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This paper presents the application of the Boundary Element Method to primary and secondary creep problems in a two-dimensional analysis.
The domain, where the creep phenomena takes place, is discretized into quadratic, quadrilateral, continuous internal cells. The creep analysis
is basically applied to metals, that are capable of modeling secondary and primary creep behaviour. This is confined to standard power law
creep equations. Constant applied loads are used to demonstrate time effects. Numerical results are compared with solutions obtained from
the Finite Element Method (FEM) and references.
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Este art́ıculo presenta la aplicación del Método de Elementos de Frontera a problemas del creep primarios y secundarios para un análisis en
dos dimensiones. El dominio, donde el fenómeno del creep se genera, es dicretizado con celdas internas cuadriláteras cuadráticas continuas.
El ańalisis del creep es básicamente aplicado a metales, que son capaces de modelar el comportamiento primario y secundario del creep.
Dicho comportamiento está limitado a ecuaciones de la ley de potencia del creep. Se aplican cargas constantes para demostrar los efectos del
tiempo. Los resultados nuḿericos son comparados con soluciones obtenidas del Método de Elementos Finitos y referencias.

Descriptores: Creep; elementos de frontera; elementos finitos.

PACS: 62.20.Hg; 43.20.Rz; 47.11.Fg

1. Introduction

Most of the materials used in engineering have sophisti-
cated material properties which may depend on stress, time
and temperature. In order to model the complex behaviour
of such materials, stress analysis techniques are developed.
These techniques are necessary to solve the elastic problem
but also go further to model the non-elastic phenomenon such
as plasticity and creep.

For many years the FEM has been used as the main tool to
solve problems in engineering [2]. The domain of the body
is divided into several small subdomains, of a fairly simple
shape, called finite elements. Any continuous parameter such
as pressure or displacement can be approximated to the actual
behaviour of the solution with trial functions, usually polyno-
mials. These functions are uniquely defined in terms of the
approximated values of the solution at some nodal points, in-
side or on the boundary of each element.

A weighted residual technique is the most popular tool to
assess this approximation, leading to a symmetric system of
equations which involves the unknown values of the approx-
imated solution at nodal points. Without doubt this method
is computationally efficient and for many years has reached

such popularity that a very wide range of linear and non-
linear engineering problems have been solved with this pow-
erful numerical method [3].

The Boundary Element Method (BEM) is a less mature
technique but has reached a level of development in certain
fields that has made it an essential tool for design engineers.
The BEM has also many applications but not as many as
FEM. Nevertheless this method is an effective alternative to
FEM in many important areas of engineering analysis. The
BEM is a relatively new technique for engineering analysis;
the fundamental can be traced back to mathematical formu-
lations by Fredholm [4] and Mikhilin [5] in potential theory
and Kupradze [6] in elasticity. In the context of the BEM,
also called Boundary Integral Equation (BIE) [7], the for-
mulations are due to Jaswon [8], Hess and Smith [9], Mas-
sonet [10], Rizzo [11] and Cruse [12]. But perhaps the most
significant early contribution to BEM as an effective numer-
ical technique is due to the work of Lachat [13] and Lachat
and Watson [14]. They developed an isoparametric formula-
tion similar to the FEM and proved that the BEM can be used
as an efficient tool for solving problems with sophisticated
configurations.
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The reduction of the dimensionality of the problem is one
of the most important attractive features of this technique; in
the two-dimensional case, only the boundary of the domain
needs to be discretized and for three-dimensional problems,
the surface is discretized into a number of boundary elements
over which polynomial functions, of the type used in finite
elements, are introduced to interpolate the values of the ap-
proximated solution between the nodal points. Following dis-
cretization of the boundary and the evaluation of the relevant
integrals, a matrix system of equations is obtained, which is
fully populated and non-symmetric, and is of a much smaller
size than the FEM.

Some of the main characteristics of BEM are:

i) a reduced set of equations,

ii) simple data preparation,

iii) semi-infinite or infinite boundaries need not be accu-
rately modeled,

iv) accurate selective calculation of internal stresses and

v) displacements and high resolution for stress concentra-
tion problems.

