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Bound states of the hydrogen atom in parabolic coordinates
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The spectrum and separable eigenfunctions in parabolic coordinates for the bound states of the hydrogen atom, as well as their relation with
the separable eigenfunctions in spherical coordinates, are obtained making use of the elementary theory of angular momentum.
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Se obtiene el espectro y las eigenfunciones separables en coordenadas parabólicas para los estados ligados delátomo de hidŕogeno, aśı como
su relacíon con las eigenfunciones separables en coordenadas esféricas, haciendo uso de la teorı́a elemental del momento angular.
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1. Introduction

In the usual treatment of the problem of the hydrogen atom
in quantum mechanics, the Schrödinger equation is solved
employing spherical coordinates. This choice seems natural
owing to the spherical symmetry of the Coulomb potential.
However, as is well known, the Schrödinger equation for the
Coulomb potential can also be solved by separation of vari-
ables in parabolic coordinates (see,e.g., Refs. 1 and 2) as a
consequence of the existence of a symmetry group containing
the rotation group. This larger symmetry group is associated
with the conservation of the angular momentum and of the
Runge–Lenz vector (see,e.g., Refs. 3, 1, and 2) and to the
accidental degeneracy of the energy spectrum. Already in
1926, Pauli [4] obtained the energy of the bound states of the
hydrogen atom algebraically, making use of the Lie algebra
generated by these conserved quantities (see also Refs. 3, 1,
and 2). In the case of the bound states, the symmetry group
generated by the angular momentum and the Runge–Lenz
vector is isomorphic to SO(4).

Whereas the spherical coordinates are naturally adapted
to the SO(3) symmetry of the Coulomb potential, the SO(4)
symmetry can be more easily exhibited by considering the
separable solutions of the Schrödinger equation for the hy-
drogen atom in parabolic coordinates. In fact, as we shall
show below, a basis for the eigenstates of the Hamiltonian can
be obtained algebraically, in the same form as the eigenstates
of L2 andL3 are constructed in elementary quantum mechan-
ics with the aid of ladder operators (see also Ref. 5). The key
to finding the eigenvalues and eigenstates of the Hamiltonian
of the hydrogen atom is to combine the components of the
angular momentum and of the Runge–Lenz vector so as to
obtain generators of two SU(2) groups.

A similar procedure has been applied in the case of the
hydrogen atom in two dimensions, where the two compo-
nents of the Runge–Lenz vector and the angular momentum
generate a Lie algebra isomorphic to that of SO(3) [6].

In Sec. 2, following Refs. 4, 3, 1, and 2, the Lie algebra
generated by the Cartesian components of the angular mo-
mentum and the Runge–Lenz vector is employed to find the
energy eigenvalues for the bound states of the hydrogen atom,
and to identify two sets of raising and lowering operators that
enable us to find explicitly the wavefunctions of the bound
states. In Sec. 3, we make use of the fact that the separable
solutions in parabolic coordinates of the Schrödinger equa-
tion for the hydrogen atom are eigenfunctions ofL3 andA3

(the z-component of the Runge–Lenz vector) and of the re-
sults of Sec. 2 to find the relation between these separable so-
lutions and the separable solutions of the Schrödinger equa-
tion in spherical coordinates (cf. also Refs. 3 and 5 and the
references cited therein).

2. The SO(4) symmetry of the Hamiltonian

The Hamiltonian operator for the hydrogen atom (neglecting
spin) in non-relativistic quantum mechanics is taken as

H =
p2

2M
− e2

r
, (1)

whereM is the reduced mass of the atom ande is the elec-
tric charge of the electron. The rotational symmetry ofH is
equivalent to the vanishing of the commutator ofH with each
Cartesian component of the angular momentum,

[H, Li] = 0,



BOUND STATES OF THE HYDROGEN ATOM IN PARABOLIC COORDINATES 455

i, j, . . . = 1, 2, 3,

where

L = r× p,

and one can verify that each Cartesian component of the
Runge–Lenz vector

A =
1
2
(p× L− L× p)− Me2r

r
(2)

also commutes withH [1-4].
From the foregoing expressions one can show that

L ·A = 0,

and that

A2 = 2MH(L2 + ~2) + M2e4. (3)

The components of the angular momentum satisfy the
well-known commutation relations

[Li, Lj ] = i~εijkLk, (4)

with summation over repeated indices (i, j, k, . . . =1, 2, 3).
A straightforward computation shows that

[Li, Aj ] = i~εijkAk, (5)

as required for a vector operator, and

[Ai, Aj ] = i~εijk(−2MH)Lk. (6)

