INVESTIGACION REVISTA MEXICANA DE FiSICA 55 (1) 55-67 FEBRERO 2009

Optimal configuration of heat engines for maximum efficiency with generalized
radiative heat transfer law

Lingen Chen*, Hanjiang Song, Fengrui Sun, and Shengbing Wang
Postgraduate School, Naval University of Engineering,
Wuhan 430033, P.R. China
*e-mail: lgchenna@yahoo.com, lingenchen@hotmail.com,
Fax: 0086-27-83638709 Tel: 0086-27-83615046.

Recibido el 24 de noviembre de 2008; aceptado el 7 de diciembre de 2009

Optimal configuration of a class of endoreversible heat engines with generalized radiative heat trarigfer Ia\Z™" )] has been determined

by this paper. The optimal cycle that maximizes the efficiency of the engines with fixed input energy has been obtained using optimal-control
theory, and the differential equations are solved by Taylor series expansion. It is shown that the optimal cycle for maximum efficiency has
eight branches including two isothermal branches, four maximum-efficiency branches and two adiabatic branches. The interval of each
branch has been obtained, as well as the solutions of the temperatures of heat reservoirs and working fluid. Numerical examples are givel
for the optimal configurations with= — 1, n=1, n=2, n=3 andn=4, respectively. The results obtained are compared with each other and

with those results obtained for maximum power output.

Keywords: Generalized radiative heat transfer law; endoreversible heat engine; maximum efficiency; optimal configuration; finite time
thermodynamics; generalized thermodynamic optimization.

En este aftulo se determina la configuracioptima de una clase de mot@rinico endoreversible con la ley generalizada de transferencia
de claro radiativdg o< A(T™)]. El ciclo 6ptimo que maximiza la eficiencia de los motores con una entrada deéi@dedn se obtiene
usando la teda del controloptimo y las ecuaciones diferenciales son resueltas mediante la éxpancseries de Taylor. Se muestra que
el ciclo 6ptimo para naxima eficiencia tiene ocho ramas, incluyendo dos ramasrisatas, cuatro de axima eficiencia y dos adiakbicas.

Se muestra el intervalo para cada ramagcamo la temperatura del recipiente cé#ioo y del fluido de trabajo. Los ejemplo n@micos se
muestran para la configurécioptima comm= — 1, n=1, n=2, n=3 y n=4. Los resultado obtenidos son comparados unos con otros, y con
éstos se obtiene la potencis@xima de salida.

Descriptores: Leyes de transferencia de calor; motores endoreversiblesnma eficiencia; configurain 6ptima; termodiamica de tiempos
finitos.

PACS: 05.70.-a

1. Introduction In general, heat transfer is not necessarily linear and also
obeys other laws; heat transfer law has significant influence
P on the configuration and performance of heat engine cy-

There are two standard problems in finite time thermody-cIes [28-37]. Songet al. [38,39] and Liet al [40] deter-

namics: One is to determine the objective function limits . . ) : .
. L . . ~mined the optimal configurations of endoreversible heat en-
and the relations between objective functions for the given

thermodynamic system, and another is to determine the o tgines for maximum efficiency objective and maximum power

y ys ' . L poutput objective with linear phenomenological heat trans-
mal thermodynamic process for the given optimization ob-fer law [¢ = A(T-1)] [38,40] and those for maximum
J_ectlves [1-23]. Gutowicz-Krusioret al .[24] proved that ower output objective [39] with radiative heat transfer
in all acceptable cycles, an endoreversible Carnot cycle caﬁ

4 )
produce maximum poweke. the Curzon-Ahlbom (CA) cy- it Xt et FEREE, POl SR RO
cle [25] is the optimal configuration with only First and Sec- P 9 9

ond Law constraints. Rubin [26,27] analyzed the optimalr.naxImum eff|(_:|ency objective is obtqmed with f|?<ed dura-

' : . . . Jfion and a universal heat transfer lavg. generalized ra-
configurations of endoreversible heat engines with Newton Siiative heat transfer [ A(T™)] in the heat transfer pro-
heat transfer lawyg < A(T)] and different constraints, and 1 P
derived the optimal configuration of the engines. The optima

