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The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical appli-
cations is presented. This analysis is developed through a novel polynomial model and a finite element method (FEM) model. A microsensor
with a diaphragm 100@m length and with three different thicknesses (10, 15, andr@Dis studied. The electric response of this microsen-

sor is obtained with a Wheatstone bridge of four p-type piezoresistors located on the diaphragm surface. The diaphragnuthahiskl0

exhibits a maximum deflection of 3.74m using the polynomial model, which has a relative difference of 5.14 and 0.92% with respect to the
Timoshenko model and the FEM model, respectively. The maximum sensitivity and normal stress calculated using the polynomial model are
1.64 mV/V/kPa and 102.1 MPa, respectively. The results of the polynomial model agree well with the Timoshenko model and FEM model
for small deflections. In addition, the polynomial model can be easily used to predict the deflection, normal stress, electric response and
sensitivity of a piezoresistive pressure microsensor with a square-shaped diaphragm under small deflections.

Keywords:Finite element model; piezoresistors; polynomial model; pressure microsensor.

El analisis electrome&nico de un microsensor de pi@sipiezoresistivo con un diafragma de séoctuadrada para aplicaciones bixdicas

de baja pregin es presentado. Esteddisis es desarrollado mediante un nuevo modelo polinomial y un modelo coatetlonelemento

finito (FEM). Un microsensor con un diafragma de 1Qd@ de longitud y tres diferentes espesores (10, 15 y.2() es estudiado. La
respuesta éktrica deeste microsensor es obtenida mediante un puente de Wheatstone con cuatro piezoresistores tipo p localizados sobre la
superficie del diafragma. El diafragma con d de espesor presenta una defiexiraxima de 3.74:m utilizando el modelo polinomial, el

cual tiene una diferencia relativa de 5.14 and 0.92% con respecto al modelo de Timoshenko y al modelo FEM, respectivanéedibea La m
sensibilidad y esfuerzo normal calculado con el modelo polinomial son 1.64 mV/V/kPa and 102.1 MPa, respectivamente. Los resultados
del modelo polinomial concuerdan bien con el modelo de Timoshenko y el modelo FEM parégedefiexiones. Adeas, el modelo
polinomial puede ser utilizad@€ilmente para predecir la defléri, esfuerzo normal, respuestacitica y sensibilidad de un microsensor

de presbn piezoresistivo con un diafragma de séoctuadrada sujeto a pediss deflexiones.

Descriptores:Modelo de elemento finito; piezoresistores; modelo polinomial; microsensor démresi

PACS: 07.10.Cm; 07.07.Df; 47.11.Fg

1. Introduction other option for designers and researchers because these mi-
_ _ _ _ crosensors are easy to use and to fabricate [8-9]. In addi-
Pressure microsensors are widely used in automotive aRipn, the low sensitivity of piezoresistive pressure microsen-

plications, process control and biomedical applications [1]sors can be improved by integrating amplifier circuits [10].
Pressure microsensors used in biomedical applications in-

clude the measurement of blood pressure [2], intraocular eye The pressure microsensors often use a thin square-shaped
pressure [3], intracranial pressure, pulse rate, intrauterindiaphragm as their main sensor element. This is because
pressure, abdominal and urinary pressure [4-5]. For mangf its compatibility with bulk and surface silicon microma-
biomedical applications, the capacitive detection techniquehining processes [11-12]. A pressure applied on the di-
is used mainly due to its high sensitivity. However, the ca-aphragm generates an increase in its deflection until the elas-
pacitive pressure microsensors have problems with the hetic force is balanced by the pressure. The pressure range
metic vacuum sealing of the capacitive cavity, the electricathat can be measured by the diaphragm depends on its di-
lead transfer between the vacuum-sealed cavity and the outiensions (surface area and thickness), geometry, edge con-
side world [6], the high cost due to the complex fabricationditions, and material [13]. For example, in biomedical appli-
process and the difficult to use post-end circuits to compeneations to measure the blood pressure and heart rate, pressure
sate the low linearity of these microsensors [7]. To overcomenicrosensors are required to operate in the range of 0-40 kPa
these problems, piezoresistive pressure microsensors are @300 mmHg) [14].
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shaped diaphragm, which is proposed to measure the blood
pressure and heart rate.
The paper is organized as follows. In Sec. 2, a hovel poly-

nomial model for predicting the electromechanical behavior
of a piezoresistive pressure microsensor with a square-shaped
diaphragm is developed. This model is obtained with the
small-deflection theory for the bending of plates and the Ritz
method. In addition, the electromechanical response calcu-
lated with the polynomial model is compared with the Tim-
oshenko model for plates. In Sec. 3, the discussion of the
electromechanical behavior of a piezoresistive pressure mi-
Metal crosensor obtained with the polynomial model, Timoshenko
conductors model, and FEM model is presented.

