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We present a system with three equilibrium points which exhibit a single, double or triple scroll oscillation without introducing more
equilibrium points. The study is based on one parameter of the nonlinear function which is the bifurcation parameter. With this bifurcation
parameter it is possible to control the eigenvalues of the equilibrium points and consequently the type of oscillation.
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Se presenta un sistema con tres puntos de equilibrio que muestra oscilaciones de uno, dos y tres enroscados sisguregEs de
equilibrio. El estudio se basa sobre ungmaetro de la funéin no lineal, siendo este el @ametro de bifurcaéin. Haciendo uso de este
parametro de bifurcaéin es posible controlar los eigenvalores de los puntos de equilibrio y consecuentemente el tipo déroscilaci

Descriptores: Oscilador catico; circuito no lineal; paéametros de bifurcaén; puntos fijos.

PACS: 02.60.cb; 05.45.-a; 05.45.Gg

1. Introduction ple, this should provide some insight into the robustness of

- o ) o the multiple-scroll geometry to small changes in the circuit
Utilization of chaotic signals in communication systems, narameters.

biomedical engineering, radars, decoding algorithms are This paper is organized in the following way. Section 2

some of the engineering applications of dynamical systemgontains the chaotic generator and the nonlinear converter.
with a chaotic behavior [1]. Synchronization phenomena begec. 3 describes the relationship between the fixed points of
tween two coupled chaotic oscillators are being studied intee chaotic generator with the bifurcation parameter in order

sively. Different types of synchronization have been reportedy, get single, double or triple scroll attractors. Finally, Sec. 4
in regard to potential applications in different areas. For expresents the conclusions.

ample, in Ref. 2 the concept of phase synchronization is used

for the analysis of noisy nonstationary bivariate data with ap- )

plication to magnetoencephalography. 2. Chaotic generator
Recently, the design and the analysis of the multi-

scroll chaotic attractors have been extensively studied. Th

first multiscroll oscillators [3] were originally derived from linear feedback equipped with a low-pass filfee”, and a

C_:huas cwcun_ by introducing a nonlinear resistor with mul- resonator circuit LC. The dynamics of the CG is well mod-
tiple breakpoints, where the number of scroll attractor was

controlled by adding fixed points. Yalciet al. [4] physi- elled in the following set of differential equations:
cally created the 3 and 5 scroll chaotic attractors in a gen-
eralized Chua’s circuit. Several multiscroll chaotic oscilla-
tions studies have appeared recently, using different oscilla- y=z—x—0y, (1)
tors and techniques. These techniques can be summarized in
three categories; hysteresis multiscroll chaotic attractors [5],

saturated multiscroll chaotic attractors via switching [6], andvvherex(t) andz(t) are voltages across the capacitérand
multilevel-logic pulse-excitations [7]. In the same spirit, the 7, respectively, and,(t) = J(t)(L/C)Y/? is the current
Rossler system has been modified to produce a double scrafirough the coil. The output of the nonlinear converter is
by adding one fixed point [8]. kf(x). The unit time is given byr = v/LC. The other
The goal of this paper is to present a numerical simuparameters of the model depend on the physical values of
lation and theoretical analysis of the nonlinear function thathe circuit elementsy = v LC/RC’, § = Tm and
produces single, double or triple chaotic scroll oscillations, — C/C'. The schematic diagram of the NC is shown in

in a chaotic generator without introducing more fixed pointsrig. 1b. The NC is well modelled by the following equa-
into the system. The chaotic generator always remains thregon [9]:

fixed points. We present a study of the sensitivity of the scroll
structure to perturbation in the system parameters. In princi- F(x) =kf(x), (2)

The electronic circuit in Fig. 1a is called a Chaotic Genera-
?or(CG), which consists of a nonlinear converter (NC) and a

T =y,

t=7lkf(z) -2 — oy,
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where
[(1—()1)(1 —U))Rg—b1R1]JJ+R1VD .
, if x> Vp.
(R1+ (1 —w)R3)a
1— by .
O ( a ) " tolel<Vo ®)
1—b1)wR3 — b1 Ry|x — RV
[( 1) 3 1] 1 D7 it < -Vp
(Rl + ng)a
TABLE |. By linearizing system (1) at equilibrid; ».
b1 Asy 5 = kf’ SA
0.4896 {0.3700 + 1.54884, 0.3700 — 1.5488i, —1.3065} -7.2368 -1.3567
k fix) | NC
[ o> —\T =
i . Rty S £ E
z(t) x(t) i i;:' : - ‘:*; A3
_— 1 : (M) = kRf(®m
i | T Tee) R i OO S = o f
1 1 L A 1