Fesses between working fluid and heat reservoirs. The gener-
configuration with fixed duration for maximum power output alized radiative heat transfer lqwoc A(T™)] includes some
is a six-branch cycle, and the optimal configuration with fixed

special cases. Whemn = 1, the heat transfer obeys Newto-
energy input for maximum efficiency is an eight-branch cy-

nian law; whenmn= — 1, the heat transfer obeys linear phe-
7 nomenological law used in irreversible thermodynamics, in
Cl? [2.6]' The results_were _extended o a class_ of heat ENINEThich case the heat transfer coefficients are the so-called ki-
with fixed compression ratio, and an optimal eight-branch cy-__ .. . -
. . : . netic coefficients by Callen [41], and they should be negative;
cle configuration of the engines for maximum power output

was derived [27]. Since then, many researchers have foun\ghennzz’ the heat trgnsfer IS appllcable_to .I’adI?.tIOI’I prop-
agated along a one-dimensional transmission line [28,29],

various optimal configurations for various systems and de%de the heat transfer coefficient in this case is equal

vices using optimal- control theory in the last three decades.
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to [72 k2/6h], where h is the Planck’s constant and k is thewhereCy, is the isometric heat capacity of the gasis the
Stefan-Boltzmann constant; when=3, the heat transfer is ratio of isobaric heat capacity Gy, and the time derivative
applicable to radiation propagated along a two-dimensionadf T is denoted byi'.

surface [28,29]; when = 4, the heat transfer obeys radiative Substituting Eq. (2) into Eg. (5) and defining some new
law if all the bodies are black, and the heat transfer coefficienyariables yields:

in this case is related to the Stefan-Boltzmann constant. The

optimal cycles that maximize the efficiency of the engines are T =—CT + K(TE — T")sign(n) (6)
obtained using optimal-control theory. It is shown that the v
optimal cycle for maximum efficiency has eight branches in- B=(r-1)In— (7
cluding two isothermal branches, four maximum-efficiency Vo
branches and two adiabatic branches. The interval of each g=C (8)

branch has been obtained, as well as the solutions of the tem-
peratures of heat reservoirs and working fluid. Numericalwherep = p/Cy , V; is a constant reference volume, afid

examples for the optimal configurations with= — 1, n=1, is the change rate of cylinder volume.
n=2, n=3 andn=4 are provided, respectively. In terms of these variables, Eq. (4) becomes:
2. Heat engine model f
9 W =Cy / CTdt 9
The following assumptions are made for the heat engine 0
model:
Apparently, derivingd and C' is convenient for solving
1) The engine is an endoreversible one; the problem one confronts by using optimal control theory.

2) The heat conductivity between working fluid and res;er-one also has

voirs is p which subject to

A
=C K(TE —Tm™)si 0
0<p<po 1) @ VO/ T& )Slgrn)
3) The heat transfer between working fluid and reservoirs x [(Tg — T™)sign(n)]dt (10)
obeys a universal heat transfer law, the heat flux is
_ _ whered(z) is a Heaviside step functiod,= 1 if z > 0 and
q=p(Tg —T")sign(n) (2)  9=0if z <0, andQ; is the work be supplied to systerie.
whereT is the absolute temperature of the working input energy. The cycle efficiency is given hy= W/Q1.

fluid, T is a constant temperature of each heat reser- The problem now is to determlr_le param_et,e(rls), Tﬁ(t)
voir. and and C(t) so that the work output is a maximum with the

fixed Q,. Itis required that C be restricted such that
Ty, <Tr <Tyg 3)
_Om S C S C]M (11)
whereT, andTy are the lower and upper limits of the
temperature of heat reservoirs, respectively. @igis  where C,, and C,; are arbitrary constant positive num-
a sign function, sigm)=1 if n>0 and sigrin)= — 1 bers. Then the optimal cycle of the engines for maximum-
if n <O0. efficiency can be derived by the model.

4) The work done by the engine in one cycle is given by
3. Optimization procedure

To determine the optimal configuration for maximum-
efficiency with fixed cycle time and input energy; is the
where P and V' are the pressure and volume of the same as in determining the optimal configuration for maxi-
working fluid, the time derivative of V is denoted b, mumW — uQ:, wherey is an ordinary Lagrange multiplier.
andr is the cycle period of the engine. The working The derivation of the optimal solution is complicated by the
fluid is an ideal gas. term. One can show that= OW,,,.,/0Q1, i.e. pis a mea-
sure of the sensitivity ofl/ max With respect to small changes
in the constraint(); =const. One can see thatcan be both
positive and negative andvanishes for the maximum power

: . . output, as expected [26]. To simplify the subsequent discus-
CvT+Cvly - 1)T/V — 4 ©) sion, >0 is assumed.