These features plainly justify the increasing popularity
achieved in recent years.

This paper is dedicated to the creep analysis by applying
the Boundary Element Method (BEM) in order to find a more
efficient and accurate analysis technique.

2. Methodology

2.1. Introduction to Creep

The phenomenon of creep can be illustrated by considering a
specimen which is loaded at room temperature. If the load is
applied for a long period of time, under constant temperature,
the specimen gradually deforms in time. This behaviour may
eventually fail after intervals ranging from minutes to many
years depending on the temperature and the applied load. At
low temperatures changes due to creep are usually very small
and failure rarely occurs. At high temperatures, creep de-
formation can cause considerable changes in dimensions and
failure generally occurs after a certain time, tf . The time
to fracture decreases if both the temperature and the applied
stress are increased. Because of this, it is important to de-
fine the high temperatures at which creep and creep fracture
generally become important. In the case of pure metals, high
temperatures can be defined at about 0.4 Tm, where Tm is
the absolute melting point.

2.2. Power Law Creep Model

The expression commonly used to describe accurately the
way the secondary creep rate varies with the stress by ap-
plying the same temperature is:

ε̇c = σn (1)

wheren is a material constant,̇εc is the creep strain rate
since the (.) denotes the derivative with respect to time, t. In
expression (1), is clear that the stress-creep strain rate rela-
tionship is non-linear. This equation provides the basis for
“power law creep” relationships, which have been widely
used to represent the behaviour of the high-temperature
creep.

From the mathematical model for stress dependence and
time dependence, the strain for secondary creep can be mod-
eled as:

ε̇c = Bσnt

whereB is a material constant that depends on the tempera-
ture.

The Norton-Bailey equations are combined to obtain the
expression for representing primary and secondary creep at a
constant temperature:

ε̇c = Bσntm (2)

wherem is a material property that indicates the creep stage.

2.3. Creep behaviour Under Variable Uniaxial Stress

The analysis of the constant uniaxial stress creep model has
served to define the basic dependence of the deformation on
time, temperature and stress. For varying stress, the theory
of creep is more complicated and two approaches have to be
considered: the time hardening approach, and the strain hard-
ening approach. By differentiating the Norton-Bailey equa-
tion [see Eq. (2)], with respect to time, the creep strain rate
can be written as follows:

ε̇c = mBσnt(m−1) (3)

This equation is called thetime hardening approachand the
creep strain rate depends on the current stress and time. By
substitutingm < 1 in the above equation we obtain the pri-
mary creep stage. The substitution ofm = 1 into (3) de-
scribes the secondary creep stage, which becomes:

ε̇c = Bσn, (4)

where the dot above the strain indicates the rate of change
with time. According to the above equation, the creep strain
rate at this stage depends on the current stress only.

2.4. Multiaxial States of Stress

In practice, it is found that the multiaxial characteristics of
creep are very similar to non-linear formulations, and are
commonly based on the Prandtl-Reuss flow rule and the von
Mises effective stress criterion.

So, the multiaxial case of the time hardening approach is
obtained as follows

ε̇c =
3
2
mB(σeq)(n−1)Sijt

(m−1)

The above multiaxial formulation is based on the uniax-
ial creep law, and therefore it is not suitable for stress reversal
situations.
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2.5. Non-Linear formulation for BEM

The equilibrium conditions that must be satisfied over the do-
main can be represented in terms of rates as follows:

σ̇ij,i + ḃj = 0, (5)

and on the boundary:

ṫi − σ̇ijnj = 0, (6)

whereḃjare the body forces andnj are the components of the
outward normal to the boundary.

The relationship for the total stress and strain, elastic and
inelastic, in term of rate quantities can be written as follows:

σ̇ij = σ̇e
ij + σ̇a

ij ,

ε̇ij = ε̇e
ij + ε̇a

ij .

wherėσe
ij , σ̇a

ijare the elastic and inelastic stress tensor, re-
spectively. Herėεe

ij andε̇a
ij are the elastic and inelastic strain,

respectively.
The inelastic stress tensor (see Ref. 1), can be defined by

the following equation:

σ̇a
ij = 2µε̇a

ij +
2µν

1− 2ν
ε̇a

kkδij ,

whereε̇a
kk is the inelastic strain rate of the main diagonal and

δij is the Kronecker delta whose properties are

δij =
{

0, if i = j
1, if i 6= j

.

