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Bound states of the hydrogen atom in parabolic coordinates
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The spectrum and separable eigenfunctions in parabolic coordinates for the bound states of the hydrogen atom, as well as their relation with
the separable eigenfunctions in spherical coordinates, are obtained making use of the elementary theory of angular momentum.
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Se obtiene el espectro y las eigenfunciones separables en coordenadalicparphra los estados ligados d#mo de hidbogeno, ascomo
su relacbn con las eigenfunciones separables en coordenadaiasf haciendo uso de la teoelemental del momento angular.

Descriptores:Atomo de hidbgeno; coordenadas pafdisas; momento angular.
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1. Introduction A similar procedure has been applied in the case of the
hydrogen atom in two dimensions, where the two compo-
In the usual treatment of the problem of the hydrogen atonpents of the Runge—Lenz vector and the angular momentum
in quantum mechanics, the Sodinger equation is solved generate a Lie algebra isomorphic to that of SO(3) [6].
employing spherical coordinates. This choice seems natural |n Sec. 2, following Refs. 4, 3, 1, and 2, the Lie algebra
owing to the spherical symmetry of the Coulomb potential.generated by the Cartesian components of the angular mo-
However, as is well known, the Sdtinger equation for the  mentum and the Runge—Lenz vector is employed to find the
Coulomb potential can also be solved by separation of varienergy eigenvalues for the bound states of the hydrogen atom,
ables in parabolic coordinates (seey, Refs. 1 and 2) as a and to identify two sets of raising and lowering operators that
consequence of the existence of a symmetry group containinghable us to find explicitly the wavefunctions of the bound
the rotation group. This larger symmetry group is associatedtates. In Sec. 3, we make use of the fact that the separable
with the conservation of the angular momentum and of th%o|utions in parabo"c coordinates of the Sjmh'nger equa-
Runge-Lenz vector (see,g, Refs. 3, 1, and 2) and to the tjon for the hydrogen atom are eigenfunctionslgfand A;
accidental degeneracy of the energy spectrum. Already ifthe z-component of the Runge—Lenz vector) and of the re-
1926, Pauli [4] obtained the energy of the bound states of thgy|ts of Sec. 2 to find the relation between these separable so-
hydrogen atom algebraically, making use of the Lie algebraytions and the separable solutions of the Sdinger equa-
generated by these conserved quantities (see also Refs. 3,tibn in spherical coordinatesf( also Refs. 3 and 5 and the
and 2). In the case of the bound states, the symmetry growgferences cited therein).
generated by the angular momentum and the Runge—Lenz
vector is isomorphic to SO(4).

Whereas the spherical coordinates are naturally adapteé: The SO(4) symmetry of the Hamiltonian
o the SO(3) symmetry of thg CO“'F”T‘b potentlal,'the'SO(4)|_he Hamiltonian operator for the hydrogen atom (neglecting
symmetry can be more easily exhibited by considering the .~ . T S
separable solutions of the Sedinger equation for the hy- Spin) in non-relativistic quantum mechanics is taken as
drogen atom in parabolic coordinates. In fact, as we shall p? 2
show below, a basis for the eigenstates of the Hamiltonian can H = oM (2)
be obtained algebraically, in the same form as the eigenstates
of L2 andL; are constructed in elementary quantum mechanwhere M is the reduced mass of the atom anis the elec-
ics with the aid of ladder operators (see also Ref. 5). The keyfic charge of the electron. The rotational symmetrybfs
to finding the eigenvalues and eigenstates of the Hamiltoniafquivalent to the vanishing of the commutatorbdivith each
of the hydrogen atom is to combine the components of thé&artesian component of the angular momentum,
angular momentum and of the Runge—Lenz vector so as to
obtain generators of two SU(2) groups. [H, L] =0,
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i, 7,...=1,2,3, According to the elementary theory of angular momen-
tum, from Eqgs. (10) it follows that the eigenvaluesldf for
where instance, are of the form
L=rxp, JG+ DR, (11)
and one can verify that each Cartesian component of thﬁ/herej can take the values, 1/2,1,3/2,.... On the other
Runge-Lenz vector hand, sincd. - A=0, from Egs. (9) we see that
1 Me?r 1
A=g(pxL-Lxp)-— ) =K = (L’ +A%/p?)
also commutes withf [1-4]. or, taking into account Eq. (3), we find that, on the subspace
From the foregoing expressions one can show that H=E=— py2/2M,
LA:O, I2:K2:1(M2€4_h2)
2 )
and that 4\ po
which implies that the values df are of the form
A% =2MH(L? + h?) + M?e*. 3) .

