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Optimization of the diffraction efficiency in non-uniform gratings
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We included the non-uniformity of the grating and of the magnitude and phase of light modulation throughout the sample thickness to
optimize the diffraction efficiency. The variation of fringe period, optical activity, birefringence, absorption of light, and polarization angle
were considered. We studied strong nonlinear conditions and two crystal orientations one is with the grating vector parallel to the face [001]
and the other is with the grating vector perpendicular to the same face. We included applied fields There is a complex relationship among
all these parameters, and the prediction of the conditions for the optimum value of the diffraction efficiency is complicated. We report the
optimal sample thickness for different situations, considering two wavelengths for reading: green (532 nm) and red (632 nm).

Keywords:Photorefractive gratings; refractive index; beam coupling; energy exchange; non-linear optics.

Incluimos la no uniformidad de la rejilla y de la magnitud y de la fase de la modulación de la luz a lo largo del espesor de la muestra,
para optimizar la eficiencia de difracción, considerando la variación del peŕıodo de la rejilla, condiciones fuertemente no lineales, actividad
óptica, birrefringencia, absorción, ángulo de polarización, campos aplicados y dos orientaciones del cristal: el vector de la rejilla paralelo y
perpendicular a la dirección [001]. Existe una relación compleja entre todos estos parámetros y la predicción de las condicioneśoptimas para
la eficiencia de difracción es complicada. Reportamos el espesoróptimo de la muestra en diferentes circunstancias, utilizando dos diferentes
longitudes de onda para la lectura: verde (532 nm) y roja (632 nm).

Descriptores:Rejillas fotorrefractivas;́ındice de refracción; acoplamiento de haces; intercambio de energı́a; óptica no lineal.

PACS: 42.65.-k; 42.70.-a; 42.70.Nq.

1. Introduction

The cubic crystals of the sillenite family (BSO, BGO and
BTO) have been studied extensively. They have high sen-
sitivity, unlimited recyclability and long holographic storage
times with a good potential for technological use [1-3]. They
have a strong enough response only when an external electric
field is applied during the photorefractive grating recording.
These materials have a faster response than barium titanate
or lithium niobate, and show a lower gain because of the low
value of their electro-optic coefficient. Sillenite crystals are
optically active and linearly birefringent in the presence of an
electric field. They exhibit complex polarization effects [4].

When a large absorption coefficient is present in the pho-
torefractive material, the light waves decay very rapidly in-
side the sample. In this case, the energy exchange as well as
the spatial non-uniformity of the grating is irrelevant.

However, for thick sillenite samples with no very large
absorption coefficients [5, 6] under a non-linear regime, there
is a strong beam coupling. In this case there is a spatial

redistribution of the light intensity pattern that changes the
light modulation across the crystal In this way the grating
is spatially non-uniform and its amplitude and phase change
throughout the sample thickness In previous work it was
shown that the spatial variation of the grating and of the light
modulation has a great influence on the energy exchange be-
tween the beams [7, 8].

In this work we studied thick sillenite crystals, where the
effects of beam coupling become significant. We considered
non-moving transmission gratings under an applied field and
strong non-linear conditions. For these systems we calculated
the diffraction efficiency considering the non-uniformity of
the gratings along sample thickness. We considered the vari-
ation of fringe period. We included optical activity, birefrin-
gence, and absorption of light. Several values of light modu-
lation and polarization angles of the incident beams are con-
sidered. Two crystal orientations are considered: the first one
is with the grating vector parallel to the face [001] and the
second one is with the grating vector perpendicular to the
same face.
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We started by numerically solving the set of non-linear
material rate differential equations [9,10] to find the full
space charge field for each of the values of the grating pe-
riod, Λ, we have considered: 1, 2, 3, 4, 5, 7 and 10 microns.
In each case we took several values of the light modulation at
the surface of the sample,m0 between zero and one. Then
we performed the Fourier decomposition of the calculated
overall space charge fields for each of the considered cases
to obtain the amplitude, E1 of its fundamental Fourier com-
ponent and its phase,Φ. This information was required to
obtain the grating strength and its phase, which are necessary
to solve the beam coupling equations, as functions of light
modulation.