1 substrate

2. Pressure microsensor design

The mechanical and electric design of a piezoresistive pres-
sure microsensor with a square-shaped diaphragm to mea-
sure blood pressure and heart rate is need to improve its elec-
tromechanical performance. Therefore, this design will help
in choosing the dimensions of the microsensor with the best
sensitivity and resolution for these biomedical applications.

21 diaphragm

=1 substrate

2.1. Mechanical design

The diaphragm of a piezoresistive pressure microsensor can
(b) be modeled as a square plate with four edges clamped un-
der a uniform normal pressure. In this work, the thin di-
FIGURE 1. (a) Complete and b) cross-sectional views of a piezore-aphragm of the piezoresistive pressure microsensor is con-
sistive microsensor with a square-shaped diaphragm. sidered as a thin plate with edges clamped. A plate is called
“thin” when its ratio of thickness to the smaller span length is
The diffused resistors on the silicon substrate are usetgss than 1/20 [20]. Figure 1 shows the complete and cross-
to measure the strain of the diaphragm of the pressure miectional views of a typical piezoresistive pressure microsen-
crosensors. This piezoresistive microsensor generally haor with a thin square-shaped diaphragm. This microsen-
four piezoresistors in a Wheatstone bridge configuration tgor has a Wheatstone bridge with four p-type piezoresistors,
measure the stresses in a silicon diaphragm under normualhich are located near the edges of the diaphragm. The di-
pressure [15]. aphragm and piezoresistors are aligned with the (110) direc-
The electromechanical behavior of piezoresistive prestions in the(100) crystallographic plane.
sure microsensors is predicted during the design phase. This The governing equation of the deflection and normal
design is used to find the maximum electromechanical perstress of a thin diaphragm is derived considering the funda-
formance of the microsensors to improve their sensitivitymental assumptions (also known as Kirchhoff assumptions)
and resolution. In the past, the electromechanical design dif the small-deflection theory for the bending of thin plates,
these devices has often been studied with the Timoshenkghich are stated as follows [20]:
model for plates [16-17] and finite element method (FEM)
models [18-19]. However, the Timoshenko model contains 1. The material of the plate is elastic, homogeneous, and
complicated terms and FEM models need considerable com- isotropic.
puting time. Furthermore, the accuracy of a FEM model
depends on the shape and size of mesh used in these mod-2. The plate is initially flat.
els; thus, FEM models are difficult to use between design-
ers and researches. Therefore, simple theoretical models are 3. The deflection of the midsurface is small compared
needed to decrease the design time of pressure microsensors ~ With the thickness of the plate and a maximum de-
for biomedical applications. In order to solve this problem, flection of one-fifth of its thickness is considered the
this paper presents a novel polynomial model for an eas- limit of the small-deflection theory. The slope of the
ier and faster prediction of the electromechanical behavior ~ deflected surface is very small and the square of the
of a piezoresistive pressure microsensor with a thin square-  slope is a negligible quantity with respect to unity.
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and shear stresses,(, 7., andr,.) [21]. That s,

h
M, 2 O
M, = / oy ¢ 2dz,
Mz, U Tay

Differential . o M3 Qx _ Txz
¥ element l Th { Qy }_ /{ Tyz }dz’ (1)
z

wherez is the vertical distance measured from the diaphragm
midsurface

Based on the reciprocity law of shear stresses
(124 andr,, ), the twisting moments on perpendicular faces
of a diaphragm element are identice., M,,=M,,. Itis
important to mention that while the theory of thin plates omits
the effect of the strain components, and~,, on bending,
the vertical shear forceg, and@), are not negligible.

