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We present a system with three equilibrium points which exhibit a single, double or triple scroll oscillation without introducing more
equilibrium points. The study is based on one parameter of the nonlinear function which is the bifurcation parameter. With this bifurcation
parameter it is possible to control the eigenvalues of the equilibrium points and consequently the type of oscillation.
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Se presenta un sistema con tres puntos de equilibrio que muestra oscilaciones de uno, dos y tres enroscados sin agregar más puntos de
equilibrio. El estudio se basa sobre un parámetro de la función no lineal, siendo este el parámetro de bifurcación. Haciendo uso de este
paŕametro de bifurcación es posible controlar los eigenvalores de los puntos de equilibrio y consecuentemente el tipo de oscilación.

Descriptores: Oscilador cáotico; circuito no lineal; paŕametros de bifurcación; puntos fijos.
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1. Introduction

Utilization of chaotic signals in communication systems,
biomedical engineering, radars, decoding algorithms are
some of the engineering applications of dynamical systems
with a chaotic behavior [1]. Synchronization phenomena be-
tween two coupled chaotic oscillators are being studied inten-
sively. Different types of synchronization have been reported
in regard to potential applications in different areas. For ex-
ample, in Ref. 2 the concept of phase synchronization is used
for the analysis of noisy nonstationary bivariate data with ap-
plication to magnetoencephalography.

Recently, the design and the analysis of the multi-
scroll chaotic attractors have been extensively studied. The
first multiscroll oscillators [3] were originally derived from
Chua’s circuit by introducing a nonlinear resistor with mul-
tiple breakpoints, where the number of scroll attractor was
controlled by adding fixed points. Yalcinet al. [4] physi-
cally created the 3 and 5 scroll chaotic attractors in a gen-
eralized Chua’s circuit. Several multiscroll chaotic oscilla-
tions studies have appeared recently, using different oscilla-
tors and techniques. These techniques can be summarized in
three categories; hysteresis multiscroll chaotic attractors [5],
saturated multiscroll chaotic attractors via switching [6], and
multilevel-logic pulse-excitations [7]. In the same spirit, the
Rössler system has been modified to produce a double scroll
by adding one fixed point [8].

The goal of this paper is to present a numerical simu-
lation and theoretical analysis of the nonlinear function that
produces single, double or triple chaotic scroll oscillations
in a chaotic generator without introducing more fixed points
into the system. The chaotic generator always remains three
fixed points. We present a study of the sensitivity of the scroll
structure to perturbation in the system parameters. In princi-

ple, this should provide some insight into the robustness of
the multiple-scroll geometry to small changes in the circuit
parameters.

This paper is organized in the following way. Section 2
contains the chaotic generator and the nonlinear converter.
Sec. 3 describes the relationship between the fixed points of
the chaotic generator with the bifurcation parameter in order
to get single, double or triple scroll attractors. Finally, Sec. 4
presents the conclusions.

2. Chaotic generator

The electronic circuit in Fig. 1a is called a Chaotic Genera-
tor(CG), which consists of a nonlinear converter (NC) and a
linear feedback equipped with a low-pass filterRC ′, and a
resonator circuitrLC. The dynamics of the CG is well mod-
elled in the following set of differential equations:

ẋ = y,

ẏ = z − x− δy,

ż = γ [kf(x)− z]− σy,

(1)

wherex(t) andz(t) are voltages across the capacitorsC and
C ′, respectively, andy(t) = J(t)(L/C)1/2 is the current
through the coil. The output of the nonlinear converter is
kf(x). The unit time is given byτ =

√
LC. The other

parameters of the model depend on the physical values of
the circuit elements:γ =

√
LC/RC ′, δ = r

√
C/L and

σ = C/C ′. The schematic diagram of the NC is shown in
Fig. 1b. The NC is well modelled by the following equa-
tion [9]:

F (x) = kf(x), (2)
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where

f(x) =





[(1− b1)(1− w)R3 − b1R1]x + R1VD

(R1 + (1− w)R3)a
, if x > VD.