Me*

T U2R2(2j 4+ 1)2 (12)

The components of the angular momentum satisfy the
well-known commutation relations
which is the well-known expression for the energies of the
[Li, L] = iheje Ly, (4)  bound states of the hydrogen atom, identifyityg+ 1 with
the principal quantum number, usually denotedhifi—4].
If the eigenvalue oi? (and, hence, oK?) is j(j + 1)A2,
then the eigenvalues af; and K3 are of the formmih

with summation over repeated indicesj( k, ... =1, 2, 3).
A straightforward computation shows that

[Li, Aj] = iheji Ay (5) andmgh, respectively, with
as required for a vector operator, and my,me=—j,—j+1,...,7
[Ai, Aj] = iheiji(—2M H) Ly,. (6) Hence, the degeneracy of the energy eigenvalue (12) is
Hence, on the subspace formed by the eigenvectdiswith (27 +1)(2j +1) =n*.

eigenvalueF, the operatorH appearing on the right-hand ] ]
side of Eq. (6) can be replaced by the real numBeiSince Furthermore,ml and my are both integers or half-integers
we are interested in the bound states of the hydrogen ator@ccording to whethey is an integer or half-integer, respec-

we shall consider negative values®fonly and, defining tively; hence, the eigenvalues bf and ofA3 /p, will always
be integral multiples of [see Egs. (9)].
po=V—2ME, (7) The ladder operators
from Eq. (6) we have I. =1, £il,, K, = K| +iKs, (13)
[Ai/po, Aj/po] = iheiji Li, (8) act on each eigenspace &f. If |j,m;,m,) is a normal-

) ized common eigenket dP?, I3, and K3 with eigenvalues
which means that, on the §ubspaf¢_&E, the. set formed by j(j + 1)2, m1h, andmoh, respectively, then its phase can
the operatord.; and A;/py is a basis of a Lie algebra. The pe chosen in such a way that
group generated by this algebra is isomorphic to SO(4), the

group of rotations irR* [3,1,7], though this fact is not es- Ii|j,my,me) = h
sential in what follows. What is very useful is that this Lie _ _
algebra is the direct sum of two Lie algebras isomorphic to X V/j(i+1) = mi(my £1)j,my £ 1,ms),  (14)

that of SU(2). Specifically, letting Kilj,mi,ms) = h

1 1 — .
1= (L+A/po), =5(L—A/po),  (9) % \/7G + 1) — ma(ma £ 1) [j,m1, ma £1).  (15)

from Egs. (4), (5), and (8), one readily finds that In particular, the statg, 7, j) satisfies
(i, Ij|=iheijily, [Li, K;]=0, [K;, K;]=ihe;; K. (10) Ii5.3,5) =0, K.ilj3,5.3) = 0. (16)
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It should be remarked that all the foregoing relations doThen, a straightforward but lengthy computation yields the
not involve any specific representation or the use of some cdellowing surprisingly simple expressions for the ladder op-
ordinate system. As we shall show in the next section, theratorsi, K [see Egs. (9) and (13)]
separable eigenfunctions &f in parabolic coordinates are