Hence, on the subspace formed by the eigenvectors ofH with
eigenvalueE, the operatorH appearing on the right-hand
side of Eq. (6) can be replaced by the real numberE. Since
we are interested in the bound states of the hydrogen atom,
we shall consider negative values ofE only and, defining

p0 ≡
√
−2ME, (7)

from Eq. (6) we have

[Ai/p0, Aj/p0] = i~εijkLk, (8)

which means that, on the subspaceH=E, the set formed by
the operatorsLi andAi/p0 is a basis of a Lie algebra. The
group generated by this algebra is isomorphic to SO(4), the
group of rotations inR4 [3,1,7], though this fact is not es-
sential in what follows. What is very useful is that this Lie
algebra is the direct sum of two Lie algebras isomorphic to
that of SU(2). Specifically, letting

I ≡ 1
2
(L + A/p0), K ≡ 1

2
(L−A/p0), (9)

from Eqs. (4), (5), and (8), one readily finds that

[Ii, Ij ]=i~εijkIk, [Ii,Kj ]=0, [Ki,Kj ]=i~εijkKk. (10)

According to the elementary theory of angular momen-
tum, from Eqs. (10) it follows that the eigenvalues ofI2, for
instance, are of the form

j(j + 1)~2, (11)

wherej can take the values0, 1/2, 1, 3/2, . . .. On the other
hand, sinceL ·A=0, from Eqs. (9) we see that

I2 = K2 =
1
4

(
L2 + A2/p0

2
)

or, taking into account Eq. (3), we find that, on the subspace
H=E=− p0

2/2M ,

I2 = K2 =
1
4

(
M2e4

p0
2
− ~2

)
,

which implies that the values ofE are of the form

E = − Me4

2~2(2j + 1)2
, (12)

which is the well-known expression for the energies of the
bound states of the hydrogen atom, identifying2j + 1 with
the principal quantum number, usually denoted byn [1–4].

If the eigenvalue ofI2 (and, hence, ofK2) is j(j + 1)~2,
then the eigenvalues ofI3 and K3 are of the formm1~
andm2~, respectively, with

m1, m2 = −j,−j + 1, . . . , j.

Hence, the degeneracy of the energy eigenvalue (12) is

(2j + 1)(2j + 1) = n2.

Furthermore,m1 andm2 are both integers or half-integers
according to whetherj is an integer or half-integer, respec-
tively; hence, the eigenvalues ofL3 and ofA3/p0 will always
be integral multiples of~ [see Eqs. (9)].

The ladder operators

I± ≡ I1 ± iI2, K± ≡ K1 ± iK2, (13)

act on each eigenspace ofH. If |j, m1,m2〉 is a normal-
ized common eigenket ofI2, I3, andK3 with eigenvalues
j(j + 1)~2, m1~, andm2~, respectively, then its phase can
be chosen in such a way that

I±|j, m1,m2〉 = ~

×
√

j(j + 1)−m1(m1 ± 1) |j, m1 ± 1,m2〉, (14)

K±|j, m1,m2〉 = ~

×
√

j(j + 1)−m2(m2 ± 1) |j, m1, m2 ± 1〉. (15)

In particular, the state|j, j, j〉 satisfies

I+|j, j, j〉 = 0, K+|j, j, j〉 = 0. (16)
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It should be remarked that all the foregoing relations do
not involve any specific representation or the use of some co-
ordinate system. As we shall show in the next section, the
separable eigenfunctions ofH in parabolic coordinates are
also eigenfunctions ofI3 andK3 (see also Refs. 3 and 5) and
the ladder operatorsI±, andK± take simple forms when ex-
pressed in parabolic coordinates. A similar result, in the case
of the two-dimensional hydrogen atom, has been obtained in
Ref. 6.

3. Separable solutions in parabolic coordi-
nates

As pointed out in the Introduction, the Schrödinger equation
for the hydrogen atom is separable in parabolic coordinates.
In terms of the parabolic coordinates(ξ, η, ϕ), defined by

x=
√

ξη cos ϕ, y=
√

ξη sin ϕ, z=
1
2
(ξ − η), (17)

the time-independent Schrödinger equation is given by [1,2]

− ~2

2M

{
4

ξ + η

[
∂

∂ξ

(
ξ

∂

∂ξ

)
+

∂

∂η

(
η

∂

∂η

)]

+
1
ξη

∂2

∂ϕ2

}
ψ − 2e2

ξ + η
ψ = Eψ. (18)

Looking for a separable solutionψ=F (ξ)G(η)eimϕ,
wherem is an integer, one finds thatF and G must obey
the equations