Figure 2b shows the equilibrium of an element cut out of
a diaphragm, under a distributed load, by two pairs of planes
parallel to thexzandyzplanes, since the stress-resultants and
stress-couples are considered at the midsurface of this ele-
ment. Note that as this element is very small, the force and
moment components are distributed uniformly on the mid-
(b) surface of the diaphragm element. Projecting all the forces

- . on the element in the-axis, the following equations of equi-
FIGURE 2. a) Schematic diagram of a rectangular-shaped d"librium are obtained [21]:

aphragm under an uniform normal pressure and, b) forces and mo-
ments on a differential element of the diaphragm.

Qs  0Qy
or + Dy +qg=0
4. The straight lines, normal to the midsurface before oM, OM,
bending, remain straight and normal to the midsurface O + dy —Qy=0 &)
during the strain, and the length of such elements is not
altered. This means that the vertical shear strains ag/[wy 6(;\/15” — Q. =0,
Y X

and~,, can be neglected.

5. Since the deflection of a plate is small, it is assumedvhereq(z,y) is a uniform load applied at the diaphragm sur-

that the midsurface remains unstrained after bending.face. From equation set (2), the relation between the uniform
load and the bending moment can be rewritten as [21]

6. The normal stress to the midsurfaee ) is small com-
pared with the other stress components and can be ne- 9% M, 0?M,,  0*M,

glected. 912 dxdy Oy? =9 @)

The diaphragm is strained when an uniform normal pres- . . . .
sure,q(z,y), is applied on the diaphragm surface, as shown Substituting equation set (1) into (3), a relation between
in Fié; 2‘,;1 :I'his strain causes normal,( o, o ar’1da ) normal stress and uniform load can be obtained as

. . yr Yz Yz
and shear stresses,( andr,.) on the diaphragm. In addi-
tion, the bendingi/,., M, ) and twisting moments\{,,) per ) ) )
unit length of the diaphragm midsurface, as well as the shear / (3 Oz | 5070wy 0 Uy)ZdZ 0 @
forces 0., Q) per unit of length of the diaphragm midsur- 0x? oxdy  Oy?
face, can be expressed in terms of the normal¢ndo,)

[NEY

[SIE
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FIGURE 3. Top view of a Wheatstone bridge with four p-type
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The solution of the partial differential Eq. (6) is com-
plicated and this solution is needed to find the deflection
and the normal stress components of the diaphragm. Double
trigonometric-series solutions can be used to solve Eq. (6),
but they generally are not easy to use [22]. However, the
polynomial solutions are the simplest equations to solve
equations similar to Eq. (6); however, they must be ob-
tained carefully to satisfy the boundary conditions indicated
by Eqg. (8) and to keep acceptable accuracy. Therefore, in
this work a novel polynomial model is proposed for solv-
ing Eg. (6) with the boundary conditions of a clamped di-
aphragm. Thus, the proposed polynomial model is given by

w(z,y) = i icmn [1—2}2

m=1n=1

JEEONON

wherew is the deflectiong,,,, represents coefficients to be

9)

piezoresistors on the diaphragm surface of a pressure microsensdi€terminedg andb are the lengths of the diaphragm edges.

The novel polynomial model satisfies the boundary con-
ditions indicated by Eqg. (8) and contains two series of poly-

Considering the Kirchhoff assumptions for the bendingnomial terms. These polynomial terms have unknown coef-
of thin plates (diaphragms) expressed above, the stress in tfigientsc,,,, that can be found by variational methods. The

z-direction and stress components, (o, ando,) can be
written in a matrix form given by

8w
o, 1 v 0 Ox?
z Ez 2.0
o | =127 1 0 %y2 , (5)
Ty 00 1-v || .,
dxdy

where E' is Young’s modulus,v is Poisson’s ratio of the
diaphragm material, and is vertical deflection of the di-
aphragm.

The deflectionw(z, y) with respect to the load intensity
q(z,y) can be obtained by substituting Eq. (5) into Eq. (4);

ot o o q
(w PrEr e ayzx) =g ©)

where D is the flexural stiffness per unit length of the thin
diaphragm.

+2

polynomial model considers the deflection of a diaphragm as
the superposition of polynomial curves of ordet 2nd 2 in
thex- andy- directions. Furthermore, theands terms indi-
cate the maximum number of polynomial curves inithand

y- directions to use in the polynomial model. The maximum
value of these termsg-(and s) will depend on the designer
and the variational method used to find the coefficients.