also eigenfunctions af; and K5 (see also Refs. 3 and 5) and " o i 9 Vau
the ladder operator,, and K take simple forms when ex- I. =he (‘/{‘au + 2/u 06 + 2>
pressed in parabolic coordinates. A similar result, in the case )
of the two-dimensional hydrogen atom, has been obtained in o \[g L R
Ref. 6. v 2yvdp 2 )
o 0 i 0 Vu
. . . . = i¢ S A st
3. Separable solutions in parabolic coordi- [ = he (\/aau 2,/udp 2 )
X (Voo — ot m + Y0,
As pointed out in the Introduction, the Séldinger equation ov  2,/vod 2
for the hydrogen atom is separable in parabolic coordinates. " 9 i 0 Vau
In terms of the parabolic coordinatés 7, ¢), defined by Ky = —he (ﬁ&t + 2\/687¢ - 2)
. 1 .
r=\&ncosp,  y=vensing, 2=z -n), (17) " (‘ﬁaav N 2&5;; N ?) ’
the time-independent Sddinger equation is given by [1,2]
. 0 i 0 m
B4 [0 [, 0\ o[ 0 K_ = —fie i (ﬁ +>
—— s — | = &{= — (= 0 2:/u 0 2
i\ e (55e) * 2 (1) ‘ f“f(b
0 i 0 v
2 2 _— - - 22
+162}w— 2y = By, (18) - (ﬁav 2006 2 ) (22)
&n dp £+

Looking for a separable solutiony=F(£)G(n)ei™?,  where we have made use of the dimensionless variables
wherem is an integer, one finds thadt and G must obey

the equations w— %057 - %077' (23)
2 2

() (2 ) | N
dg \" d¢ h h 3 Note that, according to Egs. (17), interchangihgyith 7
d da OMEn 2Me* m? (or, equivalently, interchanging with v) amounts to a re-

d—(n— —t— 5 G=-AG, (19) flection on thezy-plane and, therefore, to interchangihg
di \ " dn n g with — K

K.

where) is another separation constant. . ,
S . SinceLz=I3 + K3, the wave functiony; ; ;, represent-
Eliminating £ from Egs. (19), one obtains ing the statdj, j, j) must be of the formf(u,v)e'?/¢ and
{ 4 { 9 (§8> 3 8( 3)] therefore, from Egs. (16) and (22) we readily obtain
E+m "ag o0& on 7737]
E—n 0> 2Me2€E—n

&n 0p® b2 €+77} v=>x @0

and a straightforward computation shows that the oper

i = Ne™(F0/2(yy)Tei279, (24)

at\{vhereN is a normalization constant. A simple compu-
tor appearing on the left-hand side of this last equati ation, using the fact that the volume element is given

o} .
is 2A43/h2, which means that the separation constais an by (1/4) (6-n)dsdndo, yields
eigenvalue o2 A3 /A% and that the separable solutions of the )
Schidinger Eq. (18) in parabolic coordinates are simulta- IN| = (po/h)*/?
neous eigenfunctions df; and Az (which do commute) or, CHV @i+
equivalently, of/3 and K3 [see Eq. (9)].

From the definition of the Runge—-Lenz vector (2), elim-

'”?“t'f‘g thge 2t§:‘\2ms Qpro_portlc;nglj&e?/rll\évnh the g'd %f the tain the explicit expression of all theormalizedwave func-
rl;erz_ag)np / fi ae {E_t_t%o /C t vaiid on eac sut spaflcteh tions for the bound states of the hydrogen atom, separable in
R o ine n i a be ar e5|aor|1_ c?hmp;onen S0 eparabolic coordinates. Since these wave functions are given
unhge—Lenz vector can be expressed in the form in terms of associated Laguerre polynomials (see Appendix),
1 . one is actualiderivingthe Rodrigues formula for these poly-
A; = z2;(p® — po®) — (v - p)pi + ihp;. 21 ) ,
(P = po”) = (r-p)pi +ifp (1) nomials, as well as some recurrence relations. Note that, on

Making use of Egs. (14), (15), (22), and (24), one can ob-

2
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a functionsy with a dependence on of the form "¢, we  Egs. (9) and (10), a given element of SO(4) corresponds to

have the identity two SU(2) matrices (defined up to a common sign), whose
P L9 action on the statelg, m1, my) is given by the standard ma-
Vol - L. 9 _ Vu " trices (or Wigner D functionsp? ..
ou  2\/udg¢ 2
— u(l—m)/2eu/2§ (um,/Qe—u/Q,(/}) , ACknOWledgment
U

with similar identities for the other operators appearing inONe of the authors (E.N.M.) wishes to thank the Vicerraator

Egs. (22). Therefore, for > 0 (on a function with a de- de I,nvestlgacon y Estudlos_de P_osgrado of the Universidad

pendence o of the form &%), Autonoma de_Pue_bIa for financial support through the pro-
gramme “La ciencia en tus manos.”