(
1− b2

a

)
x, if |x| ≤ VD

[(1− b1)wR3 − b1R1]x−R1VD

(R1 + wR3)a
, if x < −VD

. (3)

TABLE I. By linearizing system (1) at equilibriaS1,2.

b1 ΛS1,2 := kf’
∑

Λ

0.4896 {0.3700 + 1.5488i, 0.3700− 1.5488i,−1.3065} -7.2368 -1.3567

FIGURE 1. (a) The circuit diagram of a nonlinear chaotic oscillator and component values employed to build the CG experimentally:
C′=100.2 nF,C=201.0 nF,L=63.8 mH,r=138.9Ω andR=1018Ω. (b) Schematic diagram of the nonlinear converter NC andR1=2.7 KΩ,
R2=R4=7.5 KΩ, R3=50 Ω, R5=177 KΩ R6=2 KΩ, A1 and A2 are Op. Amp. TL082, A3 is an Op. Amp. LF356N, and D1 and D2 are
Silicon diode 1N4148.

where

a =
R2||R4

R5 + R2||R4

and

b1,2 =
R5||R4

R2 + R5||R4
.

Our study is based on theb2 bifurcation parameter. It
is possible to obtain none, single, double and triple scroll at-
tractors simply by changing the value of theb2 parameter and
always leaving three equilibrium points. This is discussed in
the next section.

3. Saddle hyperbolic stationary points

The equilibria of system (1) can easily be found by solving
the system. The trivial equilibrium is atx = y = z = 0 and
the others given symmetrically; the equilibria(±x, 0,±x)
are defined at the intersection off(x) and (1/k)x. The k
parameter belongs to the closed interval[0, 1], given byR6

potentiometer (see Fig. 1b).

By linearizing system (1) at equilibriaS0 = (0, 0, 0) and
S1,2 = (±x, 0,±x), one obtains the following characteristic
polynomial:

g(λ) = λ3 + (δ + γ)λ2

+ (δγ + σ + 1)λ + (1− kf ′)γ. (4)

The roots of the characteristic polynomial (4), in order to en-
sure that system (1) be dissipative, as in Lorenz and Chua
systems, require that their sum be a negative quantity. Due
to the fact that the bifurcation parameter isb2, the equilib-
ria S1,2 = (±x, 0,±x) remain independent of the value of
b2 parameter and only the equilibrium pointS0 = (0, 0, 0)
changes with this parameter. So, begin by analyzing the equi-
libria S1,2 followed byS0.

For equilibriaS1,2 = (±x, 0,±x) to be unstable, thereby
yielding a possibility for chaos, the coefficients of the charac-
teristic polynomial (4) must satisfy the following conditions,
which are obtained according to the Routh criterion:

δ + γ > 0 δγ + σ + 1 > 0 (1− kf ′)γ > 0. (5)
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TABLE II. By linearizing system (1) at equilibriumS0.

b2 ΛS0 := kf’
∑

Λ

0.4896 {1.1821,−1.2694 + 2.1609i,−1.2694− 2.1609i} 7.6875 -1.3567

0.8000 {0.5239,−0.9403 + 1.8387i,−0.9403− 1.8387i} 3.0125. -1.3567

1.5000 {0.3386 + 2.1312i, 0.3386− 2.1312i,−2.0012} −7.5313 -1.3567

FIGURE 2. Double scroll oscillations: A) Projection of the attrac-
tor on thexy-plane. B) The response curvef(x) of the nonlinear
converter and the linex/k for k = 0.3125.

FIGURE 3. Single scroll oscillations: A)Projection of the attractor
on thexy-plane, the response curvef(x) of the nonlinear converter
and the linex/k for k = 0.3125.

There are no positive real values; due to the fact that the co-
efficients of the characteristic polynomial (4) are all positive,
kf ′ < 0. From (5), one can see that it satisfies the following
condition: one of the three eigenvalues of Eq. (4) is a nega-
tive real value. The other two are complex with a real positive
part. In Table I, the specific eigenvalues are given for the pa-
rameterk = 0.3125. These eigenvalues have several impli-
cations. First, the two eigenvaluesΛS1,2 are responsible for

the steady outward slide, and the last eigenvalue is attracting.
Second, system (1) is dissipative (

∑
Λ < 0) and these equi-

libria would be surrounded by chaotic scroll oscillations. The
two equilibrium pointsS1,2 = (±x, 0,±x) remain identical
since theb2 parameter bifurcation only changes the equilib-
rium pointS0 = (0, 0, 0).

FIGURE 4. Eigenvalues of the trivial equilibrium point againstb2

bifurcation parameter. The three eigenvalues are negative for val-
ues between vertical dashed linesb2 equals to 0.93361 and 1.1997.