The Ritz method is a variational method based on the
principle of minimum potential energy to solve boundary
value problems of plates. In this work, the Ritz method is
considered to find the coefficients,,, of the polynomial
model. First, this model is applied to a pressure microsen-
sor with a rectangular-shaped diaphragm and afterwards is
simplified to a square-shaped diaphragm. Therefore, the Ritz
method is applied to a rectangular-shaped diaphragm with
sidesa andb under a uniform surface load. Thus, the strain
energyU associated with the bending of the diaphragm is

A thin diaphragm exhibits greater stiffness than a beangiven by [22]

by a factor 1/(1»?). This flexural stiffness per unit length is
given by
h

ERh?
12(1 —v2)°

E2
c dz =

D
1—02

(7)

[N

1 Pw 0w\’
U—z//D{(w2+mﬂ>‘2“‘”
A

The analytical equations to solve the Eg. (6) must satisfy
the following boundary conditions of a clamped diaphragm: whereA is the area of the diaphragm surface.

ow

w=0 a—sz (x=0,2=na)
ow
w =0 a—y—O (y=0,y =0b). (8)

0%w 0w 92w \ 2
The work done by the surface loadr, ) is
(11)

W = //wqdmdy
A
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For the case of a square-shaped diaphragm: (), the

The potential energy equation is obtained by U —W':
maximum deflection,,,...) is found at its center:
49gpa*

//{ Kar ?92?)2‘2“‘“)
- . (19)

0w dtw [ Pw )\ max = 36864
X [8322 RIE — (8x8y) H wq}d:rdy . (12)

Assuming the boundary conditions given by Eq. (8) and
integrating the last term of Eq. (10) by parts, then the strain
energyU is reduced to

=3 (55

Introducing Eq. (9) into Eqg. (13) yields

The normal stress components,( and o,) of a
rectangular-shaped diaphragm are found through the substi-
tution of Eq. (18) into Eq. (5):

= g e 03 ()G
:/b/{mzwzfm" ()" ()" e R (R R (R N )
. hl_gg] (2771(2:21—1) ) [(’Z)Q 4512(1_ )t (“Z)Q] }2 | (202
B %@ {1_2} (2)1+52> %= h3(7bi4—:1ab2b22qj— Tab) {:’2” (1‘%) (E) {(QZ)
*[12}2(2”(2;1) NGO a0 0-7) ] e (1-2) ()
O -Fe-D0-D] e

) dxdy. (13)

X

b

REHE @) e as

The work done by the uniform surface loat,y) = qo
on a rectangular-shaped diaphragm is calculated by

veo ][5 3e]

X

The maximum normal stresses are found at the middle
edges of the rectangular-shaped diaphragm at its upper sur-
face ¢ = h/2) and are given by

0 m= 1n=1
Y12 fz\2m [y 2n B 147a%b*qq
X {1 B E} (E) (6) dedy. (15) Twmax = 5oR2(Tb + 4a2b% + Tat)
Then, Egs. (14)_ a_nd (15) are substitu?ed into Eq. (12_) _and 147a*b2q0
the unknown coefficients,,,, are determined by the mini- Oymax = 3212 (7h* + 4a2b? + Tah)’ (22)
mum potential energy principle. Thus,
o1l
=0. 16
acm,n ( )

The maximum normal stresses for a square-shaped di-

We use the first value ofands of the polynomial model  aphragm are found with the substitutior= b into Eq. (22).
to obtain the simplest expression @f,,; consequently, the

coefficientc,; is obtained as
49a*b*qq
8D(7b* + 4a2b2 + Tat)’

C11 =

The Timoshenko model [23] for a rectangular-shaped
plate under small deflections is used to compare its results
in relation to the polynomial model. Based on the small-
deflection theory for the bending of plates, Timoshenko [23]

Then, the deflection obtained with the polynomial modelassumed the total deflection of a rectangular-shaped plate

is given by
49a*b*qq
D(7b* + 4a2b? + 7a*)

<[0T G

w =

with clamped edges as the sum of three componenis:.,
andws. The first componenty;, comes from the deflection

of a simply supported plate under the same pressure load.
The following equations are derived for a rectangular-shaped
plate ¢ andb width) under a pressurg). In addition, the
coordinate system used in these equations is located in the

Rev. Mex. . 55 (1) (2009) 1424
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center of the rectangular-shaped plate. Therefore,