Then we followed a vector approach [11-14] to express
the two wave coupling equations. The solutions to the corre-
sponding two sets of beam coupling equations were obtained
numerically considering the non-uniformity of light modula-
tion and of the grating amplitude and its phase along the sam-
ple thickness. We used two wavelengths for reading: green
(532 nm), and red (632 nm). The Bragg condition is always
satisfied.

2. Coupled wave equations

We considered the interaction of two, plane, monochromatic,
linearly polarized electromagnetic waves~A1(

→
r ) and ~A2(

→
r )

that propagate inside the sample. Each field has two compo-
nents: one, alonĝuζ perpendicular to the plane of incidence
(x − z) and the other, alonĝuξ parallel to the same plane.
The total light field can then be written as the superposition
of these two:

~A(~r) = ~A1(
→
r ) exp(−i~k1 • ~r + Ψ1)

+ ~A2(
→
r ) exp(−i~k2 • ~r + Ψ2) (1)

where
→
k1 and

→
k2 are the corresponding wave vectors,Ψ1, Ψ2

represent the phases of the two light waves, and

~A1(~r) = ~A1ξ(~r)ûξ + A1ς(~r)ûς ;

~A2(~r) = A2ξ(~r)ûξ + A2ς(~r)ûς

The light modulationm(
→
r ) varies along the sample

thickness according to:

m(
→
r ) =

2[A1ξ(
→
r )A2ξ(

→
r )∗ + A1ς(

→
r )∗A2ς(

→
r )]

I0
(2)

where

I0 =
∣∣∣ ~A1(0)

∣∣∣
2

+
∣∣∣ ~A2(0)

∣∣∣
2

With the interference pattern in the photorefractive mate-
rial the light excites electrons to the conduction band, which
migrate due to diffusion, and drift from the bright to the dark
parts of the crystal, where they are captured by the compen-
sating centers, resulting in the appearance of a space charge
field. These phenomena are described with the usual one-
trap-one band model [9,10].

We solved the set of non-linear material rate differen-
tial equations [9,10], numerically for several values of fringe
spacing,Λ = 1, 2, 3, 4, 5, 7, and 10 microns. In this man-
ner we obtained the variation of the overall space charge field
as a function of light modulation for each value of the ap-
plied field (5 and 10 kV/cm). We followed the method de-
scribed elsewhere [15,16]. For each of these values of fringe
spacing we obtained the numerical solutions for several val-
ues ofm0 = |m(z = 0)|, which is the value of the mag-
nitude of light modulation at the surface of the sample be-
tween 0 and 1. Then we performed the Fourier decomposi-
tion for each of the calculated overall space charge field to
obtain the amplitude,E1, of its fundamental Fourier compo-
nent and its phase,Φ, which is the phase shift of the space
charge field with regard to the light interference pattern, for
each of the cases considered. It is necessary to mention that
this method does not rely on a Fourier expansion and so its
validity is not limited by the use of a truncated harmonic ba-
sis. In this way we have obtained the grating strength and its
phase, which are necessary to solve the beam coupling equa-
tions self-consistently, as functions of light modulation. The
parameters used for the BSO are shown in Table I.

We considered a crystal cut to expose the (1̄10), the (110)
and the (001) crystallographic faces. To deal with the two
wave mixing (TWM) problem, we followed a tensor ap-
proach, taking into account optical activity, birefringence,
absorption of light, for the two common optical configura-
tions, the first with KG ||[001] and with light waves propa-
gating in the (1 10) plane. The second configuration is with
KG ⊥ [001], where KG ‖ [1 10] and the light waves propa-
gate in the (001) plane; the applied electric field is parallel to
KG For each configuration, the corresponding set of differ-
ential equations are obtained by the substitution of the light
field,

→
A(r) given by Eq. (1) and the electric displacement

tensor,
→
D(r), in the steady state wave equation,

∇2
→
A(r) +

k2
0

ε0

→
D(r) = 0. (3)

→
D(r) in a sillenite medium can be expressed as

Di = ε0(εij + Gij + ∆εij)Ej , (4)

whereεij is the symmetric optical permittivity tensor in the
absence of optical activity and electro-optic coupling,Gij is
the tensor describing the optical activity,Ej is thej compo-
nent of the electric field, and∆εij is the variation of the opti-
cal permittivity tensor induced by the linear Pockels electro-
optical effect. The piezoelectric and photoelastic effects, for
crystals of the sillenite family with the configurations we are
considering can be neglected [12]. The permittivity and the
optical activity tensors are expressed in the light propaga-
tion coordinate system. Finally, the second derivative of the
field is neglected In this manner the two sets of equations
are obtained for the vectorial beam coupling: for KG || [001]
with the light waves propagating in the (1 10) plane, and
for KG⊥ [001] and the light waves traveling in the (001)
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TABLE I. Parameters for BSO and BTO [11, 16, 17-19] taken for our calculations.