FIGURE 5. Triple scroll oscillations: A) Projection of the attractor
on thexy-plane, the response curvef(x) of the nonlinear converter
and the linex/k for k = 0.3125.
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For equilibrium pointS0 = (0, 0, 0), the first two coeffi-
cients of the characteristic polynomial (4) remain positive;

δ + γ > 0 δγ + σ + 1 > 0,

meanwhile the third coefficient can be controlled with theb2

parameter, and presents the following conditions:

(1− kf ′)γ > 0 or (1− kf ′)γ < 0. (6)

The first condition (6) has two modes for certain values of
the b2 parameter. WhenS0 is induced by a similar behav-
ior to S1,2, there is oscillation around the equilibrium point
S0. As a consequence, the system (1) presents the triple-
scroll chaotic oscillations. When the real parts of the com-
plex eigenvalues are negative, system (1) does not oscillate.
The second condition must be satisfy the following: One of
the three roots of Eq. (4) must be positive, and the other two
must be negative. It is noted that the second condition (6)
is necessary for system (1) to generate chaos and present
double-scroll oscillations. Within this condition, there is a
region where bi-stable chaos occurs producing only single
scroll oscillation. One natural question is what happen when
(1 − kf ′)γ = 0? This occurs whenb2 = 1 − a/k and an
infinite number of equilibrium points appear. Theb2 bifurca-
tion parameter serves as a control parameter to induce in the
system (1) single, double or triple oscillations, and even to
guarantee that the system (1) does not oscillate.

From Eq. (3), if we have thatf ′ = (1 − b2)/a, then the
condition(1− kf ′)γ < 0 is always satisfied.

b2 < 1− a/k ≈ 0.9336

This guarantees that there is one positive Lyapunov exponent.
In Table II, eigenvalues are given for different value from the
b2 bifurcation parameter. Notice that in the first two values
of the b2 parameter (0.4896 and0.8000), the second condi-
tion (6) is satisfied by(1 − kf ′) < 0. There is one positive
root (ΛS0) and system (1) is dissipative (

∑
Λ < 0). There

is no oscillation aroundS0. In Fig. 2a, the projection of
the chaotic attractor on the plane(x − y) is represented by
the caseb2 = 0.4896. The chaotic attractor presents double
scroll oscillations aroundS1,2. Fig. 2b illustrates the nonlin-
ear functionf(x) and the line(1/k)x against thex state. In
the intersections of these two functions are defined geometri-
cally the fixed points of the system.

For b2 = 0.8000, the chaotic attractor presents a single
scroll oscillation aroundS1 = (−x, 0,−x). In Fig. 3a, the
projection of the chaotic attractor is shown on thexy-plane.
In Fig. 3b, the nonlinear function and the line(1/k)x against

x state is illustrated. For this value of theb2 parameter, there
is another attractor aroundS2 = (x, 0, x). The oscillations
aroundS1 andS2 depend on the initial condition.

If the b2 bifurcation parameter continues increasing, it
will obtain the first condition of (6), and the equilibrium point
S0 = (0, 0, 0) becomes a sink fixed point until two complex
eigenvalues appear with positive real part for

b2 > 1− a

k
[1− p2

γ
(δ + γ)] ≈ 1.1997,

wherep2 = δγ + 1. In Fig. 4, the eigenvalues of the equilib-
rium S0 = (0, 0, 0) are illustrated in contrast to theb2 bifur-
cation parameter. The line with the big circles corresponds
to the pair of complex eigenvalues and the other corresponds
to the real eigenvalue. The left vertical line corresponds to
b2 ≈ 0.9336 and the right vertical line tob2 ≈ 1.1997. When
the value of theb2 bifurcation parameter is between these
two vertical lines, system (1) does not oscillate because of
the real part of the three eigenvalues is negative. For val-
ues ofb2 greater thanb2 ≈ 1.1997, the three equilibriaS0,
S1 andS2 have two complex eigenvalues with a positive real
part, which are responsible for the steady outward slide, and
the last eigenvalue is attracting. Forb2 = 1.5000, system (1)
presents triple scroll oscillations. In Fig. 5a, the projection
of the chaotic attractor is shown on thexy-plane, where it is
possible to observe triple scroll oscillations around the equi-
libria S0, S1 andS2. In Fig. 5b, the nonlinear function and
the line (1/k)x is shown in contrast to thex state. In Ta-
ble II, the last row corresponds tob2 = 1.5000, system (1) is
dissipative (

∑
Λ < 0) and the eigenvalues are given forΛS0 .

4. Conclusions

We have introduced ab2 bifurcation parameter which con-
trols the number of generated scrolls. We have presented the
projections of the attractor on thexy-plane for specific val-
ues of theb2 bifurcation parameter where single, double and
triple scroll oscillations occur and there always remain three
equilibria. This is an approach to controlling the number of
scrolls in this chaotic generator.
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