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We study the process of sculpturing three-wave weakly coupled states under the action of the pulsed optical pump in a two-mode square-law
nonlinear waveguide within the collinear regime of propagating the interacting waves. The analytical model for this process with slightly
mismatched wave numbers predicts the sculpturing of multi-pulse optical components inherent in three-wave coupled states. Reasoning from
the developed approach, we discuss an opportunity for the digital modulation of light, because those potentially three-wave coupled states
under consideration can be binary encoded. The performed analysis of sculpturing multi-pulse coupled states in a non-stationary regime was
experimentally examined during our studies of collinear acousto-optical interaction in a two-mode lithium niobate waveguiding structure
exhibiting a square-law nonlinearity.
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Se estudío el proceso para obtener tres estados débilmente ligados por bombeóoptico pulsado en una guı́a de ondas no lineal de variación
cuadŕatica doble dentro del régimen colineal de propagación de ondas interactuantes. El modelo analı́tico para este proceso con números
de onda en ligera discordancia predice este fenómeno. En base a lo anterior se discute la modulación digital de la luz debida a que,
potencialmente, los tres estados acoplados bajo estudio pueden ser codificaos en forma binaria. Se realizó el ańalisis experimental del
fenómeno anterior a través del estudio de la interacción acust́optica colineal en una guı́a de ondas de niobato del litio y se observó un
comportamiento cuadrático.

Descriptores: Interaccíon coolineal de tres ondas; bombeoóptico; estados acoplados de tres ondas; ley cuadrática.

PACS: 32.80.Xx;

1. Introduction

In the last few years, the investigations of wave processes in
square-law nonlinear media had led to the discovery of vari-
ous solitary waves in the form of multi-wave coupled states,
whose components of even different physical nature are mu-
tually trapped and propagate together [1-3]. The profiles of
all the interacting waves are steady at three different cur-
rent frequencies, because the interaction exhibits itself as a
mechanism of the stabilizing self-action [4]. Mismatching
the wave numbers can be also included in a similar analy-
sis that gives us the opportunity to follow the process more
sequentially [5]. The three-wave coupled states represent,
clearly, the simplest version of multi-wave solitary waves
in a square-law nonlinear medium due to the balancing ac-
tion of this type of nonlinearity. By this is meant, in par-
ticular, that three-wave coupled states can be shaped via, for
example, three-wave acousto-optical interaction in a weakly
anisotropic medium. Recently, similar solitary waves have

been described, observed, and studied due to our previous
research into this phenomenon in both the collinear and non-
collinear regimes of propagating the interacting waves with
the continuous-wave incident light wave as a pump [6,7].
By contrast, the main aspect of this work is connected with
the shaping of three-wave weakly coupled states under the
pumping action of the incoming optical pulses. In so doing,
we present the results of studying three-wave weakly cou-
pled states in the particular case of co-directional collinear
light scattering by a relatively slow non-optical wave. The
presented non-stationary model offers a clear view of this
phenomenon with the mismatched wave numbers and pre-
dicts the sculpturing of multi-pulse three-wave weakly cou-
pled states. The development of weakly coupled states is pos-
sible only when the generating non-optical wave and the inci-
dent light beam are present simultaneously in the same inter-
action area, and each of them can be equally well taken as the
parameter that controls the interaction. This fact allows us to
use this effect to shape weakly coupled states by the incom-
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ing pulses,i.e. by the pump for controlling the data stream
associated with the incoming optical pulse train that can be
binary encoded. In this case, control will be provided by an
electronic digital signal, presented in a medium by a binary
encoded sequence of non-optical pulses. The analysis was
examined experimentally using the collinear acousto-optical
interaction in a two-mode square-law nonlinear waveguide.

In Sec. 2, the mathematical model for describing the
collinear three-wave interaction in a square-law, nonlinear,
weakly anisotropic medium is presented. Here, we dis-
cuss some natural restrictions simplifying the set of evolu-
tion equations, and illustrate the properties of the developed
model. Then, the regime of weakly coupled states in a two-
mode waveguide as well as the localization conditions in non-
stationary regime are described in Sec. 3, where the stages of
passing a rectangular in shape non-optical pulse are sequen-
tially followed. The possibilities for shaping various multi-
pulse trains of three-wave weakly coupled states by optical
pump and realizing the digital modulation of light based on
exploiting collinear three-wave coupled states are considered
in Sec. 4. Together with this in Sec. 5, we select and de-
scribe the physical mechanism that is acceptable for the ade-
quate experimental application of the model developed. The
needed estimations and some details of experimental proce-
dure, including general and optical schemes as well as the os-
cilloscope traces obtained, are touched on Sec. 6. Section 7
presents our concluding remarks regarding both theoretical
and experimental aspects of the work presented.