FIGURE 1. (&) The circuit diagram of a nonlinear chaotic oscillator and component values employed to build the CG experimentally:
(’=100.2 nF(C=201.0 nF,L=63.8 mH,r=138.92 and R=10182. (b) Schematic diagram of the nonlinear converter NC Rit¢2.7 K¢,

R2=R4=7.5 K, R3=502, R5=177 KQ R6=2 K2, A1 and A2 are Op. Amp. TL082, A3 is an Op. Amp. LF356N, and D1 and D2 are
Silicon diode 1N4148.

where By linearizing system (1) at equilibris, = (0, 0,0) and
= _ Bs||Ry S1,2 = (£z,0,+x), one obtains the following characteristic
Rs + Ra||R4 polynomial:
and
b — Rs|| Ry g(A) =A%+ (6 + )N
12~ 5 5 15 -
Rz + Bs| | Ra + (67 + o+ DA+ (1 kf)r. @)

Our study is based on thig bifurcation parameter. It o ) )
is possible to obtain none, single, double and triple scroll at] N€ roots of the characteristic polynomial (4), in order to en-
tractors simply by changing the value of theparameter and  SUre that system (1) be dissipative, as in Lorenz and Chua
always leaving three equilibrium points. This is discussed irSYStems, require that their sum be a negative quantity. Due
the next section. to the fact that the bifurcation parameterbis the equilib-

ria S12 = (+z,0,+x) remain independent of the value of
b, parameter and only the equilibrium poify = (0,0,0)
3. Saddle hyperbolic stationary points changes with this parameter. So, begin by analyzing the equi-
libria S 2 followed by Sj.

For equilibriaS; » = (+x, 0, £x) to be unstable, thereby
yielding a possibility for chaos, the coefficients of the charac-
teristic polynomial (4) must satisfy the following conditions,
which are obtained according to the Routh criterion:

The equilibria of system (1) can easily be found by solving
the system. The trivial equilibrium is at=y = z = 0 and
the others given symmetrically; the equilibrig:z, 0, £x)
are defined at the intersection ¢fz) and (1/k)z. Thek
parameter belongs to the closed interigll], given by R

potentiometer (see Fig. 1b). §+v>0 y+o+1>0 (1—kf)y>0. (5)
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TABLE Il. By linearizing system (1) at equilibriursi.

b2 ASO = kf’ Z A
0.4896 {1.1821, —1.2694 + 2.1609, —1.2694 — 2.1609: } 7.6875 -1.3567
0.8000 {0.5239, —0.9403 + 1.8387¢, —0.9403 — 1.8387:} 3.0125. -1.3567
1.5000 {0.3386 + 2.1312i,0.3386 — 2.1312i, —2.0012} —7.5313 -1.3567
b,=0.4896 the steady outward slide, and the last eigenvalue is attracting.
2 : ; , ; ; Second, system (1) is dissipative (A < 0) and these equi-
A) libria would be surrounded by chaotic scroll oscillations. The
two equilibrium pointsS; » = (+z,0, £2) remain identical
= 0OF . ! . ..
since theb, parameter bifurcation only changes the equilib-
rium pointSy = (0,0, 0).
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FIGURE 2. Double scroll oscillations: A) Projection of the attrac-
tor on thexzy-plane. B) The response curyéz) of the nonlinear
converter and the ling/k for k£ = 0.3125.
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FIGURE 4. Eigenvalues of the trivial equilibrium point agairist
= Or bifurcation parameter. The three eigenvalues are negative for val-
ues between vertical dashed lifgsequals to 0.93361 and 1.1997.
-2
10
b_=1.5
B) 2
~ 2 ’ T j
-
E:J 0
= 0
—1 L 1 L L L
—?.5 -1 —0.5 0 0.5 1 1.5
x -2
FIGURE 3. Single scroll oscillations: A)Projection of the attractor
on thezy-plane, the response curyéz) of the nonlinear converter 10
and the linez/k for k = 0.3125. B)
—
- L
There are no positive real values; due to the fact that the co-&= 0
efficients of the characteristic polynomial (4) are all positive,

kf’ < 0. From (5), one can see that it satisfies the following _1? - - ; ; -
condition: one of the three eigenvalues of Eq. (4) is a nega- -L5 -1 —0.5 0 0.5 1 L5
tive real value. The other two are complex with a real positive X