BTO BSO

ε Dielectric constant 47 56

n0 Average refractive index 2.58 2.5

r Electro optic coefficient (mV−1) 5.1×10−12 4.7×10−12

ND Donor density (m−3) 1025 1025

NA Acceptor density (m−3) 4×1022 1022

µτ Mobility lifetime product (cm2 V−1) 6×10−7 1×10−7

γ Recombination constant (m3s−1) 1.6×10−17 1.6×10−17

s Photo ionization cross section (m2J−1) 1×10−5 1×10−5

α Absorption coefficient (cm−1)

λ = 532nm 1.0 0.65

λ = 632nm 0.3 0.30

ρ Optical activity (o cm−1)

λ = 532nm, 100 386

λ = 632nm 65 214

plane [11,12]. Absorption of light, optical activity and an ex-
ternal applied field parallel to the vector grating, are included
in these two sets of equations.

The coupling factor,κ1, is due to the space charge field
obtained from the solution of the material rate equations, is
complex, and is not constant throughout the sample thick-
ness(z):

κ1 =
π∆n1(x, z)

λ cos θ
(5)

where∆n1(x, z) is the modulated change of the refractive
index induced by the space charge field through the linear
electro-optic effect:

∆n1(x, z) = n3
or

|E1(z)|
2 |m(x, z)|e

iΦ(z)m(x, z) (6)

The phase shift of the space charge field with regard to
the light interference pattern isΦ. Light beam propaga-
tion is along sample thickness andm(x, z) is the complex
light modulation, given by Eq. (2),E1(z) is the fundamental
Fourier component of the space charge field;n is the average
refraction index in the sample,λ is the wave length of the
recording monochromatic beams,θ is the incidence Bragg’s
angle, andr is the electro-optic coefficient.

Notice that we are considering not only the magnitude of
the variation of the refractive index along the sample thick-
ness, but also the variation of its phase. It is important to
take this into consideration when a static d.c. electric field is
applied because the phaseΦ is no longerπ/2 as in the diffu-
sion regime. The phase in this case is a function of both, the
value of the applied field and the coordinate along the sample
thickness.

During recording, the solutions to each set of beam cou-
pling equations corresponding to KG|| [001] and KG⊥ [001]

must be self-consistent. This is because the changes in the
intensities of waves and phases produce changes in the light
modulation and on the refraction index. These changes, in
turn, induce new changes in the intensity of the waves.

The set of beam coupling equations for KG|| [001]
are [11,12]:

dA1ς(z)
dz

= −ρA1ξ(z)− α

2
A1ς(z) (7a)

dA1ξ(z)
dz

= ρA1ς(z)

+ iκ0A1ξ(z) + iκ∗1(z)A2ξ(z)− α

2
A1ξ(z) (7b)

dA2ς(z)
dz

= −ρA2ξ(z)− α

2
A2ς(z) (7c)

dA2ξ(z)
dz

= ρA2ς(z) + iκ0A2ξ(z)

+ iκ1(z)A1ξ(z)− α

2
A2ξ(z) (7d)

Hereα is the absorption coefficient andρ is the optical
activity. The coupling factorκ1 was defined in Ref. 5. The
constantκ, is due to the variation of the magnitude of the
change in the refractive index induced by the external applied
field, E0:

κ0 =
2π∆n0

λ cos θ
(8)

where

∆n0 =
n3

0rE0

2
(9)

Notice thatκ0 is not a function of z.
The set of beam coupling equations for KG⊥ [001]

are [11, 12]:
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dA1ξ(z)
dz

= (ρ− iκ0)A1ς(z)

− iκ∗1(z)A2ς(z)− α

2
A1ξ(z) (10a)

dA1ς(z)
dz

= −(ρ + iκ0)A1ξ(z)

− iκ∗1(z)A2ξ(z)− α

2
A1ς(z) (10b)

dA2ς(z)
dz

= −(ρ + iκ0)A2ξ(z)