W= [ PVdt (4)
/

In terms of the first law of thermodynamics for an ideal
gas one has
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The Hamiltonian function in terms of Egs. (6), (7), (11) The last possibility corresponds to what is called the “sin-
andW — u@, is (whereT and are called state variables gular control problem”, and for the problem it is easy to ob-

andTg, p andC are called control variables) is: tain that along the singular part of the trajecta@ry is con-
) stant.
H = CT — pp(T — T")sign(n) Next setC' = C* andTr = T7; then Eq. (20) yields
T5 = Tsignn)] + v Fy +vefe - (12) AH = [ — ' 0(T7" —T*")sign(n))
where x (T = T*")signin)(p* —p) >0 (22)
Fy = —CT + K(T} — T")sign(n) (13) Correspondingly, it is required that
Fy=C (14) po” i [ —pr0((Ty — T+ )sign(n))]
Taking (W — u@1)/Cy as the performance index, it is (T =17 )sign(n) > 0
convenient to rewrite Eq. (12) as . . . o L
B2 o]0 Wi = oy — T sign(a)
H=[(1-9,)T + ¥,]C x(Tj —T* )signn) >0
+ (V1 — pb)p(Tx — T")sign(n) (15) undetermined if [)¥ —* (T —T*")
The equations of adjoint variables are given by xsign(n))(T —T™")sign(n)=0 (23)
1= —0H/0T = —C(1 — 4) The last possibility still corresponds to the singular con-
+npT" L (g — pb) (16) trol pr.oblgm, becaus:e it wo.ulq call f(_irl =pu=1, furt_her
. resulting in H*=0; since this is not in agreement with the
Yo =—0H/98 =0 (17)  request forf*>0, one should exclude this possibility.
Finally, setC' = C* andp = p*; then Eq. (20) yields
where .
) A K*(¢f — p*)(T, — Tg)sign(n)
0<p<po/Cv = po (18) if Th>T*
3.1. Applicati f i incipl Al = @4
.1. Application of maximum principle K*W(TE — T)sign(n)
Define if Tp<T

N -, From Eg. (23), one can see th#t=g, requires¥} > p*
AH = HIZ"(t), @ (1), " ()] it T > T* andWt <0 if T < T*. ConsiderTy in the
—HF (), @3 (1)] (19) interval [T Ty]; for T, > T, one can findl; = Ty in
order thatAH >0. It then follows that\ H > O for T'; in the

where is an admissible solution. The asterisk of symbolsinterval [T, ,7*], sinceu+ > 0. In a similar fashion, when
state the solutions are optimal. For a maximum, itis required’;, < T*, AH >0, providedl’;; = Tr.. Therefore, one has

that AH>0, and thus

. Ty if f > px
T, = . 25
AH = [(1 = 6)T" +u3)(C" ~ ©) {1 #)
L — wf0((TE — T )sign(n and forpx £ 0, one hasl'’y > T* > Tr.
i u (« f Jsignin))] This problem could be changed into finding the optimal
x p*(Th — T )sign(n) configuration for maximum-power output.Af > 0, p* = 0

andC* = C, Eq. (20) can be changed into
AH = —[; — p*0((Tf — T )sign(n))]

x p(TE —T*")sign(n) > 0 (26)

where0 < p < po/Cv = poCv = po, T, < Tp < T and 7% )sigrin)

-Cp, <C < Cy. From Egs. (25) and (26), one can §ét>Ty if v7 > u*,
Now one can consider various possible cases separatelyand 7™ < T}, if 47 < 0, so that both cases are impossible.

First setp = p* andTr = T}; then the second term of Andif 0 < 7 < p*, T* is possible betweeff; and77.