The inelastic part of the stress and strain rate
(
σ̇a

ij,ε̇
a
ij

)
can include any kind of inelastic strain such as plastic, creep
or others (see Ref. 20). The superscripta is used, instead
of c, in order to indicate that the formulation is general, even
though the work carried out in this paper deals exclusively
with inelastic strains caused by creep.

In terms of displacements, Navier’s equations for non-
linear analysis can be developed as in elasticity, so the gov-
erning differential equations of the problem are obtained, but
now the rate form of the equations instead. The substitution
of the relationship between the stress and the strain rates in
terms of displacements into the equilibrium equation gives

(
2µε̇ij +

2µν

1− 2ν
ε̇kkδij − σ̇a

ij

)

,i

+ ḃj = 0; (7)

by applying the Kronecker delta and substitutingσ̇a
ij in

Eq. (7) it is possible to obtain

µu̇j,jl+µ

(
1

1−2ν

)
u̇j,jl−2µε̇a

jj,l−
2µν

1−2ν
ė,l+ḃj=0, (8)

whereė = ε̇a
kk i.e. inelastic strain rate. Equation (8) is for in-

ternal points, but boundary conditions must be also satisfied.

The boundary conditions in terms of rates are; for displace-
mentsu̇i = üi and for tractionsṫi = ẗi and the equation
representing the traction boundary conditions (see Ref. 1) is

ṫi + 2µ

(
ε̇a
ij +

ν

1− 2ν
ė

)
nj =

2µν

1− 2ν
u̇l,lni

+ µ (u̇i,j + u̇j,i)nj . (9)

Equations (8) and (9) are for three-dimensional prob-
lems. In order to work with two-dimensional problems for
the plane stress state, it is necessary to remove the strain in
thez-direction, soε̇a

33 = 0.
So far the non-linear problem has been analyzed, which

means that it is not possible to solve the resulting governing
equations directly, as in elasticity. It is possible to solve the
non-linear problem by using a method that involves essen-
tially the solution of an elastic problem in each iteration; this
method is called thesuccessive elastic solutionand it is used
in this work.

The displacement boundary integral equation for inelas-
ticity (see Ref. 1) can be summarized as follows:

∫

Ω

σ̇′ij,j u̇idΩ +
∫

Γ

σ̇′ijnj u̇idΓ−
∫

Ω

σ̇′ij ε̇
a
ijdΩ

=
∫

Ω

σ̇ij,j u̇
′
idΩ +

∫

Γ

σ̇ijnj u̇
′
idΓ, (10)

whereΩ′ is a domain containingΩ, andΓ is the boundary
contained in the domainΩ.

The equilibrium equations and traction definition
(ṫi = σ̇ijnj) can be substituted into Eq. (10) to obtain

∫

Ω

ḃ′iu̇idΩ +
∫

Γ

ṫ′iu̇idΓ−
∫

Ω

σ̇′ij ε̇
a
ijdΩ

=
∫

Ω

ḃiu̇
′
idΩ +

∫

Γ

ṫiu̇
′
idΓ, (11)

whereu̇i, ṫi, σ̇ij andε̇ij are the displacement, traction, stress
and strain rates, respectively, that belong to the domainΩ.
Hereu̇′i, ṫ

′
i, σ̇

′
ij andε̇′ij are the fields corresponding to the do-

mainΩ′. This leads to the following boundary integral rep-
resentation of the boundary displacements when the initial
strain approach is used for the solution of inelastic problems:

cij u̇j +
∮

Γ

ṫ′ij u̇jdΓ =
∫

Γ

u̇′j ṫijdΓ +
∫

Ω

σ̇′ijkε̇a
jkdΩ. (12)

In a similar way, the boundary integral equation of the
internal stresses is expressed by

σ̇ij =
∫

Γ

Dijk ṫjdΓ−
∫

Γ

Sijku̇jdΓ

+
∮

Ω

Σijkε̇a
jkdΩ + fij ε̇

a
jk (13)
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where
∮

is a Cauchy integral,Dijk andSijk are terms con-
taining the derivative of the displacements and tractions,fij

is the free term andΣij is the fundamental solution for the
domain.

