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In this paper we test the hypothesis thagxponential distribution fits better on distributions arising from lattices with a heterogeneous
topology than a homogeneous topology. We compare two lattices: the first is the typical square lattice with a constant occupatipn density
(the lattice used in standard percolation theory), and the second is a lattice constructed with a gradienthef homogeneous lattice the
occupied number of neighbors of each cell is the same (on average) for the full lattice, otherwige gnadeent lattice this number changes
along the lattice. In this sense thegradient lattice shows a more complex topology than the homogeneous lattice. Weyf@xtpenential

and the stretched exponential distribution on the cluster size distribution that arises in the lattices. We observe-thagicthential fits

better on thep-gradient lattice than on a constanfattice. On the other hand, the stretched exponential distribution fits equally well on both
lattices.

Keywords: g-exponential distribution; gradient lattices; stretched exponential; topology.

En este trabajo se prueba la dipsis de que la distribuim g-exponencial se adapta mejor en distribuciones derivadas de redes con una
topologa heterognea que en una topolieghomognea. Se comparan dos redes: la primera épilzatred cuadrada con una densidad de
ocupaocbn constante (la red esindar de la percolan), y la segunda es una red construida con un gradiente de otapadtn la red
homogenea, el imero de vecinos ocupados de cada celda es el mismo (en promedio), pero por otro lado, en lagadiemte, este
nimero sufre cambio a lo largo de la red. En este sentidp;deadiente red muestra una topdl@gnas compleja que la red hontatea.

Nos ajustamos lg-exponencial y la distribubin exponencial estirada sobre la distritiucide clisters de las redes. Observamos que la
g-exponencial encaja mejor en la redjradiente que en una red cpreonstante. Por otro lado, la distrib@niexponencial estirada encaja
bien en ambas redes.

Descriptores:Distribucion g-exponencial; redes en gradiente; exponencial estirada; tdpolog

PACS: 05.50.+q; 02.40.Pe

1. Introduction systems [6], or long-range correlated systems [7]. All these

. . ) systems are known to show an intricate topology, as we shall
In recent years, a vehement discussion regarding the foundgis .. ;ss pelow

tion of thermodynamics [1]. Several formulations of entropy ) i ) ,
have been proposed to account for the deviations from Boltz-  10P0logy is the branch of Mathematics that studies neigh-

mann statistics that are measured in many experiments [zlja_orhood propertigs of sets [8]. In this sense the square lattice,
We focus here on the non-extensive (or non-additive, t'any regularlattice, has a simple topology since the number
use a more rigorous terminology) interpretation of the therOf neighbors of each cell is the same all along the e_ntlre I_attlce
modynamics as developed by C. Tsallis [3]. According(except the border.of 'Fhe .system)..Moreo_ver, a lattice with an
to this paradigm, the distribution of probabilities that ex- 2verage random distribution of neighboring cells also shows
pand Boltzmann distributionp(z)=A, exp(—A;z), is the & trivial _topolpgy. An example of such a sy_stem is the reg-
g-exponential distributiony(z)=Ao(1 — (1 — ¢)Bz)"/(1-9), ular Iaf[tlce with randomly_ empty_and occ_upled cells, where
for Ao, A1, §, andg adequate constants. In the limit case ofthe neighbor of an occupied cell is exclusively qn_other occu-
¢= 1, theg-exponential distribution becomes the usual Boltz-Pied ceéll. We say that a system shows a non-trivial topology
mann statistics. In this paper we shall not discuss the basi¥nen its distribution of a number of neighbors of cells (or
of statistics. We observe that in the literature, most of comOP€n balls in continuous systems) deviates from a constant or
putational experiments that are well fitted yexponential ~ &n isotropic random distribution.

distribution arises from systems that show a non-trivial topol-  In this paper we computationally test the hypothesis that
ogy, for instance: the logistic map [4], Hamiltonian systemsqg-exponential distribution is more adequate to fit distributions
in the weak chaotic regime [5], coupled nonlinear dynamicalarising from systems with a non-homogeneous topology than
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systems with a trivial one. In Sec. 2 we introduce the latticepattern of lines with a givep. To fill the lattice L2, we sort
with variable topology that we use to test our hypothesis. Irandom numberf<r<1 and use the rule: cells in@line
this way we produce lattices with homogeneous (trivial) andare occupied for<p.

