equalities given in (13), it follows thatKd(θ) is strictly pos-
itive in Iµ. Finally, it is worth mentioning that the two re-
stricted equations have been easily solved almost in algebraic
form. Notice that if we employ the methodology based on the
matching condition of the controlled Lagrangian, it is neces-
sary to solve three ordinary differential equations related to
the kinetic energy shaping, and one nonlinear partial differ-
ential equation related to the potential energy [1,3,10].

∗. Corresponding author, caguilar@cic.ipn.mx.

i. The original system (or physical plant) interconnected with the
control action is referred to the closed-loop system.

ii. Here, we useG to denoteG(θ).

iii. Recalling thatG⊥ satisfiesG⊥G = 0.

iv. The largestα > 0, such thatVd(x) < α is a compact set,
allows us to have one estimated of the stability domain, since
E(x, ẋ) ≤ α defines an invariant compact set, due to the fact
thatE is a non-increasing function.

v. Recalling from Lemma 1 that the signs ofE and Ė are well
defined, for allθ ∈ Iµ. That is we need to guarantee that
θ(t) ∈ Iµ , for all t > 0.

vi. This set will be used later to apply LaSalle’s invariance Theo-
rem.

vii. We use the symboly to indicate that the variabley is a con-
stant.
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