4(]0@4 e (_1>(m—1)/2 mrx
TS D ngg) mb COS( a )

w11 oy, tanh o, +2 cosh (mﬂy)
2 cosh a,, a

1 mmy\ . mmy
sy (52 o ()
+ 2 cosh ay, ( a )sm a }

—CL2 i Em(_l)(mfl)/Q
Wy = _—
27 ox2D s m?2 cosh ay,

« cos (mwm) [mwy sinh (nmy)
a a a

(23)

Y

— a;, tanh o, cosh (mT)} (24)

_b2 e Em(_l)(m—l)/Z

m?2 cosh B,

o () [ o ()

— B tanh 3, cosh (m;ra:)} ,

wherer,,, and F,,, are coefficients to be determined. Also,

(25)

mma
ﬁ'rn - W

mmb

and
2a

(26)

Qm =

Hence, the total deflection of a rectangular-shaped di

aphragm (plate) under small deflections is calculated by

wy = wi + wa + ws. 27)

The values ofF,,, andF,,, can be obtained by the follow-

ing equations:

4qpa’a, E «
————— —tanha, = — [ tanha,, + —5—
m3n4 cosh” ay, n cosh” o,

e o]

8na 1
+ T Z Fm 3 (a2 n2 (28)
™ =135, M (lT2 + W)
4qob% 5, F, -
%752 —tanh 3, = — (tanhﬁn + 62>
m3nt cosh” 3, n cosh” 3,
8nb 1
+—=— > Ep—rr—v (29)
T =135, m (ITQ + W)

The coefficientsd,,, can be determined by the method of
successive approximations. Only the first four coefficients
(E1, Es, E5, and E7) were considered because a greater in-
crease in these terms does not significantly increase the ac-
curacy of the Timoshenko model [23]; thus; =0.3722K,
FE3=—0.0380K, E5=—0.0178K and E;=—0.0085K, where

4 2
Jg—

o (31)

The normal stress components of a square-shaped plate
can be determined by Eq. (5), considering these four coeffi-
cients ., Es, E5 andE7).

In the next section, the electric design of the piezoresis-
tive pressure microsensor is presented.

2.2. Electric design

The piezoresistive pressure microsensor has a Wheatstone
bridge with four p-type piezoresistors on the diaphragm sur-
face, as shown in Fig. 3. Two pairs of piezoresistors are
placed on opposite sides of the edges of the diaphragm to
increase its sensitivity to an applied pressure. Accordingly,
two piezoresistors are in parallel with the maximum normal
stress ¢..) and the other two are perpendiculardg. For

a piezoresistor subjected to parallel and perpendicular stress
componentsd; ando; ), the change in resistance is [24]

AR

R TO| + Tt Ot
wheren; andr; are the piezoresistive coefficients parallel
and perpendicular to the piezoresistor length.

The values of the piezoresistive coefficients depend on
the orientation of the wafer and the diaphragm, the type and
concentration of doping, and temperature [25]. For the (110)
directions in th€100) crystallographic plane, the parallel and
perpendicular piezoresistive coefficients are given by [24]

1
m =11 — 2 (T — T2 — Taa) 1

(32)

. (33)
where w11, w2 and myy are the fundamental cubic
piezoresistive coefficients. This work considered a re-
sistivity of 7.8 Q cm for the wafer, p-type piezoresis-
tors withmy;=6.6x10""1Pa !, m,=—1.1x10""'Pa! and
ma4=138.1 x 10~ ' Pa ![15]. Thus, the parallel and perpen-
dicular piezoresistive coefficients arg=71.8 x 10~ ''Pa !

1
T =mig + (M1 — T2 — Taa) | =

For the case of a square-shaped diaphragm, the followand7:= — 66.3 x 10~''Pa '. BesidesF= 169.8 GPa was
ing assumptions are considerdd,, = F,, and the Egs. (28) considered for the silicon and Poisson’s rate0.066 [24].
and (29) are same. Therefore, Eqgs. (28) and (29) are reduced The output voltagenV, of the Wheatstone bridge with a

to
E, Ay 8n > E,
— | tanhoy, + —— | + — —
o A
1 4qoa® n
X — = (]3()(13 ( a2 —tanhan> . (30)
(1 + #) mn® \ cosh” ay,

supply voltageV;,,, is given by [24]
AV (AR/R); — (AR/R),

Vi 24+ (AR/R); + (AR/R); (34)
where
AR AR
<R)l = Mo + Ty <R>t:77l0t+7rt0'l~ (35)
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The parallel and perpendicular stress components are cal-
culated using

o, =0,(0,b/2) o =04(a/2,0). (36)

The sensitivity,S, of the pressure microsensor can be de-
termined by the following equation:

AV/Vin
q0 ’

S = (37)

whereqq is the uniform-normal pressure on the diaphragm
surface.