2. Mathematical model for describing a three-
wave collinear interaction in a square-law
nonlinear weakly anisotropic medium

Originally, the co-directional collinear interaction for a triplet
of waves in a square-law nonlinear weakly anisotropic
medium is described by the following set of partial differ-
ential equations [5,8]:

∂C0

∂x
+

1
c0

∂C0

∂t
= q1C1U exp (−2 i η x) ,

∂C1

∂x
+

1
c1

∂C1

∂t
= −q0C0U

∗ exp (2 i η x) ,

∂U

∂x
+

1
v

∂U

∂t
= −qUC0C

∗
1 exp (2 i η x) . (1)

In the context of the problem under consideration,C0,
C1, U and c0, c1, v represent the complex amplitudes and
group velocities of two optical waves and one non-optical
one, respectively;q0, q1, qU are the interaction factors;
2η = k1 − k0 − kU is the mismatch between the wave num-
bersk0, k1, andkU belonging to the corresponding waves.
The wave numberkU of the non-optical wave can be pre-
sented askU = k + ∆k, wherek is the wave number corre-
sponding to the regime of exact phase synchronism, while
∆k = 2π∆f/v reflects the deviation from that synchro-
nism due to a variation∆f of the current cyclic frequency

f inherent in the non-optical wave. Often, the values of
k0 = 2πn0/λ andk0 = 2πn1/λ are fixed for the chosen
initial light wavelengthλ in a waveguide with the refractive
indicesn0 andn1, so thatk1 − k0 − k = 0. Consequently,
one can writeη = π∆f/v and henceη = 0 with ∆f = 0
in the regime of exact phase synchronism. The inequality
v < c1 < c0 between the group velocities and the signs pre-
sented on the right hand side of Eqs.(1) are related to a regime
of the decay instability when the energy exchange takes place
between all the interacting waves.

Usually, the difference|n0 − n1| between the refractive
indices in optically transparent materials is too small, so that
sometimes it seems reasonable to approximate the velocities
of light modes asc0/c1 ≈ 1. To determine an area of ap-
plicability for such an approximation let us consider the in-
teraction between two optical pulses of widthT0 in a weakly
anisotropic medium. If initially these two pulses are spatially
overlapping, they will be separated from each other at the
distanceL0 ≈ c0,1T0 (1− c1/c0)

−1. Thus, the distanceL0

characterizes the length of the collinear three-wave interac-
tion in the chosen approximation. For typical widths of non-
optical pulses exceeding1ns and for the anisotropy of about
(1− c1/c0) ≤ 0.1, one can obtain the following estimate:
L0 >100m. Such a length of interaction is unattainable in
crystalline optical waveguides, because usually the waveg-
uide length does not exceed 10cm, so that one can approxi-
mate the velocities of light modes asc0 ≈ c1 ≈ c in Eqs.(1).

Here, we consider a regime of weak coupling, when
two light modes are connected with each other via an ad-
ditional pulse of a relatively slow wave, being non-optical
in nature nevertheless, an essentially effective interaction
between light modes can be achieved without any observ-
able influence of the interaction process on that non-optical
wave, because the number of interacting photons is a few or-
ders less than the number of scattering non-optical quanta
injected into a waveguide. In this case, the set of equa-
tions (1) falls into a homogeneous wave equation for a slow
non-optical wave, which possesses the traveling-wave solu-
tion U = U (x− vt), and a pair of the combined equations
for light wave amplitudes. The complex amplitudesC0 (x, t)
andC1 (x, t), describing the pumping light mode and gener-
ated one respectively, are governed by

∂C0

∂x
+

1
c

∂C0

∂t
= −q1C1U

∗ (x− vt) exp (2 i η x) , (2)