— [} — ub((Tf — T*")sign(n))]
x p(T —T*")sign(n) > 0 (20)

Eg. (20) vanishes. To assufel] >0 it is required that From the above argument, one can get that adiabatic branches
. may take place whep* > 0. If u* = 0, the! adiabatic
Cur, if (1 —97)T 4¢3 >0 branch vanished [26, 38-40]. The problem would be more
C'=q —Cn, . !f (1=9P)T*+y5 <0 (21) complex if < 0, wher? the optimal configuration may be
undetermined if (1—¢1#)T™ + ¢35 = 0 without adiabatic branches.
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3.2. Optimal solutions of T is determined by Eq. (25). It is easy to show that

It is easy to find all possible optimal solutions now; one can H=pyg

obtain the optimal trajectories by solving the canonical func- n a2 e

tions. All functions below are optimal. It is convenient to X (TR=T) HZMQ((TR_TTL” )Slgn(n))]sign(n) (33)
eliminate the asterisk from the symbols. Tp—(1—n)T}

) ) From the fact that);, and H are constants, one has
(1) Adiabatic branches) =0,C =Cy0orC = -C,,

o (Th TP —p) _ (T} — 1)’

T(t)=T (to)e™ 1), B(t)=B(to) + C(t — to), Tn— (1 —n)Tp TP — (1 —n)T

Y1 (8)=1—[1=¢1 (to)]e“77), ¢hy=const  (27) ) T .

H={[1 — 1 (t)|T + 5} C Ty = =n)Tp Ty —(1-n)T
= {[1 ~ ()T (to) + 1} C (28) ¢y = LT T8 sigri),
h

whereH andy, are constants as required and the value po(Ty =17 .
of C'is determined by Eq. (21}; is the initial time of G = ?Slgr‘(n) (35)

the branches. . . . .
Thus there are eight different solutions to the equations

(2) Maximum-efficiency branches = po, Tr = Ty or ~ above which are presented by 127, 2%, 3y and3y, where
Tr=T,,C=CpyorC =-C,, the symbol “+" refers toC = (), and the symbol “-”
) to C = —C,,; the subscripts? and L correspond to the

T=-CT+pT -1z, subscript ofT'z. If 1 = 0, the analytical results are the same

B as the optimal solutions of endoreversible heat engines for
Bt) = Blto) + C(t —to) (29) maximum-power output objective [26, 39, 40].

P = —C(1 — 1) + npo In order to determine the actual optimal trajectory, one
_ . must examine the constancy H and the continuity of the state
X [y — pb(Tg — T™)sign(n))|T" ", variables and costate variables at switchings between pairs of

o (t) = const (30) optimal solutions.

where the value of C is determined by Eq. (21) and the3-3:  Switching

Yﬂ.u? tc.’fTR |fs t?]etirmmid byEq.l ('[2'5)i amldt'_s the The surfaces in state variable phase space across which
nitia tr:me 0 he tranc e?. nalytica T(t) urllor_]s aretoptimal-control variables change discontinuously are called
rare, thus one has 1o count on numerical techniques oswitching surface” in optimal control theory. The switch-
obtain all the solutions.

ings of the problem are summarized in Table I.

(3) Isothermal branchesi = jo, Tr = T Of T = T1, If there i; a switching between bre_mchet and T,
(1— )T + 12 =0 Eq. (21) requires thatl — 11)T + . vanlsh,_thgn Eq. (28)
leads toH = 0, so there cannot be a switching between
T =T,,3(t) = B(t) + Cr(t — to), branches t and I". Similarly, there is no switching between
A _ branches g and 3, because of the continuity af; .
c - po(Tx — T7")sign(n) (31) However, there may be switchings betweBa = Ty
T andTr = T7, in case (2), in whicl remains constant angh
TR + T nub((TE — T)sign(n)) — 1] passes through zero at the switching timé&.,,, andCy,, in
wl = Tn ; )
R~ (1 - n)Trn
[l — pf(TE — Tm)sign(n))| T+ 2 TABLE |. Switchings
V2= TR — (1—n)Tn (32) 1 3
whereT.. is a constant. This is a singular case that has ! @ @or® @
not been analyzed. It is easy to prove thafl” andi); 2 @o0r® @ @
are constants by differentiating — ;)7 + ¥ = 0 3 @ @ @
and eliminating the derivative of time using canonical @ Forbidden switchings
functions. @ Allowed switchings:AC = 0 and¥; = 0

® Allowed switchings:AC = 0 and¥; = p
The subscriptr used above corresponds @ in Tk, @ Allowed switchings:ATg =0, (1 — ¥1)T 4+ ¥g =0
i.e.r = hif TR = Ty andr = [ if Ty = T1. The value
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which T remains constant and — )T + 1, vanishes.
ButTr andC cannot change continuously because gt i.