3. Results and discussion

This section shows the result of the relations between the size,
pressure, deflection, normal stress components and electric
response of a piezoresistive pressure microsensor proposed
to measure blood pressure and heart rate. This microsen-
sor has a square-shaped silicon diaphragm 1@8dength
and in three different thicknesses (10, 15, andu®@) un-
der a uniform normal pressure. The pressure range consid-
ered for the electromechanical analysis of this microsensor
was 0-40 kPa (0-300 mmHg) [14]. The electromechanical re-
sponse was obtained with the novel polynomial model, which
agrees well with the Timoshenko model and FEM model for
small deflections. In addition, this polynomial model predicts
the electromechanical behavior of the piezoresistive pressure
microsensor more easily and quickly.

Figure 4 shows the absolute amplitude of the deflection
distribution of a square-shaped diaphragm (1p@®length
and 10um thickness) of the pressure microsensor, which
is obtained with the proposed polynomial model. This de-
flection distribution is caused by a uniform normal pressure
(15 kPa) on the diaphragm'’s external surface. The maxi-
mum deflection (1.4Qum) is located at the center of this
diaphragm. In addition, the absolute deflection distribution
over the middle ¢=b/2) of one quadrant (due to symmetry)
of this diaphragm is found using the polynomial model and
Timoshenko model, as shown in Fig. 5. For this case three
thicknesses (10, 15, and 20n) are considered, and a uni-
form normal pressure of 15 kPa on the diaphragm. The max-
imum deflection (1.4Qum) is less than one-fifth (Zm) of
the smallest thickness (30m), which satisfies the condition
for small deflections [23]. The deflections obtained by the
model polynomial agree well with the results of the Timo-
shenko model.

Figure 6 indicates the normal stress distributien )(of
the same square-shaped diaphragmur©thick as a func-
tion of z andy distances, respectively. This stress distribu-
tion was calculated using the polynomial model Eq. (20) and

FIGURE 6. Normal stress distribution of a piezoresistive pressure considering a pressure of 15 kPa on the diaphragm. The max-

microsensor with a square-shape diaphragm (}@@dength and
10 um thickness) under an uniform normal pressure of 15 kPa.

imum stresses (38.28 MPa) are found at the middle edges
(x =0,y =500 um andz = 1000 um, y = 500 um) of the
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NODAL SOLUTION

DMX =.422549
SMN =-27.276
SMX =18.601

-21.276 AT.081 -6.886 309 3.503
549 -.328644 234739 -140834 -04693 22178 -11.983 A.789 8.406 18.601
~375597 -281692 -187787 -093882 \229E-04

'NODAL SOLUTION

STEP=6

suB =1
NODAL SOLUTION TIME=S
STEP=6 SX  (AVG)
suB =1 RSYS=0
TIME=6 DMX =.182968

SMN =-15.5656
SMX =10,001

DMX =.182968
SMN =-.182968
SMX =.205E-04

©)

-15.555 -5.876 4.187 1483 7162
c) -12.715 -7.038 -1.357 4322 10.001

-.182968 -142304 -10164 -.080976 -.020312 i . ) ) )
162638 azerz ~o81308 ~0a0sss e FIGURE 8. Normal stress distribution (MPa) obtained using a

FEM model of a piezoresistive pressure microsensor with a square-
FIGURE 7. Deflection distribution gm) of a FEM model of  shaped diaphragm (10¢0n length) under a uniform normal pres-
a piezoresistive pressure microsensor with a square-shaped dsure (15 kPa) and considering thicknesses of 10, 15, aneh20
aphragm (1000um length) under an uniform normal pressure
(15 kPa) and considering thicknesses of 10, 15, andr20

behavior was compared with the polynomial model and the
diaphragm where the parallel piezoresistors are locatedrimoshenko model. The FEM model represents one quarter
The center of the diaphragm is subjected to compressivesf the pressure microsensor (due to symmetry conditions)
type stresses, of which the highest compressive stress wg$order to decrease the computer time. First, the model was
20.40 MPa. drawn using CAD software (Solid Edge17) and after that was