The solution to Navier’s differential equation through the
use of the Galerking vector is called the fundamental solution
for a unit force point applied to the body at point d.

The displacement and tractions fundamental solutions,
see Ref. 1 for the displacement boundary equation in the
two-dimensional planes are

u̇′i =
1

8πµ (1− ν)

[
(3− 4ν) ln

(
1
r

)
δij + r,ir, j

]
(14)

ṫ′ij =
−1

4π (1− ν) r
{[(1− 2ν) δij + 2r,ir,j ]

∂r

∂n

− (1− 2ν) (r,inj − r,jni)} (15)

σ′ijk =
−1

4π (1− ν̄) r
{((1− 2ν) (r,jδki + r,iδjk − r,kδij))

+2r,ir,jr,k} (16)

2.6. Boundary Integral Formulation on Creep

In creep analysis, as in plasticity, the initial strain approach
will be applied and the integral equation to calculate the dis-
placement on the boundary is basically the same; the only
difference is that the plastic strain is replaced with the creep
strain rate. So the displacement equation (14) can be rewrit-
ten as:

cij(x′)u̇j(x′) +
∫

Γ

t′ij(x
′, x)u̇i(x′)dΓ

=
∫

Γ

u′ij(x
′, x)ṫj(x′)dΓ +

∫

Ω

σ′ij (x′, z) ε̇c
ij (z) , (17)

whereu̇i, ṫi andε̇c
ij are the displacement, traction and creep

strain rates, respectively.t′ij , u
′
ij andσ′ijare the displacement,

traction and third order fundamental solutions, respectively,
which are functions of the positions of the collocation point
x′ and the field point x which belong to the boundary, or the
internal point z and the material properties.

2.7. Singularities

Two different kinds of integrals can be defined for both the
boundary and the domain. Depending on the integrands, in-
tegrals can be classified as: Regular, in which case they can
be evaluated using the standard gauss quadrature rule, or Sin-
gular, when the collocation point belongs to the element over
which the integration is performed, in which case special
techniques must be used.

All the singular integrals appearing in the displacement
and internal stress integral equations are dealt with by using
well established techniques and are treated separately based
on their order of singularity.

On the boundary, near-singular integrals (when the col-
location node is close to the integration element) are treated
with the element subdivision technique [1]. Weakly singu-
lar integrals O(lnr) are treated using a nonlinear coordinate
transformation, as reported by Telles [19]. Strongly singular
integrals O(1/r) are computed indirectly by considering the
generalized rigid body motion, as explained in [20].

The domain singular integrals can also be separated into
weak O(1/r) and strong O(1/r2). Weakly singular integrals
are treated by a simple technique such as polar coordinate
transformation, followed by a regular procedure [1]. Strongly
singular integrals require special techniques such as those de-
scribed by Leitao [20].

2.8. Equivalent Stress

Since the material properties such as the hardening parame-
ters and the yield stress are obtained from uniaxial loading
tests, it is necessary to state a correlation between them and
the multiaxial stress state. These can be through the equiva-
lent quantities namely: the equivalent or effective stress. The
equivalent or effective stress can be defined as

σeq =
√

3J2 =

√
3
2
SijSij (18)

WhereJ2 is the deviatoric stress tensor and

Sij = σij − ν

1 + ν
σkkδij

(see Ref. 22).