A switching between 1 and2}; is allowed by increas-
ing v1 and making it acrosg, and a switching between"
and 2{ is allowed by decreasing; and making it across
zero. The switching condition of each branch is shown be-
low:

e The switching condition betweey and 2}; is
[1— 1 (t1)]T(t1) + 2(t1) = 0;

e The switching condition betweer}, and 1% is

Ui(te) =

e The switching condition betweed® and 2] is

P1(te) = 0;

e The switching condition betweer} and 3 is

[1— 1 (t3)]T'(t3) + ba(ts) = 0;

e The switching condition betweer3; and 2, is
[1 — 1 (£a)]T (ta) + tha2(ta) = 0;

e The switching condition betweer2; and 1~ is
PYi(ts) = 0;
e The switching condition betweed™ and 2}, is

Yi(ts) = p.
3.4. Optimal controls and trajectory

The case discussed above is an autonomous systenin-
variant with respect to time translation, so one may choose
any point along optimal trajectory as a starting point. Here
one assumes that it begins from brargh, i.e. Tr=Tgy
andT=Ty, etc. For0 < t < ¢y, the only allowed switch-
ing is to a branci2};, i.e. Tr = Ty, C = Cy, etc. For

t;1 <t < to, Yy decreases an@ — )T + 1o increases
from zero; thus the only possible transition occurgathen

1 = 0, and one can obtain the branzh. Notice that there

is an adiabatic branch™ betweent, andt,,, which is dif-
ferent from the optimal configuration for maximum power
configuration [26,39,40].

From to, to t3, 1 continues to decrease and so does
(1—11)T+1)2 until it vanishes, at which time another switch
becomes possible. At, one begins an isothermal brarth
which lasts until timet, when one switches to brandy .
Along this branch(1 — )T 4, decreases from zero while
11 increases until it reaches zerotat There is also an adi-
abatic branch— betweents, and¢s. Then one switches to
branch2; until (1 — ¢1)T + v returns to zero at the end of
the cycletg = 7.

Consequently, one can obtain the solution to the prob-
lem. Sinceys is constant throughout the cycle, one records
itonly once. The state and costate variables are given as the
following:

For 0<t<t:

T=T,C=Ch, B=Cxt, Tr=T1w, p=po (36)

Th +T9(np—1)
t) = L

n(p— DT

Pa(t) = Ty — (- )Ty (37)

For t; <t<t,:

ExpandingT’(¢) with a Taylor series at; gives

T)=T(t1) +T(t:)(t —t1) + Ot —t1) (38)

Taking off high-order infinitely-smalD (¢ — ¢1) gives

T(t) ~T(t) +T(t1)(t —t1) (39)

From the continuity of'(¢), one can obtaiff'(t,)=T},
and from

T(t)=—Co T(t) +po[Th (1)~ T" (¢)]sign(n) ~ (40)
i.e.
T(t) ~ Th + [—CMTh

+ po(Ty — T7)sign(n)](t — t1) (41)

Expandingy (t) with Taylor series at; gives

1) =11(t) +a(t)(t—t) + Ot —t1) (42)

From the continuity of/; (¢), one can obtain

Th +T9(np—1)
t) =

and from

P1(t) = —Cy[1 — 1 (t)]
+npoT" () [ (t) — ) (43)

one can obtain

TE 4+ T (np—1)
t) ~ 2L h
L T

[-nCarTp+npo Ty (T —Tp)sign(n))(1—p)
T}}—(l—n)T,?

X (t—ty) (44)
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Combining all the analysis above yields
T(t) ~Tp + [-CuTh
+ Ko(Tg — Tyt)sign(n))(t — t1)
s B
| [onCu T npo T~ (T~ T3 )sign(n))(1—p)
Th—(1—n)Ty!

(45)

X (t*tl) (46)
B=Cy(t—1t1)+Crt1, Tr=1Th,
p=po, C=Cy 47)

From above process, the details of each branch can be ob-
tained. The other branches of the maximum-efficiency cycle
are presented in detail below:

For t; <t <ty:
T(t) = T(ty)e=Cr(t=t2),
B = Cun(t—t1) + Cpty,
Ut = 1= (1= e ),

C=Cy, p=0 (48)
where
T(ta) = Tp + [-CumTh + po
X (T — Ty)sign(n)](tz —t1)  (49)
For to <t <t3:
T(t) = T(tg)e~ @t =t2) 4 £ O\ T(ts)

x Oty =t2) 5o (T — T7 ()

x e nOm b —t2)\sign(n) }(t — tor) (50)
B=Cn(t—t1)+Cht1,¥1(t) =~ —Cp(t—t2),
Tr=TL, p=po, C=Cum (51)