A FEM model of the same piezoresistive pressure mitransferred to ANSYS software. Then, the load and mesh

crosensor was made through ANSYS and its mechanicatonditions were applied to this FEM model with elements
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90

4.0

Thickness and model: Diaphragm size: 1000pmx1000um
g0} = = =10 pm Polynomial
=—g— 10 pm Timoshenko
J0F A 10 um FEM

== === 15 um Polynomial

Thickness and model: Diaphragm size:1000umx1000um

35l ="~ 10 pm Polynomial

=—i— 10 pm Timoshenko
4 10 um FEM

3.0 == =15 um Polynomial g 60 —*— 15 um Timoshenko - ,”
== 15 um Timoshenko = O 15 um FEM Bt
£ 25} ¥ 15 um FEM §3 50} ==== 20 ym Polynomial -
= === 30 ym Polynomial % =20 pm Timoshenko
g = 20 ym Timoshenko : 40 © 20 ym FEM
£ 20 o 20umFEM 3
= S 30}
a 15}

201

1.0 10}

05¢ 20 25
Pressure (kPa)

5 10 15 20 25 30 35 40 . .
Pressure (kPa) FIGURE 11. Output voltage variation of a Wheatstone bridge ver-
sus pressure applied to a piezoresistive pressure microsensor with a

FIGURE 9. Maximum deflections variation versus pressure applied square-shaped diaphragm (1Q0@ length) and considering thick-
to a piezoresistive pressure microsensor with a square-shaped djagses of 10 15 and 20m.

aphragm (100Q:m length) and considering thicknesses of 10, 15,

and 20um. ] )
model to be captured with Matlab software was about twice

as long as the time needed for the polynomial model.

First, the deflection distribution of the FEM model of the
microsensor was found by considering a square-shaped di-
aphragm (100@.:m length) in three different thicknesses (10,
15, and 20um). Figure 7 shows the results of the deflec-
tion distribution of this microsensor under a uniform normal

140

Thickr:less am;l modeI; Dia.phragm.size: 1IZ.IIJImex1.IJIJIme

=== = {0 ym Polynomial

120 —— 10 ym Timoshenko

O 10 ym FEM

100} === 15 pm Polynomial

=3 15 um Timoshenko
® 15 um FEM

) S A pressure of 15 kPa. The maximum deflection (189 was
—8— 20 um Timoshenko found in the diaphragm 1@m thick. This value is 3.29 and
60 7.60 times greater than that obtained in the diaphragms with
15 and 20um of thickness, respectively. In addition, the
aof normal stress distribution for the same diaphragm with three

different thicknesses (10, 15, and 2fn) was recorded, as
shown in Fig. 8. The maximum tensile stress (44.01 MPa)
is located at the middle edge of the diaphragmub®thick.

This value is 2.37 and 4.40 higher than that found in the di-
aphragms 15 and 20m thick, respectively. The stress dis-
tribution decreases and becomes compressive at the center of

FIGURE 10. Maximum normal stress variatiom{) versus pres-  the diaphragm. In both cases, the stresses are less than the
sure applied to a piezoresistive pressure microsensor with a Squarer'upture stress of 360 MPa {100 silicon [26]

shaped diaphragm (10Q@m length) and considering thicknesses '

of 10, 15, and 2Qum. Figure 9 shows the deflections of the pressure microsen-

sor considering three different thicknesses (10, 15, and
type solid95 with three degrees of freedom each. Finally, th€0 ym) and a uniform normal pressure from 0 to 40 kPa.
FEM model was solved and its electromechanical behaviolhese deflections were obtained at the diaphragm center us-
was obtained for a pressure range from 0 to 40 kPa. Thigg the polynomial model, the Timoshenko model and the
FEM model was made and solved in an approximate time oFEM model. The results of the polynomial model agree well
four hours. This computation time is greater than the timewith the other two models. The diaphragm a6 thick ex-
used by the polynomial model and the Timoshenko modelhibits a maximum deflection of 3.74m using the polynomial
For the polynomial model, it took about 20 minutes to cap-model, which has a relative difference of 5.14 and 0.92% with
ture Eqgs. (9), (20), (34), and (37) with Matlab software andrespect to the Timoshenko model and the FEM model, re-
to define the load and material conditions. In addition, thespectively. The deflections for the diaphragms 15 angr20
Matlab software needed approximately four seconds to solvehick showed a reduction of 70.38 and 87.50% with respect
these equations. However, the time taken for the Timoshenkto the thickness of 1pm.