∂C1

∂x
+

1
c

∂C1

∂t
= q0C0U

∗ (x− vt) exp (−2 i η x) . (3)

A pair of Eqs.(2) and (3) allows the following simple
transformations. First, Eq.(2) can be multiplied byC∗0 ; sec-
ond, the complex conjugate of the obtained result can be writ-
ten as well. Summarizing these two expressions, one can cal-
culate

∂ |C0|2
∂x

+
1
c

∂ |C0|2
∂t

= −q1C
∗
0C1U

∗ (x− vt) exp (2 i η x)

− q1C0C
∗
1U∗ (x− vt) exp (−2 i η x) . (4)
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Similar calculations can be performed for Eq.(3) using
C∗1 , so that the result is given by

∂ |C1|2
∂x

+
1
c

∂ |C1|2
∂t

= q0C
∗
0C1U

∗ (x− vt) exp (2 i η x)

+ q0C0C
∗
1U∗ (x− vt) exp (−2 i η x) . (5)

Multiplying Eq.(4) byq0, Eq.(5) byq1 and summarizing
these results, one can obtain

(
∂

∂x
+

1
c

∂

∂t

) (
q0 |C0|2 + q1 |C1|2

)
= 0. (6)

Finally, exploiting the boundary conditions
C0 (x = 0, t) = 1 and C1 (x = 0, t) = 0 that are natural
for Eqs.(2) and (3), we arrive at the following conservation
law:

q0 |C0|2 + q1 |C1|2 = q0. (7)

Now, we go to the tracking coordinate system
(z = x, τ = t− x/c). Becauset = τ + z/c in this case,
one can obtain thatU (x− vt) = U [z (1− v/c)− vτ ] and

∂C0,1

∂x
+

1
c

∂C0,1

∂t
=

∂C0,1

∂z
.

Making the back substitutions in Eqs.(2) and (3), we ar-
rive at

∂C0

∂x
= −q1C1U

∗
[
x

(
1− v

c

)
− vτ

]
exp (2 i η x) , (8)

∂C1

∂x
= −q0C0U

∗
[
x

(
1− v

c

)
− vτ

]
exp (−2 i η x) (9)

These equations represent the simplified model of the
problem under consideration. To illustrate the properties of
these models let us consider the particular case ofη = 0,
when the solutions to Eqs.(8), (9) with the boundary condi-
tionsC0 (τ, 0) = A0, andC1 (τ, 0) = 0 an arbitrary shape of
U (x, τ) may be written as

|C0| = A0 cosϕ; |C1| = A0

√
q0

q1
sin ϕ

ϕ (x, t) = β

x∫

0

|U (x, τ)| dx; β =
√

q0q1. (10)

As follows from Eqs.(10), whenϕ = πN (hereN is the
whole number), the amplitude of the generated light wave is
equal to zero outside the non-optical wave pulse, so localiza-
tion of the generated light occurs only inside the spatial in-
terval occupied by the non-optical wave pulse. As this takes
place, the spatial distribution of the generated light intensity
containsN peaks of partial pulses, and simultaneously the
distribution of the incident light hasN holes at the same tem-
poral positions. To demonstrate this phenomenon we con-
sider an example in the coordinate system associated with the
moving non-optical pulse,i.e. with v = 0, and take the non-
optical wave pulse in the form of|U (x)| = U0 sec h(x/xs)

(herexs is the spatial pulse width, its temporal width,i.e.
its duration can be defined asτs = xsv

−1 at the level of
sec h1 ≈ 0.65 ), whose envelope has infinite wings. We ob-
tain from Eqs.(10) that

|C0| = cos {βU0xs arctan [sinh (x/xs)]} ,

|C1| = sin {βU0xs arctan [sinh (x/xs)]} . (11)

Using Eqs.(11), the condition of localization can be writ-
ten asβU0xs = N . Thus, whenN = (1, 3, 5, . . .), the wave
C0 forms anN -pulse bright component, while the waveC1

manifests anN -pulse dark component (or shock wave), and
conversely ifN = (2, 4, 6, ...), anN -pulse dark component
appears in waveC0 and anN -pulse bright component arises
in wave C1 each belongs to the corresponding multi-pulse
coupled state. Figure 1 gives art illustrations for these rela-
tions whenN = 1, 2 andβ = 2/π. Figure 1a displays the
localization withN = 1, U0 = 1, andxp = π/2, when
a one-pulse coupled state is formed. The localization with
N = 2 is done in two different ways, namely, withU0 = 1
andxs = π (see Fig.1b) or withU0 = 2 andxs = π/2 (see
Fig.1c). The last pair of diagrams reproduces two different
kinds of two-pulse coupled states.