For t3 <t <ty

T=1,

B =Cun(ts —t1) + Crt1 + Ci(t — t3) (52)

p=p, C=0C (53)

For ty <t <ts:
T(t) =T+ [CnT;
+ po(Tr — T7")sign(n)](t — ts)  (54)

L. CHEN, H. SONG, F. SUN, AND S. WANG

L T
T T -1y

nCo I7 +npo (T7 —T7") T~ 'sign(n)

Y1(t)

B = Ci(ts —t3) + Crr(ts — t1) + Cpt1 — Cp (T — ta),
TR - TLa /3 = [307 C = _Cm (56)
For t5 <t <ts:
T(t) = T(ts)eCmttar),
B=Cum(ts —t1) + Cpty
+ C'l(t4 — tg) — C’m(t — t4),
Py (H)=1—e 0=t 50, C=-C, (57)

where
T(ts) = Ty + [C/Ty + po

X (Tr = Ti")sign(n)](ts —ta) ~ (58)

For t5 <t <tg=r:

T(t) = T(ts)eCmts=ts)

+ {CmT(t5/)eC7n(t5_t5/) + ﬁO[T}} _ T"(t5/)

x enmts=ts)sign(n) }(t — t5) (59)
B=Cu(ts —t1) + Cpta

+ Ci(tg —t3) — Crp(t — ta),

Y1 & p+ Cp (1= p)(t —ts),

Tr=Tu, p=po, C=-Cy (60)

From the continuity of the cycle, one can obtain

T(ts)=T(0), ¢1(te)=41(0), B(ts)=4(0)=0  (61)

From the switching condition, one can obtain

Y1(t2)=p, P1(te)=0, P1(ts)=0, P1(ts)=p  (62)

From the fixed cycle duration one can obtain

t1+(t4 — tg):T—(T—t5)—(t5—t5/)

—(tsr — ta)—(t3 — tor)—(ter—t2)—(t2 — t1) (63)

From the fixed input energy, one can obtain
Q1 =Cvy /ﬁ(Tﬁ — T™)sign(n)6
0

x [(Tg — T™)sign(n)]dt = const (64)

Rev. Mex. . 55 (1) (2009) 55-67



OPTIMAL CONFIGURATION OF HEAT ENGINES FOR MAXIMUM EFFICIENCY WITH ...

61

TABLE Il. Parameters v€); with linear phenomenological heat transfer law

Ty = 1000K, Ty, = 400K, Cpy =854, Cr = 38571, Oy = 5 kJI(kgK), po = 107 kgK?/s,7 =15

Q1 = 8000 kJ Q1 = 10000 kJ Q1 = 12000 kJ
At(s) T(K) B At(s) T(K) B At(s) T(K) B
t1 0.2862 730.00 1.5362 0.3944 730.00 2.1167 0.5025 730.00 2.6971
to 0.0887 540.03 2.2460 0.0887 540.03 2.8264 0.0887 540.03 3.4069
ty 0.0034 525.44 2.2734 0.0034 525.44 2.8538 0.0034 525.44 3.4343
ts 0.1850 467.95 3.7530 0.0949 467.95 3.6128 0.0048 467.95 3.4726
ta 0.4246 467.95 0.4590 0.4065 467.95 0.4590 0.3885 467.95 0.4590
to 0.0056 547.45 0.2455 0.0056 547.45 0.2455 0.0056 547.45 0.2455
ts 0.0007 562.64 0.2181 0.0007 562.64 0.2181 0.0007 562.64 0.2181
te 0.0057 730.00 0 0.0057 730.00 0 0.0057 730.00 0
m 0.0270 0.0270 0.0270
P 2578.3 KW 3235.3 kW 3892.2 kW
n 0.3223 0.3235 0.3244
TABLE Ill. Parameters v€): with Newton’s heat transfer law
Ty =1000K, Ty, = 400K, Cyy =12.55° 1, Cpo =357, Oy = 5 kJI(kgK), po = 20 kg/s,7 = 1S
Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ
AH(s) T(K) B At(s) T(K) B At(s) T(K) B
t1 0.3080 931.53 0.4269 0.3082 931.53 0.4272 0.3084 931.53 0.4276
to 0.0219 706.18 0.7011 0.0219 706.18 0.7014 0.0219 706.18 0.7017
12 0.0248 518.16 1.0107 0.0248 518.16 1.0110 0.0248 518.16 1.0113
ts 0.0139 431.73 1.1844 0.0139 431.73 1.1841 0.0138 431.73 1.1839
tq 0.5440 431.73 0.4308 0.5438 431.73 0.4308 0.5436 431.73 0.4308
tyr 0.0555 468.42 0.2642 0.0555 468.42 0.2642 0.0555 468.42 0.2642
ts 0.0275 508.66 0.1818 0.0275 508.66 0.1818 0.0275 508.66 0.1818
te 0.0210 931.53 0 0.0212 931.53 0 0.0215 931.53 0
I 0.4630 0.4630 0.4630
P 2042.8 kW 2043.2 kW 2044.6 kW
n 0.3119 0.3142 0.3165
- ; } =~ TH+1T7(np—1
r SR £, 61 62, 69, 0 GO o1 =1 )
utons oral he tervalsof each brandt®: o, (2=t1): 0y, 1,— 43 +0y (112} +Co (154
and (7 — t5), as well asTy, T;, C, C; and the Lagrange +CLt1+C(ta—t3)—Cp(ts—t5)
multiplier .. Substituting them into equations #(t), one O (ts—t)—Con(t1—14)=0 (67)