2.9. Numerical Integration

The domainΩY is divided intoNc cells as follows:

ΩY =
Nc

U
n=1

Ωn. (19)

The plastic terms for the strain and stress rate tensors are
given, at every cellΩn, by

ε̇a
ij =

nc∑

L=1

ΨLε̇a,k
ij (20)

σ̇a
i =

Nc∑

L=1

ΨLσ̇a,k
ij (21)

wherenc is the number of nodes in the cell,Ncis the num-
ber of cells andΨL are the shape functions. The numerical
expression for the displacement on the boundary is

cu̇ +
Nel∑
n=1




∫

Γ

TφdΓ


u̇n =

Nel∑
n=1




∫

Γ

UφdΓ


ṫn

+
Nel∑
n=1




∫

ΩN

σΨdΩε̇g,n


 (22)
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The terms T, U andσ in this equation, are sub-matrices
containing the fundamental solution.Nel is the number of in-
tegration elements. Similarly to the boundary, the discretized
expression for the domain stresses can be obtained by

σ̇ij =
Nel∑
n=1

∫

Γ

DṫdΓ−
Nel∑
n=1

∫

Γ

Su̇dΓ

+
Nel∑
n=1

∫

Ω

ΣΨdΩε̇g,n + fij (ε̇g) (23)

The quantities D, S andΣ are sub-matrices containing the
derivative of the fundamental solution, andΨ are the shape
functions corresponding to the boundary elements and cells,
respectively.

3. Results

3.1. Primary Creep Problems

All the results are presented for node 1. An automatic time
marching scheme with the maximum and the minimum creep

FIGURE 1. Geometry, mesh and boundary conditions for a square
plate.

FIGURE 2. Creep strains for uniaxial load in a primary creep anal-
ysis.

strain tolerances of 10−3 and 10−4 are used in all the exam-
ples. Also the geometry, mesh, material properties and creep
parameters are presented in Fig. 1, except that the applied
load is different in every case. Every test is performed for the
total time of 1000 hours for the full load approach.

3.2. Test 1p: Plane Stress (Uniaxial Load)

A square plate subjected to a tensile stress of 200 N/mm2 in
thex-direction is used in this example. The mesh consists of
8 boundary elements and 4 internal cells, as shown in Fig. 1.
A uniaxial stress distribution is involved in this test.

The elastic material properties are:

Young’s modulus,E = 200× 103N/mm2.;

Poisson′s ratio, =0.3;

Applied stress,σxx = 200 N/mm2.

Hardening coefficient H′=0

Creep parameters Total creep time

B = 3.125× 10−14 (MPa./hr.) Tc = 1000 hrs.

m=0.5 (Primary creep)

n=5

The results at the final time are presented in Fig. 2. The
creep strains for both directions x and y have a parabolic be-
haviour, which is to be expected for primary creep analysis.
The results are in very good agreement with the results pre-
sented in NAFEMS’s report (see Ref. 21).

3.3. Test 2p: Plane Stress (Biaxial Load)

A square plate subjected to biaxial tensile stress is used in this
example. This test is a primary creep and plane stress prob-
lem. There is an additional applied load in the y-direction,
σyy = 200N/mm2.

The results of the effective or equivalent creep strain and
the creep strain in x-direction are presented in Fig. 3. These
results show the parabolic behaviour of the primary creep
analysis which is expected for this stage of creep. These re-
sults are in very good agreement with NAFEMS’ results.

3.4. Test 3p: Plane stress (biaxial negative load)

This example is subjected to biaxial stress, similar to test 2p.
This test is a primary creep and plane stress problem. The ge-
ometry, material, mesh, properties and creep parameters are
the same as those used in test 2p, except that there is com-
pression applied in the y-direction,σyy =-200N/mm2.

Rev. Mex. F́ıs. 54 (5) (2008) 341–348
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FIGURE 3. Equivalent creep strain distribution and strain in x-
direction for biaxial load.

FIGURE 4. Creep strains distribution for a biaxial negative load in
a primary creep analysis.

FIGURE 5. Creep strains distribution in the x-directon and the y-
direction for secondary creep analysis.

The results of the equivalent creep strain distribution and
creep strain in the x-direction are shown in Fig. 4. These re-
sults show the parabolic behaviour of the primary creep anal-
ysis, which is to be expected for this stage of creep. These
results are in very good agreement with NAFEMS’ results.

3.5. Test 1s: (uniaxial load)

Similar to the primary creep tests, this example is a square
plate subjected to uniaxial stress. This test is a secondary
creep and plane stress problem. The geometry, mesh, bound-
ary conditions and material properties are the same as those
used in test 1p, except that the creep parameter m=1.0, which
defines a secondary creep analysis.