heterogeneous (non-trivial) topology. In Sec. 3 we compare Figure 1 shows two sketches of the square lattice with

the fittings of theg-exponential and the stretched exponential o . )
: S : random (but not necessarily isotropic) occupation of proba-
(an alternative distribution with the same number of parame; ..~ d . - !
. . bility: in (a) a constanp lattice withp = 0.5, similar pic-
ters) to the data of our lattices. In the last section we conclud?ures are verv common in textbooks of percolation or statis-
the work, give our final remarks and point towards future de-. very cor ; P . :
. . tical physics and in (b), otherwise, shows gradient lattice
velopments of this article. ; T .
with p; = 1 andps = 0. To explore statistical properties re-
) ) ) lated to such lattices we use the cluster size distribution that
2. Construction of the gradient lattice naturally arise from the lattice. This quantity computes the
he basic el i th i £ th i | average number of cluster with a given size. The cluster size
The basic elements in the construction of the gradient laty;qy i tion is very much used in spin lattice and percolation
%Heory. It is well known [12] that this quantity obeys a power
t aradi lation in the eiahti H law distribution at criticality. In our work we are not inter-
context of gradient percolation in the eighties [9-11]. Theggia i critical phenomena that potentially could interfere in

focus of that papers was: to analyze percolation in a heterqs, . rosits because criticality impose long range correlations.
geneous lattice, to study the scaling relation of the boundary, g article we decide to work far from the critical point of
of the large cluster and to find an optimal value of the C“t'callattice percolation

percolation threshold of the square lattice. In this paper we

use thep variable lattice (gradient lattice or heterogeneous Figure 2 shows the cluster size distribution (non-
lattice) as a toy model to explore the connection betweemormalized). We fixp; = 1 and test several, as indicated
topology and distribution functions. in the figure. In the simulation we use lattice size= 200;

To construct the variable lattice, we start with an empty the number of samples in the simulation¥s = 200. We
square lattice of siz&. We choose two arbitrary occupation see in the picture that the number of clusters increases with
probabilitiesp; andp, for two opposite boundaries of the lat- the amplitudey; — p. This phenomenon is roughly expected
tice and generate a linear gradient of probabilitideetween  since in the limitp; — p, = 1there is just one single infinite
the limits: po<p<p:. In other words, we generate a linear cluster. The casg, = 0.6 in the figure is somewhat patho-

tice are the usual square lattice and the concept of occupati
probability p. Thep variable lattice was initially used in the
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FIGURE 1. Picture of two lattices: (a) a constgnmtattice withp = 0.5 and (b) ap gradient lattice witlp; = 1 andp. = 0. The lattice size
is L = 50.
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FIGURE 2. Histogram of cluster size distribution forzagradient
lattice, we us@; = 1 and severagp, as shown in the figure.
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FIGURE 3. Numerical fittings of two histograms of cluster size dis-
tribution. We illustrate @ = 0.4 constant lattice andm = 1 and
p2 = 0.2 gradient lattice. Theg-exponential (dashed lines) and the
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whereA,, A; and A, are the fitting parameters of the distri-
bution. We use the stretched distribution to compare to the
fitting of the g-exponential distribution. In fact both distribu-
tions have three real parametets 1 < ¢ < 3. Usually in
the literature ony-exponential distribution and Tsallis statis-
tics the notatiom; =¢g and A,=4 is employed..

Figure 3 shows the data corresponding foc@nstant lat-
tice p=0.4 and ap variable lattice ;=1 andp,=0.2). We
use in the simulation lattice size=200 and humber of sam-
ples N=10000. We have performed a numerical exploration
of the system fron.=50 to L=2000; we choosd.=200 be-
cause it fits the compromise between numerical precision and
reasonable time-machine. The respective fittings are shown
in the figure: g-exponential (dashed lines) and the stretched
exponential (dotted lines). We observe in this figure that the
g-exponential distribution fits better inyagradient than a
variable lattice. In what follows we discuss in detail the ad-
justment of the data to the two distributions.

We estimate the goodness of the fitting using the Root
Mean Square deviatioRMS done by

Eij\il(l'i - fi)2

RMS = N

for x; the data corresponding to the cluster size distribution,
fi the artificial data from the fitted curve and the num-
ber of points of the data. The best fit corresponds to the
smallestRMS. Tables | and Il summarize the information
of the fitting problem. We indicate theMS and the best
fitting parametersd; and A, for constantp lattice (p;=1
andp,=0.0,0.1,0.2,0.3, and0.4) and for variablep lattice
(p=0.35,0.4,0.45,0.5, and0.6). Table | corresponds to the
fitting of the ¢-exponential distribution and Table Il to the
stretched exponential distribution.

stretched exponential (dotted lines) fittings are shown in both cases.

logical since it is very close to the critical percolation value
of the square lattice. = 0.5972. We see in the figure that

TABLE |. Table for the g-exponential distribution. The first 5 lines
correspond te variable lattice, and the first column shows the lim-
its of the interval of occupation probability of the gradient. The
last five lines correspond tozaconstant lattices, and the first col-

the distribution corresponding to this case resembles a powe(jmn indicates the constapivalue. The remaining columns show:
|a.W dlStI’IbUtIOﬂ as |S to be eXpected at C”t'ca“ty The beSt f|tthe number of points of the histograw, the root mean square

for all these curves is explored in the next section.