− iκ1(z)A1ξ(z)− α

2
A2ς(z) (10c)

dA2ξ(z)
dz

= (ρ− iκ0)A2ς(z)

− iκ1(z)A1ς(z)− α

2
A2ξ(z) (10d)

We solved each set of equations with no restrictions on
the value of optical activity, nor on the coupling constant, and
in a self-consistent way to take into account the variation with
depth (this isz) of both the space charge field and light mod-
ulation. We divided the sample into thin layers of thickness
∆z [16] in such a way that within each layerκ (z) is practi-
cally constant. In this way, within each layer we have ana-
lytical solutions [7] for the coupled equations of the two sets
corresponding to KG|| [001] and KG⊥ [001] When a small
change (larger than 0.1%) in this variable occurred, we chose
a smaller interval and calculated the new corresponding set
of values of constants for the corresponding interval∆z. We
started evaluating the initial set of constants for the first layer
at the surface of the sample by usingκ(z = 0). Next, for the
following layers, the values of the complex amplitudes of the
beams at the end of each interval were used to evaluatem
and therefore a new value ofκ atz where the following layer
starts.

We used gratings with different spatial periods,Λ,
of 1, 2, 3, 4, 5, 7, and 10 microns several values of light mod-
ulation at the surface of the samplem = 0.9, 0.6, 0.3 and 0.1.
We applied two fields: 5.0 and 10.0 kV/cm The values of ab-
sorption and optical activity used for BSO crystals are given
in Table I. We also considered that the two beams were lin-
early polarized and had the same polarization angles at the
surface of the sample when recording. The polarization an-
gle isφp, defined as the inclination angle of the electric field
of light waves with respect to the plane of incidence at the
surface of the sample,

ϕpi = tan−1

[
Aiξ(z = 0)
Aiξ(z = 0))

]
, i = 1, 2 (11)

From the complex amplitudes of light waves, obtained
from the solutions of each set of equations, we calculated the
intensities and phases of each wave as a function ofz. For
each one of the recording orientations we also obtained the

diffraction efficiencyη(z) defined as:

η(z) =
Id(z)
Ii(0)

(12)

whereId (z) =|Ad (z) |2 is the intensity of the diffracted light
beam at the specific sample thicknessz, andIi (0) is the in-
tensity of the incident light beam at the surface of the sample.
The value of the diffracted intensity at the surface of the sam-
ple isId (z=0)=0.

3. Results and Discussion

Our calculations were performed using experimental data
given in Table I for BSO and BTO. We considered absorp-
tion of light and optical activity.

In Fig. 1 we show the dependence of the diffraction ef-
ficiency on the sample thickness for a BTO grating. We
used red light (632 nm) for reading;KG ⊥[001]; applied
field E0=5 Kv/cm. The polarization angle isΦp=π/2 and
m0= 0.9. The absorption coefficient is 0.3 cm−1. The grat-
ing was recorded with green light with an absorption coeffi-
cient of 1.0 cm−1 (see Table I). We can see clearly that, for
all the values we used for the grating period, there is an opti-
mal thickness. At this optimal thickness, the diffraction effi-
ciency reaches a maximum value. The largest of these values
is 28.6 % and occurs for the minimum value we considered
for fringe spacing: 1 micron. The smallest value occurs for
the largest value of the grating period: 10 microns.

In Fig. 2 we show the result for the dependence of the
diffraction efficiency on the sample thickness for a BSO grat-
ing using red light (632 nm) for reading. For this case,
KG‖[001]; E0= 10 Kv/cm;Φp= π/2; m0 =0.9;as in Fig. 1 the
grating was recorded with green light (532 nm). The largest
value of the diffraction efficiency is 54% and occurs for a
grating period of 10 microns and a sample thickness of 1 cm.
We can see that for all values of the grating period consid-
ered, the diffraction efficiency reaches a maximum value and

FIGURE 1. Result for the dependence of the diffraction efficiency
on the sample thickness, for a BTO grating using red light (632 nm)
for reading. For this case:KG⊥[001]; E0 =5 Kv/cm; Φp= π/2;
m0 = 0.9.
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FIGURE 2. Result for the dependence of the diffraction efficiency
on the sample thickness, for a BSO grating using red light (632 nm)
for reading. For this case:KG‖[001]; E0= 10 Kv/cm;Φp = π/2;
m0=0.9.