Figure 5 shows the results for creep strain in the x-
direction and the y-direction. The computed value ofε̇c

xx

after the final time step is 10.0. These results show straight
line behaviour in the secondary creep stage, which is the ex-
pected behaviour for this stage of creep. The results are in
very good agreement with NAFEMS results.

3.6. Test 2s: (biaxial load)

Similar to the primary creep tests, this example is a square
plate subjected to biaxial tensile stress. This test is a sec-
ondary creep and plane stress problem. The geometry,
boundary conditions, mesh, material properties and creep pa-
rameters are the same as those used in test 2p, except that
the creep parameter m=1.0 which defines a secondary creep
analysis.

Figure 6 shows the results for creep strain in the x-
direction and the y-direction. The computed value ofε̇c

xx

after the final time step is 10.0, and the results are the same
for the creep strains in the y-direction. These results show
straight line behaviour in the secondary creep stage, which is
the expected behaviour for this stage of creep. The results are
in very good agreement with NAFEMS results.

3.7. Test 3s: (biaxial negative load)

For this example, a square plate subjected to biaxial stress,
tension and compression is used. This test is the secondary
creep and plane stress problem. The geometry, boundary con-
ditions, mesh, material properties and creep parameters are
the same as those used in test 3p, except that the creep pa-
rameter m=1.0, which defines a secondary creep analysis.

FIGURE 6. Creep strain distribution for a biaxial load in secondary
creep analysis.
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FIGURE 7. Creep strain distribution for a biaxial negative load in
secondary creep analysis.

FIGURE 8. Creep strain distribution in a biaxial load.

Figure 7 shows the results for creep strain in the x-and
y-directions. The computed value ofε̇c

xx after the final time
step is 120.0 and the creep strainsε̇c

yy is -120.0. These values
are due to the applied load, which in the x-direction is tension
and in the y-direction is compression. These results show
straight line behaviour in the secondary creep stage, which is
the expected behaviour for this stage of creep. The results are
in very good agreement with NAFEMS results.

3.8. Test 4s: (biaxial double load)

These tests concern different biaxial tension stresses. The
geometry, mesh and boundary conditions are presented in
Fig. 1. This test is secondary creep and plane stress prob-
lem. The mesh consists of 8 boundary elements and 4 in-

ternal cells, as shown in Fig. 1. The material properties and
creep parameters are the same as those used in test 3s.

Figure 8 shows the results for creep strain in the x-
direction and the equivalent strain. The computed value of
ε̇c

xx after the final time step is 5.0. These results show straight
line behaviour in the secondary creep stage, which is the ex-
pected behaviour for this stage of creep. The results are in
very good agreement with NAFEMS results.

4. Conclusions

The application of the BEM formulation for creep to some
benchmark problems was analyzed; good agreement with
NAFEMS results was observed for all cases. Also found
was a parabolic behaviour in all cases of primary creep; but
for secondary creep, there was straight line behaviour in all
cases. It is important to notice that in practice the secondary
creep analysis is the most used case, but primary creep could
be important in some cases.

The BE program was tested for the problems of a square
plate. The tests include primary creep in some cases and sec-
ondary creep in most cases, and also plane stress and plane
strain analysis. The time hardening creep law was applied for
all cases of creep. The BEM results are compared with the
corresponding finite element solutions obtained, using refer-
ences where available. The results were found to be in good
agreement with the references.

In order to obtain accurate results, it is very important
to choose the size of the initial time step. If it is too large,
the results will not be accurate. If it is too small, the results
will be more accurate but the computational cost and consum-
ing time will be very high. The prescribed tolerances play a
very important role and they give the same effect as the ini-
tial time step. Since an automatic time step control is used
in this work, the maximum and minimum tolerances must be
prescribed. In all problems, the minimum tolerance is deter-
mined by dividing the maximum tolerance by 10. Therefore,
the minimum tolerance is one order less than the maximum
tolerance. The solutions improve as the maximum tolerance
gets smaller. Because of this, the initial time step and pre-
scribed tolerances must be chosen carefully
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