3. Numerical results

In this section we test thgexponential and the stretched ex-
ponential distributions for the cluster size distribution arising
from ap constant and a gradient lattices. The equation for
the g-exponential is:

y=Ag (1= (1= Ay)Agz)/ =4 1)
and the equation for the stretched exponential is:
y = Agexp(—A2?), 2)

Rev. Mex. 5. 54 (6)

deviation,RMS, and the fitting parameter$; and A,.

Interval N RMS(%) Al A2
1.0-0.0 353 0.94 1.38 0.54
1.0-01 379 0.59 1.36 0.63
1.0-0.2 245 0.45 1.36 0.86
1.0-0.3 500 1.19 1.38 1.07
1.0-04 551 1.61 1.42 1.18
0.35 37 3.48 1.13 0.51
0.40 65 3 1.18 1.00
0.45 99 3.38 1.24 1.02
0.50 197 2.95 1.32 0.91
0.60 806 0.29 1.44 0.42
(2008) 459-463



462 P. CAVALCANTE DA SILVA, G. CORSO, AND L.R. DA SILVA

the stretched exponential fitting is roughly the same for a gra-

TaBLE II. Table for the stretched exponential. The firsines cor-  dient lattice as for a homogeneous lattice. As opposed to the

respond tg variable lattice, and the first column shows the limits g-exponential distribution, the stretched exponential has no

of the interval of occupation probability of the gradient. The last feeling to detect topological differences betweengradient

five lines correspond tp constant lattices, and the first column in-  and ap constant lattice.

dicates_thq; value. The other columns show: _thg number of points In this work we tested only two distributions of probabili-

c.’f .the histogram/V, the root mean square deviatidiS, and the ties, the stretched exponential and ¢hexponential distribu-

fitting parametersi; and As. . S : . e
tion. Our aim in this paper is to test the g-exponential fitting

Interval N RMS(%) Al A2 for heterogeneous topologies, and we did the test against the
1.0-0.0 353 0.34 12.38 0.13 stretched exponential distribution. Another possibility would
1.0-0.1 379 0.29 11.05 0.14 be to use more sophisticated distributions like the one sug-
10-0.2 245 0.43 769 0.18 gested in Ref. 13. _The _(:lte_d dl_strlbu_tlon is a natural extension
of the g-exponential distribution with one more parameter.
1.0-0.3 200 0.44 5.74 0.21 However, the best fit comparison between two distributions
10-04 551 0.32 6.13 0.18 with different numbers of parameters is not an easy task. In a
0.35 37 0.58 2.21 0.57 future work we intend to explore this point in more detail.
0.40 65 0.5 2.67 0.57 This paper follows an alternative trend in the context of
0.45 99 0.33 291 0.4 Tsallis thermodynamics anﬁexponentigl _dist_ri_buti_on. In-
stead of searching for a thermodynamic justification for the
0.50 197 0.49 4.14 0.29

use of g-exponential distribution, we explore the relation
0.60 806 0.47 19.36 0.08 between topology and fitting af-exponential distribution.
Based on our results, we conjecture that¢rexponential is
The g-exponential fitting is explored in Table I. We ob- an adequate fitting distributions to model systems showing a
serve in this table that thRMS is 2 to 3 times larger for non-trivial topology. We explore this concept in a lattice sys-
a gradient lattice than a constant one. The case constaffm where we can change the topology by playing with the
p = 0.6 lattice is anomalous as discussed before. Table llnymper of neighbors. The same framework should be tested
on the other hand, shows that the stretched exponential d|ﬁf‘| non-linear dynamica| SystemS, where it is possib|e to tune
tribution fits as well inp gradient as irp constant lattices. the non-linear parameter and change the topology of the sys-
There is no significant differences between these two sets. tem. In the context of dynamic systems, the term symbolic
dynamics is used instead of topology, but the ground idea is
4. Final remarks always to describe transition rules among subsets of the sys-
tem. In this context, systems with simple symbolic dynamics
In this work we test the hypothesis that frexponential dis-  (ergodic systems) follow a Boltzmann distribution and sys-
tribution is adequate to fit quantities arising from non-trivial tems with more evolved symbolic dynamics should follow a
topology. We use an appropriate rule for cell probability g-exponential fitting.
occupation of the square lattice in order to induce variable
topology in lattices. We employ the cluster size distribution
of the constant and variable lattices to perform our tests. Thdcknowledgements
main conclusion of this paper is that tR&S deviation of the
g-exponential fitting is smaller forjagradient lattice than for  The authors gratefully acknowledge the financial support of
ap constant lattice. We use the stretched exponential distriConselho Nacional de Desenvolvimento Cigob e Tec-
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