can solve out numerical solutions for all temperatures of the

working fluid,i.e. T'(¢t1), T(t2), T'(tar ), T'(ts), T(t4), T (t5),
T(ts), andT'(ts). The equations are presented in detail be- H# 7~

_ Ty+Ty (np—1)

low:

Th =~ T(t5/)eCm(ts_tE’/)‘i‘{CmT(tg)/)eCm(ts_ty)

+po[Th—T" (ts)e" ' ~"=!)]sign(n) } (t6—t5)

(65)

T (1-m)T}

n [-nCu Ty +npo Ty~ (T =Ty )sign(n)] (1—p)
T—(1-n)T};

X (tQ 7t1) (68)

1= (1= p)erltz=t2) =

(69)
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FIGURE 1. State variables for maximum efficiency objective with fixed input energyD: —6500k.J and Newton’s heat transfer law.

fixed input energyy1=10000 kJ and linear phenomenological heat

transfer law.
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FIGURE 2. The cycle of eight branches for maximum efficiency transfer law.
objective with fixed input energ$:=10000 kJ and linear phe-
nomenological heat transfer law.

A
by -1
T8 -1/ Cp = ————sign(n) (74)

O ———r Th
Ty — (1 )Ty

o>

Tz =)

nOn Ty 4npo(TE TP T signn) o o Gy = Y sigrin) (75)
l

7 (- iy

(Tp -1 —p) _ (I7-T")?

p— _Cm(ts—t /) — _
e 7 Ty G -oagp O
t1+(t4—t3) = T—(T—t5)—(t5—t5/> T}ZLJ’_l(l _ ’u,) _ 77L+1 (77)

—(tsr —ta)—(ts—to)—(t—t2)—(ta—t1) (72) Tn —(1-n)Tp TP —(1—n)I}

7 Maximum efficiency is
Qi =0y [ 4Ty~ T)sign(n)9 .
Cy | CTdt
i W 7‘/{ 78
x [(Tp — T")sign(n)]dt = const (73) = Q1 Q1 (78)
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fixed input energy1=6500k.J and square heat transfer law.

900 |

800;‘

| T, =1000K 7, = 400K
G =125+" C, =35
C, =5kl [(kgK) T=1s

K, =3x10kg /(Ks)
0, = 6500k

o
%, 700
=

|
600 - :

500

400 ! L L | !

fixed input energy); =6500 kJ and cubic heat transfer law.

| 60
aso %
| T, =1000K T, = 400K |
| G, =125¢7 € =357
i C, =5kJ/(kgK) T=1s
! K, =10" kg [(Ks)
7501 ©, = 6500k]

600

Py

1
i

FIGURE 6. The cycle of eight branches for maximum efficiency ob- FIGURE 8. The cycle of eight branches for maximum efficiency ob-

jective with fixed input energy)1=6500k.Jand square heat trans-
fer law.

4. Numerical Examples

jective with fixed input energg) =6500 kJ and cubic heat transfer
law.