4
d
dξ

(
ξ
dF

dξ

)
+

(
2MEξ

~2
+

2Me2

~2
−m2

ξ

)
F=λF,

4
d
dη

(
η
dG

dη

)
+

(
2MEη

~2
+

2Me2

~2
−m2

η

)
G=−λG, (19)

whereλ is another separation constant.
EliminatingE from Eqs. (19), one obtains

{
4

ξ + η

[
η

∂

∂ξ

(
ξ

∂

∂ξ

)
− ξ

∂

∂η

(
η

∂

∂η

)]

− ξ − η

ξη

∂2

∂ϕ2
− 2Me2

~2

ξ − η

ξ + η

}
ψ = λψ (20)

and a straightforward computation shows that the opera-
tor appearing on the left-hand side of this last equation
is 2A3/~2, which means that the separation constantλ is an
eigenvalue of2A3/~2 and that the separable solutions of the
Schr̈odinger Eq. (18) in parabolic coordinates are simulta-
neous eigenfunctions ofL3 andA3 (which do commute) or,
equivalently, ofI3 andK3 [see Eq. (9)].

From the definition of the Runge–Lenz vector (2), elim-
inating the terms proportional toe2/r with the aid of the
relationp2/2M−e2/r=−p0

2/2M , valid on each subspace
H=E, one finds that the Cartesian components of the
Runge–Lenz vector can be expressed in the form

Ai =
1
2
xi(p2 − p0

2)− (r · p)pi + i~pi. (21)

Then, a straightforward but lengthy computation yields the
following surprisingly simple expressions for the ladder op-
eratorsI±, K± [see Eqs. (9) and (13)]

I+ = ~eiφ

(√
u

∂

∂u
+

i
2
√

u

∂

∂φ
+
√

u

2

)

×
(√

v
∂

∂v
+

i
2
√

v

∂

∂φ
−
√

v

2

)
,

I− = ~e−iφ

(√
u

∂

∂u
− i

2
√

u

∂

∂φ
−
√

u

2

)

×
(√

v
∂

∂v
− i

2
√

v

∂

∂φ
+
√

v

2

)
,

K+ = −~eiφ

(√
u

∂

∂u
+

i
2
√

u

∂

∂φ
−
√

u

2

)

×
(√

v
∂

∂v
+

i
2
√

v

∂

∂φ
+
√

v

2

)
,

K− = −~e−iφ

(√
u

∂

∂u
− i

2
√

u

∂

∂φ
+
√

u

2

)

×
(√

v
∂

∂v
− i

2
√

v

∂

∂φ
−
√

v

2

)
, (22)

where we have made use of the dimensionless variables

u =
p0

~
ξ, v =

p0

~
η. (23)

Note that, according to Eqs. (17), interchangingξ with η
(or, equivalently, interchangingu with v) amounts to a re-
flection on thexy-plane and, therefore, to interchangingI±
with −K±.

SinceL3=I3 + K3, the wave function,ψj,j,j , represent-
ing the state|j, j, j〉 must be of the formF (u, v)ei2jφ and
therefore, from Eqs. (16) and (22) we readily obtain

ψj,j,j = Ne−(u+v)/2(uv)jei2jφ, (24)

where N is a normalization constant. A simple compu-
tation, using the fact that the volume element is given
by (1/4)(ξ+η)dξdηdφ, yields

|N | = (p0/~)3/2

(2j)!
√

(2j + 1)π
.

Making use of Eqs. (14), (15), (22), and (24), one can ob-
tain the explicit expression of all thenormalizedwave func-
tions for the bound states of the hydrogen atom, separable in
parabolic coordinates. Since these wave functions are given
in terms of associated Laguerre polynomials (see Appendix),
one is actuallyderivingthe Rodrigues formula for these poly-
nomials, as well as some recurrence relations. Note that, on
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a functionψ with a dependence onφ of the form eimφ, we
have the identity

(√
u

∂

∂u
− i

2
√

u

∂

∂φ
−
√

u

2

)
ψ

= u(1−m)/2eu/2 ∂

∂u

(
um/2e−u/2ψ

)
,

with similar identities for the other operators appearing in
Eqs. (22). Therefore, forn > 0 (on a functionψ with a de-
pendence onφ of the form eimφ),

(I−)n
ψ = ~ne−inφu(n−m)/2eu/2

× ∂n

∂un
um/2e−u/2v(n−m)/2e−v/2 ∂n

∂vn
vm/2ev/2ψ.

