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UFRN - Campus Universitário, Lagoa Nova,
CEP 59078 972, Natal, RN, Brazil,

cDepartamento de F́ısica Téorica e Experimental, Universidade Federal do Rio Grande do Norte,
UFRN - Campus Universitário, Lagoa Nova,

CEP 59078 970, Natal, RN, Brazil.

Recibido el 7 de noviembre de 2008; aceptado el 4 de diciembre de 2008

In this paper we test the hypothesis thatq-exponential distribution fits better on distributions arising from lattices with a heterogeneous
topology than a homogeneous topology. We compare two lattices: the first is the typical square lattice with a constant occupation densityp

(the lattice used in standard percolation theory), and the second is a lattice constructed with a gradient ofp. In the homogeneous lattice the
occupied number of neighbors of each cell is the same (on average) for the full lattice, otherwise in thep-gradient lattice this number changes
along the lattice. In this sense thep-gradient lattice shows a more complex topology than the homogeneous lattice. We fit theq-exponential
and the stretched exponential distribution on the cluster size distribution that arises in the lattices. We observe that theq-exponential fits
better on thep-gradient lattice than on a constantp lattice. On the other hand, the stretched exponential distribution fits equally well on both
lattices.
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En este trabajo se prueba la hipótesis de que la distribución q-exponencial se adapta mejor en distribuciones derivadas de redes con una
topoloǵıa heteroǵenea que en una topologı́a homoǵenea. Se comparan dos redes: la primera es la tı́pica red cuadrada con una densidad de
ocupacíon constantep (la red est́andar de la percolación), y la segunda es una red construida con un gradiente de ocupación p. En la red
homoǵenea, el ńumero de vecinos ocupados de cada celda es el mismo (en promedio), pero por otro lado, en la red conp-gradiente, este
número sufre cambio a lo largo de la red. En este sentido, lap-gradiente red muestra una topologı́a más compleja que la red homegénea.
Nos ajustamos laq-exponencial y la distribución exponencial estirada sobre la distribución de cĺusters de las redes. Observamos que la
q-exponencial encaja mejor en la redp-gradiente que en una red conp constante. Por otro lado, la distribución exponencial estirada encaja
bien en ambas redes.

Descriptores:Distribuciónq-exponencial; redes en gradiente; exponencial estirada; topologı́a.
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1. Introduction

In recent years, a vehement discussion regarding the founda-
tion of thermodynamics [1]. Several formulations of entropy
have been proposed to account for the deviations from Boltz-
mann statistics that are measured in many experiments [2].
We focus here on the non-extensive (or non-additive, to
use a more rigorous terminology) interpretation of the ther-
modynamics as developed by C. Tsallis [3]. According
to this paradigm, the distribution of probabilities that ex-
pand Boltzmann distribution,p(x)=A0 exp(−A1x), is the
q-exponential distribution,p(x)=A0(1− (1− q)βx)1/(1−q),
for A0, A1, β, andq adequate constants. In the limit case of
q= 1, theq-exponential distribution becomes the usual Boltz-
mann statistics. In this paper we shall not discuss the basis
of statistics. We observe that in the literature, most of com-
putational experiments that are well fitted byq-exponential
distribution arises from systems that show a non-trivial topol-
ogy, for instance: the logistic map [4], Hamiltonian systems
in the weak chaotic regime [5], coupled nonlinear dynamical

systems [6], or long-range correlated systems [7]. All these
systems are known to show an intricate topology, as we shall
discuss below.

Topology is the branch of Mathematics that studies neigh-
borhood properties of sets [8]. In this sense the square lattice,
or any regular lattice, has a simple topology since the number
of neighbors of each cell is the same all along the entire lattice
(except the border of the system). Moreover, a lattice with an
average random distribution of neighboring cells also shows
a trivial topology. An example of such a system is the reg-
ular lattice with randomly empty and occupied cells, where
the neighbor of an occupied cell is exclusively another occu-
pied cell. We say that a system shows a non-trivial topology
when its distribution of a number of neighbors of cells (or
open balls in continuous systems) deviates from a constant or
an isotropic random distribution.

In this paper we computationally test the hypothesis that
q-exponential distribution is more adequate to fit distributions
arising from systems with a non-homogeneous topology than
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systems with a trivial one. In Sec. 2 we introduce the lattice
with variable topology that we use to test our hypothesis. In
this way we produce lattices with homogeneous (trivial) and
heterogeneous (non-trivial) topology. In Sec. 3 we compare
the fittings of theq-exponential and the stretched exponential
(an alternative distribution with the same number of parame-
ters) to the data of our lattices. In the last section we conclude
the work, give our final remarks and point towards future de-
velopments of this article.