part. In Table I, the specific eigenvalues are given for the pag cure 5. Triple scroll oscillations: A) Projection of the attractor

rameterk = 0.3125. These eigenvalues have several impli- on thexy-plane, the response curyéz) of the nonlinear converter
cations. First, the two eigenvaluds;, , are responsible for and the linex/k for k = 0.3125.
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For equilibrium pointS, = (0,0, 0), the first two coeffi-  z state is illustrated. For this value of the parameter, there
cients of the characteristic polynomial (4) remain positive; is another attractor arount, = (x,0,x). The oscillations
aroundS; andS, depend on the initial condition.
d+~v>0 dy+o+1>0, If the b, bifurcation parameter continues increasing, it
will obtain the first condition of (6), and the equilibrium point
So = (0,0,0) becomes a sink fixed point until two complex
eigenvalues appear with positive real part for

meanwhile the third coefficient can be controlled with the
parameter, and presents the following conditions:
(1—kf)yy>0 or (1—kf)y<0. (6)

2
12

a
b 1— - ) ~ 1.1

The first condition (6) has two modes for certain values of
the b, parameter. Whei$ is induced by a similar behav- wherep? = 6+ + 1. In Fig. 4, the eigenvalues of the equilib-
ior to Sy 2, there is oscillation around the equilibrium point rjym 5, = (0,0,0) are illustrated in contrast to thig bifur-

So. As a consequence, the system (1) presents the tripleation parameter. The line with the big circles corresponds
scroll chaotic oscillations. When the real parts of the COM+o the pair of Comp]ex eigen\/a|ues and the other Corresponds
plex eigenvalues are negative, system (1) does not oscillatgs the real eigenvalue. The left vertical line corresponds to
The second condition must be satisfy the following: One ofy, ~ (.9336 and the right vertical line td, ~ 1.1997. When

the three roots of Eq. (4) must be positive, and the other twehe value of theb, bifurcation parameter is between these
must be negative. It is noted that the second condition (6jwo vertical lines, system (1) does not oscillate because of
is necessary for system (1) to generate chaos and presefie real part of the three eigenvalues is negative. For val-
double-scroll oscillations. Within this condition, there is a yes ofb, greater tharb, ~ 1.1997, the three equilibriasy,
region where bi-stable chaos occurs producing only singles, andS, have two complex eigenvalues with a positive real
scroll oscillation. One natural question is what happen wherpart, which are responsible for the steady outward slide, and
(1 — kf")y = 0? This occurs wheh, = 1 —a/k and an  the last eigenvalue is attracting. Fer= 1.5000, system (1)
infinite number of equilibrium points appear. Thebifurca-  presents triple scroll oscillations. In Fig. 5a, the projection
tion parameter serves as a control parameter to induce in ths the chaotic attractor is shown on thg-plane, where it is
system (1) single, double or triple oscillations, and even tqossible to observe triple scroll oscillations around the equi-

guarantee that the system (1) does not oscillate. libria Sy, S; andSs,. In Fig. 5b, the nonlinear function and
From Eq. (3), if we have that’ = (1 — by)/a, thenthe  the line (1/k)z is shown in contrast to the state. In Ta-
condition(1 — kf")y < 0 is always satisfied. ble I1, the last row corresponds te = 1.5000, system (1) is

dissipative § ~ A < 0) and the eigenvalues are given fog, .
by < 1—a/k ~0.9336 pative A < 0) g given fog,

This guarantees that there is one positive Lyapunov exponerd. Conclusions

In Table Il, eigenvalues are given for different value from the ) ) ) )

b, bifurcation parameter. Notice that in the first two values\We have introduced &, bifurcation parameter which con-

of the b, parameter®.4896 and0.8000), the second condi- trols the number of generated scrolls. We have presented the

tion (6) is satisfied byl — kf’) < 0. There is one positive projections of the aFtractor on thgy-plane fpr specific val-

root (As,) and system (1) is dissipativé JA < 0). There U€s of theb, b|fqrcgt|on parameter where single, doul_ale and

is no oscillation arounds,. In Fig. 2a, the projection of triple scroll oscillations occur and there always remain three

the chaotic attractor on the plane{ y) is represented by equilibr_ia. This is an approach to controlling the number of

the casé, = 0.4896. The chaotic attractor presents double Scrolls in this chaotic generator.

scroll oscillations around ». Fig. 2b illustrates the nonlin-

ear functionf(z) and the line(1/k)z against ther state. In  Acknowledgements

the intersections of these two functions are defined geometri-
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