FIGURE 3. Result for the dependence of the diffraction efficiency
on the sample thickness, for a BSO grating using red light (632 nm)
for reading. For this case:KG‖[001]; E0 = 10 Kv/cm;Φp = π/2;
m0 = 0.3.

FIGURE 4. Result for the dependence of the maximum diffraction
efficiency on the grating period for BTO, using red light (632 nm)
for reading and different values form0(0.1, 0.3, 0.6 and 0.9). For
this case:KG‖[001]; E0= 10 Kv/cm;Φp = π/2.

FIGURE 5. Result for the dependence of the maximum diffraction
efficiency on the grating period for BSO using green light, 532 nm
for reading and different values form0(0.1, 0.3, 0.6 and 0.9). For
this case:KG‖[001]; E0= 10 Kv/cm;Φp= π/2.

FIGURE 6. Dependence of the optimal thickness (to obtain the
maximum diffraction efficiency), on the grating period for BSO us-
ing green light, 532 nm (̈ : m0=0.1; N : m0=0.3; • : m0=0.6;
¥:m0=0.9) and for red light, 632 nm (♦:m0=0.1; 4:m0=0.3;
◦:m0=0.6; ¤:m0=0.9), for reading. For this case:KG‖[001];
E0=10 Kv/cm;Φp= π/2.

FIGURE 7. Dependence of the optimal thickness to obtain the max-
imum diffraction efficiency on the grating period for BTO using
red light (632 nm) for reading. Two different sample orientations
are considered.KG‖[001] (¨:m0=0.1; N:m0 =0.3; •: m0= 0.6;
¥:m0=0.9) and,KG⊥[001] (♦:m0= 0.1;4 :m0=0.3; ◦:m0=0.6;
¤:m0=0.9) For this case:E0=10 Kv/cm;Φp= π/2.
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the smallest of these occurs for the smallest value of the grat-
ing period: 1 micron.

In Fig. 3 we show the result for the dependence of the
diffraction efficiency on sample thickness for a BSO grat-
ing using red light (632 nm) for reading. For this case:
KG‖[001]; E0=10 Kv/cm;Φp = π/2; m0 = 0.3. In this case,
the largest value of the diffraction efficiency is 21% and oc-
curs for a grating period of 3 microns and a sample thickness
of 2.4 cm. We can see now that, for all the range of values of
sample thickness considered, the grating period correspond-
ing to 3 microns maintains the largest value for the diffrac-
tion efficiency. When the fringe spacing is 2 microns and
the sample thickness increases, the diffraction efficiency in-
creases more rapidly than in any other case. Notice now that
for a fringe spacing of 10 microns, the diffraction efficiency
reaches a maximum of 10.3% and then decreases. When the
sample thickness is 2.5 cm, the value for the diffraction effi-
ciency for a fringe spacing of 1 micron is close to the corre-
sponding grating period value of 10 microns. This behavior
is quite different from the one in Fig. 2, whenm0 was 0.9.

In Figs. 4 and 5 we show the dependence of the maxi-
mum diffraction efficiency on the grating period, for different
situations for BTO and for BSO. In these figures the sample
thickness is 2.5 cm.

In Fig. 4 we show the result for the dependence of the
maximum diffraction efficiency on the grating period for
BTO using red light (632 nm) for reading and different val-
ues form0(0.1, 0.3, 0.6 and 0.9). For this case:KG‖[001];
E0=10 Kv/cm andΦp = π/2. We can see that the largest
maximum value of the diffraction efficiency is 65.4 %, which
occurs for an initial light modulation of 0.9. Notice that for
every value ofm0 there is a grating period for which the max-
imum diffraction efficiency reaches its largest value; Thus
the largest maximum value (4.7%) form0 = 0.1 occurs for
a fringe spacing of around 2.5 microns; form0 = 0.3 the
largest maximum (25.4%) happens when the grating period
is 3 microns; form0 = 0.6 the largest value (49.9%) occurs
when the fringe spacing is around 4 microns; whenm0 = 0.9
the diffraction efficiency increases when the grating period
increases and reaches its saturation value (65.4%) when the
grating period is around 7 microns.