3. Three-wave weakly coupled states in a two-
mode waveguide; the localization condi-
tions in a non-stationary regime

Now we assume that non-optical pulseU [x (1− v/c)− vτ ] =
u [x (1− v/c)− vτ ] exp (iϕ) has the constant phaseϕ, and
Eq.(8) and (9) can be converted into a pair of the complex-
valued equations

∂2C0,1

∂x2
−

(
1
u

∂u

∂x
± 2iη

)
∂C0,1

∂x
+ q0q1u

2C0,1 = 0. (12)

FIGURE 1. Spatial distributions for the components of coupled
states versus the normalized coordinatex for β = 2/π: (a) localiz-
ing a one-pulse coupled state withN = 1, U0 = 1, andxp = π/2;
(b) localizing a two-pulse coupled state withN = 2, U0 = 1 and
xs = π; and (c) localizing a two-pulse coupled state withN = 2,
U0 = 2 andxs = π/2. The upper diagrams illustrate the variations
of |U |2, the bottom diagrams show|C0|2 (dashed lines) and|C1|2
(solid lines).
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We set C0,1 = a0,1 (x, t) exp [iΦ0,1 (x, t)], γ0,1 =
∂Φ0,1/∂x and divide real and imaginary parts in Eq.(12) as

∂2a0,1

∂x2
−

(
1
u

∂u

∂x

)
∂a0,1

∂x

+
(
q0q1u

2 − γ2
0,1 ± 2ηγ0,1

)
a0,1 = 0, (13)

2 (γ0,1 ∓ η)
∂a0,1

∂x
+

(
∂γ0,1

∂x
− γ0,1

u

∂u

∂x

)
a0,1 = 0. (14)

It follows from Eq.(14) that

γ0,1 = ±ηua−2
0,1

∫
u−1

(
∂a2

0,1/∂x
)
dx + Γ0,1ua−2

0,1,

whereΓ0,1 are the integration constants. Now, we focus on
the process of localization in the case, when first, two facets
of a waveguide atx = 0 andx = L restrict the area of in-
teraction and the spatial lengthx0 of the non-optical pulse is
much less thanL, and second, the non-optical pulse is repre-
sented by

u (x, t) = U0 {θ [x (1− v/c)− vτ ]

− θ [(x− x0) (1− v/c)− vτ ]} ,

i.e. it has a rectangular shape with amplitudeU0. We
analyze Eqs.(13) and (14) with the fixed magnitude ofη
and rather natural boundary conditionsa0 (x = 0, τ) = 1,
a1 (x = 0, τ) = 0 and trace dynamics of the phenomenon
With the assumption thatv ¿ c, we may put that∂U/∂x ≈ 0
in Eqs.(13) and (14) everywhere, excluding the pointsx ∈
{0, x0}, and obtainγ0,1 = ±η + Γ0,1U0a

−2
0,1. Then, we fol-

low three stages inherent in the localization process.

Stage 1: The localizing pulse is incoming through the
facet

x = 0. Exploiting the obtained values ofγ0,1, Eq.(13) can
be solved exactly. The light wave intensities onx ∈ {0, x0}
with Γ0 = η/U0, Γ1 = 0, andq0q1U

2
0 = σ2 are given by

|C0|2 =
η2

σ2 + η2
+

σ2

σ2 + η2
cos2

(
x
√

σ2 + η2
)

, (15)

|C1|2 =
q0

q1

σ2

σ2 + η2
sin2

(
x
√

σ2 + η2
)

. (16)

To find the coefficients in Eqs.(15) and (16) we have used
the conservation lawq0a

2
0 + q1a

2
1 = q0 [see Eq.(7)]. It can

be seen from Eqs.(15) and (16) that, on the one hand, the ef-
ficiency of light scattering is going to100% whenη → 0.
On the other hand, whenσ2 ¿ η2, one can nevertheless ob-
serve the dynamics of shaping three-wave multi-pulse cou-
pled states even if the efficiency of interaction is rather low
due to the factorσ2

(
σ2 + η2

)−1
.