2. Construction of the gradient lattice

The basic elements in the construction of the gradient lat-
tice are the usual square lattice and the concept of occupation
probabilityp. Thep variable lattice was initially used in the
context of gradient percolation in the eighties [9-11]. The
focus of that papers was: to analyze percolation in a hetero-
geneous lattice, to study the scaling relation of the boundary
of the large cluster and to find an optimal value of the critical
percolation threshold of the square lattice. In this paper we
use thep variable lattice (gradient lattice or heterogeneous
lattice) as a toy model to explore the connection between
topology and distribution functions.

To construct the variablep lattice, we start with an empty
square lattice of sizeL. We choose two arbitrary occupation
probabilitiesp1 andp2 for two opposite boundaries of the lat-
tice and generate a linear gradient of probabilitiesp between
the limits: p2<p<p1. In other words, we generate a linear

pattern of lines with a givenp. To fill the latticeL2, we sort
random numbers0<r<1 and use the rule: cells in ap-line
are occupied forr<p.

Figure 1 shows two sketches of the square lattice with
random (but not necessarily isotropic) occupation of proba-
bility: in (a) a constantp lattice with p = 0.5, similar pic-
tures are very common in textbooks of percolation or statis-
tical physics and in (b), otherwise, shows ap gradient lattice
with p1 = 1 andp2 = 0. To explore statistical properties re-
lated to such lattices we use the cluster size distribution that
naturally arise from the lattice. This quantity computes the
average number of cluster with a given size. The cluster size
distribution is very much used in spin lattice and percolation
theory. It is well known [12] that this quantity obeys a power
law distribution at criticality. In our work we are not inter-
ested in critical phenomena that potentially could interfere in
our results because criticality impose long range correlations.
In this article we decide to work far from the critical point of
lattice percolation.

Figure 2 shows the cluster size distribution (non-
normalized). We fixp1 = 1 and test severalp2 as indicated
in the figure. In the simulation we use lattice sizeL = 200;
the number of samples in the simulation isN = 200. We
see in the picture that the number of clusters increases with
the amplitudep1−p2. This phenomenon is roughly expected
since in the limitp1 → p2 = 1 there is just one single infinite
cluster. The casep2 = 0.6 in the figure is somewhat patho-

FIGURE 1. Picture of two lattices: (a) a constantp lattice withp = 0.5 and (b) ap gradient lattice withp1 = 1 andp2 = 0. The lattice size
is L = 50.
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FIGURE 2. Histogram of cluster size distribution for ap gradient
lattice, we usep1 = 1 and severalp2 as shown in the figure.

FIGURE 3. Numerical fittings of two histograms of cluster size dis-
tribution. We illustrate ap = 0.4 constant lattice and ap1 = 1 and
p2 = 0.2 gradient lattice. Theq-exponential (dashed lines) and the
stretched exponential (dotted lines) fittings are shown in both cases.

logical since it is very close to the critical percolation value
of the square latticepc = 0.5972. We see in the figure that
the distribution corresponding to this case resembles a power-
law distribution as is to be expected at criticality. The best fit
for all these curves is explored in the next section.

3. Numerical results

In this section we test theq-exponential and the stretched ex-
ponential distributions for the cluster size distribution arising
from ap constant and ap gradient lattices. The equation for
theq-exponential is:

y = A0 (1− (1−A1)A2x)1/(1−A1) (1)

and the equation for the stretched exponential is:

y = A0 exp(−A1x
A2), (2)

whereA0, A1 andA2 are the fitting parameters of the distri-
bution. We use the stretched distribution to compare to the
fitting of theq-exponential distribution. In fact both distribu-
tions have three real parametersAi, 1 ≤ i ≤ 3. Usually in
the literature onq-exponential distribution and Tsallis statis-
tics the notationA1=q andA2=β is employed..

Figure 3 shows the data corresponding to ap constant lat-
tice p=0.4 and ap variable lattice (p1=1 andp2=0.2). We
use in the simulation lattice sizeL=200 and number of sam-
plesN=10000. We have performed a numerical exploration
of the system fromL=50 to L=2000; we chooseL=200 be-
cause it fits the compromise between numerical precision and
reasonable time-machine. The respective fittings are shown
in the figure:q-exponential (dashed lines) and the stretched
exponential (dotted lines). We observe in this figure that the
q-exponential distribution fits better in ap gradient than ap
variable lattice. In what follows we discuss in detail the ad-
justment of the data to the two distributions.

We estimate the goodness of the fitting using the Root
Mean Square deviationRMS done by

RMS =

√
ΣN

i=1(xi − fi)2

N

for xi the data corresponding to the cluster size distribution,
fi the artificial data from the fitted curve andN the num-
ber of points of the data. The best fit corresponds to the
smallestRMS. Tables I and II summarize the information
of the fitting problem. We indicate theRMS and the best
fitting parametersA1 and A2 for constantp lattice (p1=1
andp2=0.0, 0.1, 0.2, 0.3, and0.4) and for variablep lattice
(p=0.35, 0.4, 0.45, 0.5, and0.6). Table I corresponds to the
fitting of the q-exponential distribution and Table II to the
stretched exponential distribution.