3.1. Interbasis expansions

The solution of the Schrödinger equation for the hydrogen
atom is usually obtained making use of the spherical coordi-
nates. The separable solutions in spherical coordinates, being
proportional to the spherical harmonics, are eigenfunctions
of L2 andL3, and it must be possible to express the separa-
ble solutions in spherical coordinates (eigenfunctions ofL2

andL3) in terms of the separable solutions in parabolic coor-
dinates (eigenfunctions ofI3 andK3). Fortunately, according
to Eqs. (9),L is the sum of two commuting angular momenta
(L=I+K) and, therefore, using the rules of addition of angu-
lar momenta, for a given value ofE or, equivalently, ofj, the
possible values of the square of the angular momentum,L2,
arel(l + 1)~2, where [see Eq. (11)]

l = 2j, 2j − 1, 2j − 2, . . . , 0,

which is the well-known result obtained by solving the
Schr̈odinger equation in spherical coordinates (again, recall
that2j+1 is the principal quantum number,n). Furthermore,
if |j, l,m〉 is the (normalized) state with energy (12), that is an
eigenket ofL2 andL3 with eigenvaluesl(l+1)~2, andm~,
respectively, then, in terms of the common eigenkets ofI2,
I3, andK3, we have

|j, l, m〉

=
j∑

m1,m2=−j

〈j, j,m1,m2|j, j, l, m〉 |j, m1,m2〉, (25)

with m=m1 + m2, where〈j1, j2,m1,m2|j1, j2, j, m〉 de-
notes the Clebsch–Gordan coefficients (cf. Ref. 3). The
analog of this result for the case of the two-dimensional hy-
drogen atom has been given, following other approaches, in
Refs. 8 and 9.

Finally, it should be remarked that, as already pointed out
at the Introduction, the SO(4) symmetry of the Schrödinger
equation for the bound states of the hydrogen atom is more
easily exhibited by considering its separable solutions in
parabolic coordinates. In fact, owing to the homomor-
phism between SO(4) andSU(2)×SU(2), which comes from

Eqs. (9) and (10), a given element of SO(4) corresponds to
two SU(2) matrices (defined up to a common sign), whose
action on the states|j, m1,m2〉 is given by the standard ma-
trices (or Wigner D functions)Dj

mm′ .
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Appendix

Following the standard procedure, making use of the dimen-
sionless variables

u =
p0

~
ξ, v =

p0

~
η, k =

λ~
2p0

(A.1)

and writing

F = u|m|/2e−u/2f(u), G = v|m|/2e−v/2g(v),

from Eqs. (19) we find thatf and g satisfy the associated
Laguerre equations

u
d2f

du2
+ (|m|+ 1− u)

df

du

+
1
2

(
Me2

~p0
− |m| − 1− k

)
f = 0 (A.2)

and

v
d2g

dv2
+ (|m|+ 1− v)

dg

dv

+
1
2

(
Me2

~p0
− |m| − 1 + k

)
g = 0. (A.3)

These equations have acceptable solutions (which are associ-
ated Laguerre polynomials) only if

N1 ≡ 1
2

(
Me2

~p0
− |m| − 1− k

)

and

N2 ≡ 1
2

(
Me2

~p0
− |m| − 1 + k

)

are non-negative integers (the degrees of these polynomials).
Therefore,

Me2

~p0
= N1 + N2 + |m|+ 1,

is an integer greater than or equal to 1. Letting

2j ≡ N1 + N2 + |m|, (A.4)

with j = 0, 1/2, 1, 3/2, . . ., and recalling the definition ofp0,
it follows that

E = − Me4

2~2(2j + 1)2
,

which coincides with Eq. (12).
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Following the conventions of Ref. 10,f andg are propor-
tional to the associated Laguerre polynomials

L
|m|
(2j−|m|−k)/2(u)

and

L
|m|
(2j−|m|+k)/2(v),

respectively.

1. L.I. Schiff, Quantum mechanics, 3rd ed., (McGraw-Hill, New
York, 1968).

2. E. Merzbacher,Quantum Mechanics, 3rd ed., (Wiley, New
York, 1997).

3. M. Bander and C. Itzykson,Rev. Mod. Phys.38 (1966) 330.

4. W. Pauli, Z. Physik36 (1926) 336, reprinted inSources of
Quantum Mechanics, ed., B.L. van der Waerden, (Dover, New
York, 1968).

5. O.L. de Lange and R.E. Raab,Operator Methods in Quantum
Mechanics, (Clarendon Press, Oxford, 1991).

6. G.F. Torres del Castillo and J.L. Calvario-Acócal, Rev. Mex.
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