Stage 2: The localizing pulse is passing in a waveguide.

In this regime the rectangular pulse as the whole is in a
waveguide, so∂u/∂x = 0 exactly and one has to put sim-
ply x = x0 in Eqs.(15), (16) in the region(x0, L− x0).

Stage3: The localizing pulse is issuing through the facet

x = L. This stage is symmetrical to Stage 1, whose solutions,
i.e. the above-mentioned Eqs.(15), (16), can be inverted and
related to the spatial interval ofx ∈ (L− x0, L).

These solutions include contributions of two types. The
first summand in|C0|2 exhibits a background determined
by the mismatchη; the second summand presents the os-
cillating portion of the solution,i.e. the localized part of
the pumping light imposed on a background. The generated
light contains the only oscillating portion of field that gives
the localization conditionx2

c

(
q0q1U

2
0 + η2

)
= π2N2, where

N = 0, 1, 2, ..., so thatx0 = xc with N = 1. The intensity
|C1|2 will be nonzero only in the spatial interval occupied
by a slow wave, and therefore, the envelope of the generated

FIGURE 2. Space-frequency distributions for optical components
of a two-pulse three-wave coupled state withq0 ≈ q1, N = 2, and
Lx = 2π: a) two dark peaks in the zero order of scattering; b) two
bright peaks in the first order; this distribution is completely locked
with η = 0.

FIGURE 3. Plots for the phaseΦ0 (solid lines) and the frequency
γ0 (dashed lines) in the componentC0 atσ = 0.1 with: a)η = 0.1,
b) η = 0.3, and c)η = 1.0. The intensity distributions|C0|2 are
shown as well by dotted lines.
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light wave will be localized,i.e. the distribution of|C1|2
over the transverse extent of non-optical wave hasN par-
tial bright peaks in its envelope while the intensity|C0|2
has N holes (dark peaks). The two-dimensional plots
for space-frequency distributions of the optical components
in a two-pulse coupled state are shown in Fig.2. More-
over, the obtained solution exhibits the phenomenon of
the phase self-modulation in the light waveC0, because
γ0 = η

(
σ2 + η2

) {
η2 + σ2 cos2

[
x/

(
σ2 + η2

)]}−1
. Plots

for the phaseΦ0 and the corresponding frequencyγ0 are
shown in Fig.3.

4. Shaping the multi-pulse trains of three-
wave weakly coupled states by optical pump
and digital modulation of light

Each one-dimensional wave operator in Eqs.(8), (9) is equiv-
alent to the total spatial derivative∂/∂x + c−1∂/∂t = d/dx
taken along the characteristic curve. Thus,t = ts + x/c,
where ts determines the initial instant of time for each of
the characteristic curves at the pointx = 0, and con-
sequently, Eqs.(8), (9) can be rewritten through the total
derivatives. Assuming thatC0 (x, t) = C0 (t− x/c) and
U (x, t) = u (t− x/v), one can integrate the second equa-
tion from Eqs.(9) onx ∈ [0, L] as

C1 (L, ts + L/c) = q1C0 (ts)

×
L∫

0

u (ts + x/c− x/v) exp (−2iηx) dx. (17)

Here,u (t) 6= 0 only with x ∈ [0, L], and the observation
point lies outside the area of interaction. If one takes

u = U0

n−1∑

K=0

bk {θ [x− v (t− kT )]

− θ [x− v (t− kT − τ0)]} , (18)

C0 = A0

n−1∑
m=0

dm [θ (t− t0 −mT )

− θ (t− t0 −mT − T )] , (19)

where n is the number of pulses in these trains,bk,
dm ∈ {0, 1} andT is the repetition period of the non-optical
pulses, whose widthτ0 = x0v

−1 has to be related to its am-
plitudeU0, the mismatchη, and the numberN from the lo-
calization condition, butτ0 ≤ T . The pumping optical pulse
train is applied to a waveguide at the instantt0. Because of
v ¿ c, the spatial size of each optical pulse is much longer
than the length of the whole train of non-optical pulses. Once
we have decided upon the observation pointx = L in such
a way thatL = t0/

(
v−1 − c−1

)
, we obtain that the leading

edge of anm-th optical pulse will overtake the leading edge
of an m-th non-optical pulse precisely at the pointx = L.