(I_)n = hnefin¢u(n7m)/2eu/2

y aainum/Qefu/ZU(nfm)/Zefv/2%vm/2ev/2,¢. Appendix
Y v Following the standard procedure, making use of the dimen-
3.1. Interbasis expansions sionless variables
AR
The solution of the Sclidinger equation for the hydrogen u= %5, v = %77» k= 20 (A1)
0

atom is usually obtained making use of the spherical coordi- .
nates. The separable solutions in spherical coordinates, beijd Writing
proportional to the spherical harmonics, are eigenfunctions r — u\m|/2efu/2f(u)7 G = vlm\/2efv/2g(v)’

of L2 and L3, and it must be possible to express the separa- i , i

ble solutions in spherical coordinates (eigenfunction®. bf from Egs. (19) we find thaf and g satisfy the associated

andLs) in terms of the separable solutions in parabolic coor-29Uerre equations

dinates (eigenfunctions ¢§ andK3). Fortunately, according dif +(lml+1— )g
to Egs. (9),L is the sum of two commuting angular momenta Y12 m “
(L=I+K) and, therefore, using the rules of addition of angu- 1/ Me2
lar momenta, for a given value @f or, equivalently, ofj, the + = —|m|—-1—-k)f=0 (A.2)
. 2 hpo
possible values of the square of the angular momenfifim,
arel(l + 1)h?, where [see Eq. (11)] and
d*g dg
1=25,2j—1,2j—2,...,0, vz T ml+1—v)>
ich i - i i 1 [ Me?
WhIC.|.’1 is the weII_ knqwn reSl_JIt obtalnt_ad by soIV|.ng the 1 e m| =14k )g=0. (A3)
Schiddinger equation in spherical coordinates (again, recall 2 \ hpo

that2;j+1 is the principal quantum number). Furthermore,  These equations have acceptable solutions (which are associ-
if |7,1, m) is the (normalized) state with energy (12), thatis angeq Laguerre polynomials) only if

eigenket ofL.? and L3 with eigenvalueg(/+1)h?, andmh,

2
respectively, then, in terms of the common eigenket§pf N, = 1 (Me —|m|—1— k)
I3, andK3, we have 2\ hpo
ol and
Js b, 1 M€2
) No = — - —1+k
J 2 2 < hpo ‘m‘ * )
= > 4<J’3’ ma,malg, L m) |jymy,ma), - (28) gpe non-negative integers (the degrees of these polynomials).
mme=Td Therefore,
with m=mjy + Mma, where <j1,j2, mi, mg‘jl,jg,j, m> de- Me?

notes the Clebsch—-Gordan coefficienté Ref. 3). The =Ni+ Na+|m|+1,

. ; . hipo
analog of this result for the case of the two-dimensional hy- . .
. : IS an integer greater than or equal to 1. Letting
drogen atom has been given, following other approaches, in
Refs. 8 and 9. 2j = N1+ Ny + |m|, (A.4)
Finally, it should be remarked that, as already pointed out .., . : A
at the Introduction, the SO(4) symmetry of the Sufinger Wlth] =0,1/2,1,3/2,..., andrecalling the definition gk,
_ 2 it follows that
equation for the bound states of the hydrogen atom is more 4
easily exhibited by considering its separable solutions in = _L’
parabolic coordinates. In fact, owing to the homomor- 21%(2j5 +1)?
phism between SO(4) arsdJ(2) xSU(2), which comes from  which coincides with Eq. (12).
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Following the conventions of Ref. 1(,andg are propor- and

tional to the associated Laguerre polynomials

L|m|

Im|
Ligjpmitry/2(0):

(2jflm|fk)/2(u) respectively.
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