Figure 5 shows the result for the dependence of the
maximum diffraction efficiency on the grating period for
BSO using green light (532 nm) for reading and differ-
ent values form0(0.1, 0.3, 0.6 and 0.9). For this case:
KG‖[001]; E0=10 Kv/cm ; Φp = π/2. The overall behavior
of the maximum diffraction efficiency is similar to the one in
Fig. 4. The largest values of the maximum diffraction effi-
ciency are smaller than the corresponding ones in Fig. 4. The
largest value for the diffraction efficiency in this case is 40%
for m0=0.9. Again, the sample thickness in all cases is
2.5 cm. The value of the absorption coefficient for red light
is smaller than the corresponding one for green light. This
implied larger values for diffraction efficiency when reading
with red light.

In Fig. 6 we show the influence of the color of the read-
ing light on the value of the optimal thickness. We see here
the dependence of the optimal sample thickness for obtain-
ing the maximum diffraction efficiency on the grating pe-
riod for BSO: for green light, 532 nm (̈:m0=0.1;N:m0=0.3;
•:m0=0.6;¥:m0=0.9) and for red light, 632 nm (♦:m0=0.1;
4:m0=0.3; ◦:m0=0.6; ¤:m0= 0.9), for reading. For this
case: KG‖[001]; E0=5 Kv/cm; Φp =π/4. It is interesting
to notice the influence of the color of the reading light on
the value of the optimal thickness. If we use green light the
optimal thickness is the same (1.6 cm) for all values ofm0

except form0=0.9. In this latter case, the optimal thick-
ness remains at 1.2 cm for a fringe spacing of 3 microns and
larger. For smaller values of the grating period, the optimal
thickness increase up to 2 cm. When we use red light, the
optimal thickness increases for all cases and depends more
strongly onm0. For a grating period of 5 microns and larger
the optimal thickness (2 cm) is about the same for all values
of m0. For values of the fringe spacing below 5 microns, we
have a clear dependence onm0. Thus, n this way form0=0.1
andm0=0.3, the optimal thickness increases from 2 cm to
3 cm when the grating period goes from 5 to 1 micron. For
m0=0.6, the optimal thickness goes from 2 cm to 3 cm when
the fringe spacing goes from 2 microns to 1 micron. Notice
that there are some combinations of values of the parameters
for which the optimal thickness is not sensitive to the value
of the grating period.

Finally in Fig. 7 we show the dependence of the optimal
thickness to obtain the maximum diffraction efficiency on the
grating period for BTO using red light (632 nm) for reading.
Two different sample orientation are considered:KG‖[001]
(¨: m0=0.1; N: m0=0.3; •: m0=0.6; ¥: m0=0.9) and,
KG⊥[001] (♦: m0=0.1;M: m0=0.3;◦: m0=0.6;¤:m0=0.9).
For this case:E0= 10 Kv/cm andΦp=π/2. We can see for
both orientations that the higher the value ofm0, the more
sensitive is the optimal thickness with a decreasing grating
period. For both cases, whenm0 increases, the optimal thick-
ness decreases for each value of fringe spacing.

4. Conclusions

We studied, under strong non-linear conditions the optimiza-
tion of the diffraction efficiency in non-uniform gratings in
BSO and BTO for thick samples with a small absorption co-
efficient. We used both red light and green light for read-
ing. We considered variation of fringe period, optical activ-
ity, birefringence, absorption of light, and polarization an-
gle. We included applied fields and considered two crystal
orientations: in one the grating vector is parallel to the face
[001], and in the other the grating vector is perpendicular to
the same face. There is a complex relationship among all
the parameters we have considered, and the prediction of the
conditions for obtaining the optimum value of the diffrac-
tion efficiency is not simple. We have exhibited how this
optimization can be obtained. There is always an optimal
thickness to get the maximum diffraction efficiency for given
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light modulation and grating period when recording. This
optimal thickness is also dependent on the frequency and po-
larization of light, and on the sample orientation used for
reading. There are some combinations of values of the pa-
rameters for which the optimal thickness is not sensitive to
the value of the grating period. On the other hand, the grat-
ing period of 1 micron always corresponded to the smallest
diffraction efficiency. The largest value for the diffraction ef-
ficiency was 65.4%. This was obtained for BTO with a fringe

spacing of 10 microns, an initial light modulationm0 = 0.9,
and using red light for reading. The polarization angle was
Φp = π/2 KG|| [001] andE = 10 kV/cm.
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