Assuming that the temporal intervalnτ0vc−1 is negligible,
one can put that at each instant of time the whole train of
non-optical pulses interacts with a single optical pulse, whose
intensity on entering a waveguide is determined by the value
of dm. Let t0 correspond to the instant of time when the
leading edge of the first non-optical pulse, represented byb0,
arrives at the facetx = L. Substituting Eqs.(18) and (19)
into Eq.(17) and performing the integration, we obtain the
amplitude of the generated optical component inherent in an
n-pulse train of weakly coupled states, whose partial ampli-
tudes aregp = bp ∩ dp. Its intensity is given by

|C1|2 =
q0

q1

σ2

σ2 + η2

n−1∑
p=0

gp {θ [L− v (t− pT )]

− θ [L− v (t− pT + τ0)]}

× sin2

{
π

τ0v
[L− v (t− pT )]

}
. (20)

The transmitted light intensity can be determined as
|C0 (x)|2 = |C0 (x = 0)|2 − |C1 (x)|2. As a result of
the interaction between the incoming optical pulse train
and a sequence of non-optical pulses the string of optically
pumped three-wave weakly coupled states becomes shaped.
In fact, we obtain programmable and electronically con-
trolled switching of the incoming optical pulses that can rep-
resent a binary encoded stream of digital data.

5. Selecting the physical mechanism for cou-
pling the light modes

To produce experimentally the above-described non-
stationary model of sculpturing collinear three-wave coupled
states by the pulsed optical pump, the multi-phonon mecha-
nism of light scattering by a stream of the coherent acoustic
phonons, which plays the role of non-optical wave, in a two-
mode crystalline waveguide, was chosen. Such a mechanism
is based on the photo-elastic effect [9] providing a square-
law nonlinearity in an optically anisotropic medium. This
effect is partly similar to the Mandelstam-Brillouin scatter-
ing of light by heat phonons. There is a good reason to take
advantage of the quantum approach to the selected multi-
phonon mechanism, which can be considered a sequence of
three-particle processes and interpreted as scattering the light
quanta, photons, by the quanta of coherent acoustic field,
acoustic phonons. When the length of propagation inherent
in the coherent acoustic phonons becomes large enough, it
is reasonable to believe that acoustic phonons are passing
through an infinite medium and, consequently, have well-
determined magnitudes of momentum and energy. Under
these conditions, each partial act of acousto-optical inter-
action represents a coherent three-particle process, so that
one may use the conservation laws for both the momentum
~p = ~~k and the energyE = ~ω, and these laws determine,
in fact, the wave vectors~k and the angular frequenciesω of
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the interacting particles. Thus, for instance, the energy con-
servation laws for each partial three-particle process can be
written asω1 = ω0±Ω, whereω0 andω1 are the angular fre-
quencies of the incident and scattered photons, respectively;
whileΩ is the angular frequency of the injected phonons. The
plus sign in the energy conservation laws corresponds to orig-
inating an anti-Stokes photon, whereas the minus sign meets
a Stokes photon. By this is meant that there are two pro-
cesses, manifesting the annihilation of a phonon (anti-Stokes
process) or origination of a Stokes phonon. In the particular
case of collinear interaction, the value ofΩ can be estimated
in terms of the refractive indicesn0 andn1 for light modes
C0 andC1, respectively, as

Ω = 2πf =
2πv

λ
|n1 − n0| , (21)

wheref is now the circular frequency of the coherent acous-
tic phonons. It is well known from quantum mechanics that
the probabilities of annihilating and originating the phonons
are proportional toN1/2

0 and(N0 + 1)1/2, respectively, due
to the contribution of the spontaneous process in the last case
(hereN0 is the number of acoustic phonons per unit volume
in a mode). The numberN0 of heat phonons with tempera-
ture in a mode is determined in statistical mechanics as

N0 =
[
exp

(
~Ω
κT

)
− 1

]−1

, (22)

where κ is the Boltzmann constant. Substituting the pa-
rameters for ultra-high-frequency acoustic phonons, passing
through a crystal at the room temperature, in Eq.(22), we ar-
rive at the inequality