TABLE I. Table for the q-exponential distribution. The first 5 lines
correspond top variable lattice, and the first column shows the lim-
its of the interval of occupation probability of the gradient. The
last five lines correspond to ap constant lattices, and the first col-
umn indicates the constantp value. The remaining columns show:
the number of points of the histogram,N , the root mean square
deviation,RMS, and the fitting parametersA1 andA2.

Interval N RMS(%) A1 A2

1.0 - 0.0 353 0.94 1.38 0.54

1.0 - 0.1 379 0.59 1.36 0.63

1.0 - 0.2 245 0.45 1.36 0.86

1.0 - 0.3 500 1.19 1.38 1.07

1.0 - 0.4 551 1.61 1.42 1.18

0.35 37 3.48 1.13 0.51

0.40 65 3 1.18 1.00

0.45 99 3.38 1.24 1.02

0.50 197 2.95 1.32 0.91

0.60 806 0.29 1.44 0.42
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TABLE II. Table for the stretched exponential. The first5 lines cor-
respond top variable lattice, and the first column shows the limits
of the interval of occupation probability of the gradient. The last
five lines correspond top constant lattices, and the first column in-
dicates thep value. The other columns show: the number of points
of the histogram,N , the root mean square deviation,RMS, and the
fitting parametersA1 andA2.

Interval N RMS(%) A1 A2

1.0 - 0.0 353 0.34 12.38 0.13

1.0 - 0.1 379 0.29 11.05 0.14

1.0 - 0.2 245 0.43 7.69 0.18

1.0 - 0.3 500 0.44 5.74 0.21

1.0 - 0.4 551 0.32 6.13 0.18

0.35 37 0.58 2.21 0.57

0.40 65 0.5 2.67 0.57

0.45 99 0.33 2.91 0.4

0.50 197 0.49 4.14 0.29

0.60 806 0.47 19.36 0.08

The q-exponential fitting is explored in Table I. We ob-
serve in this table that theRMS is 2 to 3 times larger for
a gradient lattice than a constant one. The case constant
p = 0.6 lattice is anomalous as discussed before. Table II,
on the other hand, shows that the stretched exponential dis-
tribution fits as well inp gradient as inp constant lattices.
There is no significant differences between these two sets.

4. Final remarks

In this work we test the hypothesis that theq-exponential dis-
tribution is adequate to fit quantities arising from non-trivial
topology. We use an appropriate rule for cell probability
occupation of the square lattice in order to induce variable
topology in lattices. We employ the cluster size distribution
of the constant and variable lattices to perform our tests. The
main conclusion of this paper is that theRMS deviation of the
q-exponential fitting is smaller for ap gradient lattice than for
a p constant lattice. We use the stretched exponential distri-
bution as a null model to compare our results. TheRMS of

the stretched exponential fitting is roughly the same for a gra-
dient lattice as for a homogeneous lattice. As opposed to the
q-exponential distribution, the stretched exponential has no
feeling to detect topological differences between ap gradient
and ap constant lattice.

In this work we tested only two distributions of probabili-
ties, the stretched exponential and theq-exponential distribu-
tion. Our aim in this paper is to test the q-exponential fitting
for heterogeneous topologies, and we did the test against the
stretched exponential distribution. Another possibility would
be to use more sophisticated distributions like the one sug-
gested in Ref. 13. The cited distribution is a natural extension
of the q-exponential distribution with one more parameter.
However, the best fit comparison between two distributions
with different numbers of parameters is not an easy task. In a
future work we intend to explore this point in more detail.

This paper follows an alternative trend in the context of
Tsallis thermodynamics andq-exponential distribution. In-
stead of searching for a thermodynamic justification for the
use of q-exponential distribution, we explore the relation
between topology and fitting ofq-exponential distribution.
Based on our results, we conjecture that theq-exponential is
an adequate fitting distributions to model systems showing a
non-trivial topology. We explore this concept in a lattice sys-
tem where we can change the topology by playing with the
number of neighbors. The same framework should be tested
in non-linear dynamical systems, where it is possible to tune
the non-linear parameter and change the topology of the sys-
tem. In the context of dynamic systems, the term symbolic
dynamics is used instead of topology, but the ground idea is
always to describe transition rules among subsets of the sys-
tem. In this context, systems with simple symbolic dynamics
(ergodic systems) follow a Boltzmann distribution and sys-
tems with more evolved symbolic dynamics should follow a
q-exponential fitting.
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