Normal stress magnitud ox (MPa)

201

15 20 25 30 35 40
Pressure (kPa)
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and 20um thick have sensitivities of 0.73 mV/V/kPa and
TABLE |. Sensitivity of a piezoresistive pressure microsensor with 0.41 mV/V/kPa, respectively. Therefore, the electromechani-
a square-shaped diaphragm obtained using the polynomial modekal design of the piezoresistive pressure microsensor showed

the Timoshenko model and the FEM model. that the square-shaped diaphragm 1060ength and 1@m
thickness has an adequate sensitivity and a safe mechanical
Diaphragm parameter Sensitivity (mV/V/kPa) response for measuring blood pressure and heart rate in the
Length  Thickness  Polynomial Timoshenko  FEM pressure range from 0 to 40 kPa. This design was obtained
(pm) (pm) model model model using the proposed polynomial model with a lower comput-
1000 10 1.64 1.99 1.89 ing time than the Timoshenko model and the FEM model.
1000 15 0.73 0.89 0.80
1000 20 0.41 0.50 0.43

4. Conclusions

The result of the maximum normal stresses)(in the . .

. ; : L ) A novel polynomial model was developed to predict the elec-
diaphragm of the microsensor is shown in Fig. 10. This re- ; . . L .
sponse was obtained using the polynomial model, the Timot_romechanlcal behavior of piezoresistive pressure microsen-
shenko model and the FEM model. For a pressure lower th Sors with square-shaped diaphragms more easily and quickly

20 kPa and a thickness greater than a0, the maximum or Iowjpressu.re biomedical appllqatlons. This model was

; . determined using the small-deflection theory for the bending
normal stress calculated using the polynomial model agrees: i nlates and the Ritz method. The expressions of the
well with the other two models. For the diaphragm /1% P ; P

) . . olynomial model are simpler than the classical Timoshenko
thick, the polynomial model showed a maximum stress oip y P

. . model for plates. A pressure microsensor with a square-
45.37 MPa versus 55.17 and 49.60 MPa obtained with th ; : .
Timoshenko model and the FEM model, respectively. Thes§haped diaphragm (10Q@n length) and with three differ-

values are less than the rupture stres silicon [26] ént thicknesses (10, 20, and gfh) was studied. For small
Moreover. the diaphraam l,gm thick efmed the hi hést deflections of the diaphragm, the electromechanical behav-
’ phrag 9 ior of the pressure microsensor obtained using the polyno-

normal stress (102.1 MPa using the polynomial model and_. : .
124.1 MPa using the Timoshenko model). mial model agrees well with the Timoshenko model and the

The results of the normal stress components obtained bFENI model. The deflections of the diaphragm (4@ thick)

the three models (polynomial, Timoshenko and FEM mod_w),(alculated using the polynomlgl model showed a r.elat|ve dif-
. ’ ) : ference of 5.14 and 0.92% with respect to the Timoshenko
els) were introduced into Eq. (34) to find the electric be-

havior of the Wheatstone bridge of the pressure microsensorrnoOIeI and the FEM model, respectively. In addition, the

) . deflections of the diaphragm exhibited a reduction of 70.38
Figure 11 shows the output voltage o'f the Wheat'stone brldggnd 87.50% for thicknesses of 15 and;a@, respectively. A
versus the pressure (0-40 kPa) applied to the diaphragm. In __ . .

i ) maximum sensitivity (1.64 mV/V/kPa) was calculated for the
this case, a supply voltag&(,) of 1 V and three different d
thicknesses for the diaphragm were considered. For the two
thicknesses with higher magnitude (15 and,af), the re-
sults obtained with the polynomial model agree well with theAcknowledgements
Timoshenko model and the FEM model. In addition, the re- _ _ .
sults of sensitivity (mV/V/kPa) of the pressure microsensorThis work was supported by the University of Guanaju-
are shown in Table I. The highest sensitivity was calculatecto (UG DINPO project 099/2008) and CONACYT through
for the diaphragm 1@m thick. Using the polynomial model, Project 84605. We would also like to thank Prof. Jerry Hem-
the diaphragm 1Qum thick has a maximum sensitivity of Mmye of Western Michigan University for useful discussions

1.64 mV/V/kPa, while the two diaphragms that are /4%  and suggestions.

iaphragm 1Q:m thick.
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