N0 ≈ κT

~Ω
À 1. (23)

This result is true as well for the coherent acoustic
phonons injected into a crystal, because an effective temper-
ature inherent in the mode under the excitation of coherent
acoustic phonons is much higher than the temperature of a
crystal lattice. Thus, at room temperature the contribution of
spontaneous processes may be neglected and, consequently,
the probabilities of annihilating and originating the acoustic
phonons or, what is the same, the probabilities of originat-
ing Stokes and anti-Stokes photons are almost equal to each
other. By this is meant that both states of polarization are ac-
ceptable for the incident light beam applied to the input facet
of a waveguide, because they both give practically the same
efficiency of collinear acousto-optical interaction.

An upper angular frequency of acoustic phonons in the
first Brillouin zone of solid states may be estimated in the ap-
proximation of a line lattice asΩmax ≈ 2v/ζ ≈ 1013rad/s
(here ζ, is the lattice constant), while in usual practice
Ω ≤ 1010rad/s. Comparing these estimations even with the
lowest photon’s angular frequency in visible range, for in-
stance, at the wavelength ofλ =671nm, we obtain about
ω ≈ 3· 1015rad/s and, consequently,ω À Ωmax À Ω.
Now it can be seen that, under conventional experimental

conditions when the intensities of light and acoustic beams
are approximately equal to each other, the number of acous-
tic phonons is 105 times more than the number of photons,
so that up to 100% of photons can be scattered due to three-
particle processes without any appreciable effect on a stream
of acoustic phonons. Consequently, the process of light scat-
tering by coherent acoustic phonons can be considered in ap-
proximation of a given phonon field as it was initially as-
sumed in Sec. 2.

6. Estimations and experimental procedure

A schematic arrangement of the performed experiments was
similar to the experimental set-up for the filtering tech-
nique [10] (see Fig.4). The optical part of our experimen-
tal scheme includes two orthogonally oriented polarizer and
collinear acousto-optical cells with electronic input via piezo-
electric transducer and ultrasound absorber, as depicted in
Fig.5. The linearly polarized light pulse is introduced through
the input facet of a waveguide and scattered by the acoustic
pulse inside a planar crystalline waveguiding structure. As
a result, the scattered light beam with an orthogonal state of
linear polarization is generated. Then, both these beams are
issuing through the output facet of that waveguide. The sec-
ond polarizer plays a role of the analyzer and makes it possi-
ble to select the resulting light modes, as the case requires.

The facets of a crystalline planar structure were inclined
with respect to the incoming laser beam to provide the needed
reflection of acoustic wave. For this purpose a lithium niobate
waveguide of about 30mm in length, oriented along [100]-
axis, (synchronism frequency 1.3GHz atλ =0.442nm, tem-
poral aperture 4.6µs, acoustic velocityv=6.57mm/µs [11])
was exploited. We have studied the dynamics of shaping
the string of three-wave weakly coupled states by the train
of rectangular optical pulses of about 300ns in width each

FIGURE 4. General scheme of the experiment with three-wave cou-
pled states.

FIGURE 5. Optical scheme of the experiment with three-wave cou-
pled states.
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FIGURE 6. Digitized oscilloscope traces for bright opti-
cal component|C1|2 of three-wave coupled state trains with:
a) τ0=τc=300ns, ∆f=3.15MHz, P=0.5W/mm2, N=1;
b) τ0=2τc=600ns,∆f=3.15MHz,P=0.5W/mm2, N = 2, N = 2;
c) τ0=τc=300ns,∆f=6.31MHz,P=2.0W/mm2, N=2.

and the train of the localizing rectangular acoustic pulses,
whose widthτ , power densityP , and the frequency mismatch
∆f=ηv/π (see Sec. 2) were varied.

To interpret the experimental data, a set of numerical es-
timations should be taken into account. Let us start from the
factorσ, which can be expressed in terms of the values that
are usually used during the experiments. This factor is given
by [12]

a)σ =
π

λ

√
M2P

2
, b) M2 =

n3
0n

3
1p

2

ρv3
(24)

wherep is the acoustic power density,p is an effective photo-
elastic constant peculiar to the chosen geometry of acousto-
optical interaction, andρ is the crystalline material density.
Because with the longitudinal acoustic wave a lithium nio-
bate (LiNbO3) crystalline structure oriented along the [100]-
axis with n0 = 2.3875 and n1 = 2.2887 at a wave-
length of λ =442nm had been exploited, one has to take
p = p41 = −0.151 andρ =4.65g/cm3 (see Ref. 11) providing
an acousto-optical figure of meritM2 ≈ 2.8· 10−18s3/g . To
estimate two magnitudes of the factorσ two levels of acous-
tic power density had been selected, namely,P1=0.5W/mm2

and P2=0.5W/mm2. Using Eq.(24a) and the standard ra-
tio 1W/mm2=109g/s3, one can obtainσ1 ≈ 0.2mm−1 and
σ2 ≈ 0.4mm−1 , respectively. Then, the spatial lengths of
acousto-optical coupled states can be estimated for two cases
as well. Takingτ1 = 330ns andτ2=660ns, one can find that
x1 = vτ1=2.17mm andx2 = vτ2=4.34mm, respectively. Af-
ter that, the mismatch parameterη is given byη = π∆f/v.
Two magnitudes of this parameter can be estimated for a pair
of the frequency mismatches, namely, for∆f1=3MHz and

∆f2 = 6MHz asη1=1.45mm−1 andη2=2.9mm−1, respec-
tively.

Both the efficiency and the intervals of localization are
determined by Eq.(6), where one can putq0 ≈ q1. In partic-
ular, the efficiency of light scattering is described by the am-
plitude factorσ2

(
σ2 + η2

)−1
, while the intervals of shaping

the acousto-optical coupled states are dictated by the argu-
mentx

√
σ2 + η2 under trigonometric sin-function in Eq.(6).

Substituting the above-obtained estimations into the last for-
mulas, one can find

a)
σ2

1

σ2
1 + η2

1

=
σ2

2

σ2
2 + η2

2

≈ 0.0186,

b) x1

√
σ2

1 + η2
1 ≈ 3.18

c) x2

√
σ2

1 + η2
1 = x1

√
σ2

2 + η2
2 ≈ 6.36. (25)

These estimations show that the expected efficiency of lo-
calization can reach 1.5 - 2.0 % due to the inequalityσ2 < η2

and, nevertheless, one can expect shaping in both one- and
two-pulse coupled states, becausex1

√
σ2

1 + η2
1 ≥ π and

x2

√
σ2

1 + η2
1 = x1

√
σ2

2 + η2
2 ≥ 2π.

The digitized oscilloscope traces for the bright opti-
cal component of three-wave coupled states at the waveg-
uide output are shown in Fig. 6. The observed effi-
ciency of localization was about 2%. The trace for the
dark optical component|C0|2 of these coupled states ex-
hibits an analogous train of valleys on a background. Fig-
ure 6 shows that withτ0 = τc=300ns,∆ f=3.15MHz, and
P=0.5W/mm2, one-pulse three-wave acousto-optical cou-
pled states have been observed. Then, withτ0 = 2τc=600ns,
∆ f=3.15MHz, and P=0.5W/mm2, as well as with
τ0 = τc=300ns,∆ f=6.31MHz, and P=2.0W/mm2, two-pulse
three-wave acousto-optical coupled states have been identi-
fied experimentally as well.

7. Conclusion

A distinctive property of the analysis involved is the action
of just the pumping light pulses during a three-wave co-
directional collinear interaction with the mismatched wave
numbers in a two-mode square-law nonlinear waveguide.
Theoretical considerations as well as experimental studies of
shaping three-wave weakly coupled states have been carried
out under these conditions. The analytical model for this
process with slightly mismatched wave numbers has been
formulated and investigated. The most interesting conclu-
sion from this model is related to the predicate of sculpturing
multi-pulse optical components inherent in three-wave cou-
pled states. Both amplitude and phase parameters of their
optical components have been estimated theoretically. The
developed analysis has been used in an attempt to make the
digital modulation of light based on collinear three-wave cou-
pled states potentially acceptable for binary encoded modu-
lation. Using the acousto-optical technique, we have experi-
mentally demonstrated that the trains of collinear three-wave
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weakly coupled states can be shaped in a two-mode square-
law nonlinear waveguide under pumping from optical pulses.
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