Figure 1 shows state variables for the efficiency objec-
tive with Q;=10000 kJ. Figure 2 shows the cycle of
eight branches for the maximum efficiency objective with

Now, numerical examples for the optimal configurations of(); =10000 kJ.
the heat engines for different heat transfer laws are provided. In this example, time is mostly spent on two isothermal
The results include all special heat transfer laws, such asranches. The change @, has an obvious influence on

n=-1,n=1,n=2n=3andn = 4.

4.1. Optimal configuration with n= —1

In this case, Ty=1000K, T;=400 K, Cy=8 s,
Crn= 38 s1, po=107 kgK?/s, 7=1 s, Cyy =5 kJ/(kgK) and
the mass of working fluid of iy are set. Also, sigm)=—1

the intervals of two isothermal branches and 2iiebranch,
and has little influence on the intervals of other branches, the
temperatures of working fluid at the switchings, and the La-
grange multiplief. It is shown that, with the increase @,

the power outpu and the maximum efficiency increase,

as well as the interval a3z branch, and the interval &f,
branch decreases.

holds. Based on the method mentioned above, one can obtain

all the numerical solutions. Table Il lists the process-times ofy 2. Optimal configuration with n=1

each branch, the values of the state variables at switchings,

the maximum efficiency) and the corresponding power out- In this case, Ty=1000 K, 77,=400 K, Cp;=100 s!,

put P.

C,,=100s", pp=20 kg/s,7=1 s, Cy =5 kJ/(kgK) , and the
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TABLE IV. Parameters v, with square heat transfer law

Ty =1000K, T, =400K, Cyr = 12.557 1, Cpy = 3571, Cy = 5 kJI(kgK), po = 3 x 1072 kg/(Ks),7 = 1s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ
At(s)  T(K) 8 At(s)  T(K) 8 At(s)  T(K) 3

t1 0.2770 929.31 0.8864 0.2611 927.23 0.8859 0.2632 927.90 0.8999
to 0.0069 877.51 0.9725 0.0091 860.30 0.9992 0.0112 844.45 1.0403
ty 0.0419 519.56 1.4966 0.0407 517.16 1.5081 0.0411 505.31 1.5539
t3 0.0409 444,99 2.0073 0.0403 447.01 2.0119 0.0366 447.01 2.0117
ta 0.0211 444 .99 1.9629 0.0375 447.01 1.9280 0.0085 447.01 1.9925
to 0.5153 545.23 0.4169 0.5142 522.36 0.3855 0.5397 526.02 0.3736
ts 0.0964 728.07 0.1277 0.0970 698.76 0.0946 0.1015 713.26 0.0691
te 0.0126 929.31 0 0.0143 927.23 0 0.0142 927.90 0

m 0.5942 0.5446 0.5424

P 2520.3 kKW 2565.7 KW 2592.1 kW

n 0.3848 0.3978 0.3988

mass of working fluid of 1 kg are set. Table Il lists the for the maximum efficiency objective wii); =6500 kJ. Fig-
process-times of each branch, the values of the state variablage 6 shows the cycle of eight branches for the maximum ef-
at switchings, the maximum efficiengyand the correspond- ficiency objective with); =6500 kJ.

ing power outputP. Figure 3 shows state variables for the  In this example, time is mostly spent on two isothermal
maximum efficiency objective witld); =6500 kJ. Figure 4  branches. It is shown that, with the increasejjn there is
shows the cycle of eight branches for the maximum efficiencyittle influence on the temperatures of working fluid at the

objective withQ;=6500 kJ. switchings and intervals of each branch, and the maximum
power output per cyclé® increases, but the corresponding
4.3. Optlmal configuration with n=2 efﬁciencyn decreases.

In this case, Ty=1000 K, T.,=400 K, Cp=8 s,
Cr= 851, po=3 x 1072 kg/Ks, 7=1 s, Cy=5 kJ/(kgK),
and the mass of working fluid of 1 kg are set. Table IV lists|, his case, Ty=1000 K, Tp=400 K, Ca=100 s°1,
the process_—tim_es of each brgnch, the_vglues of the state va@mzloo s1, po = 1077 kg/(K2s), 7=1 s, Cyy =5 kJ/(kgK),
ables at switchings, the maximum efficiengyand the cor- 54 the mass of working fluid of 1 kg are set. Table V lists
responding power outpu?. Figure 5 shows state variables

4.4. Optimal configuration with n=3

60)

1000 : : : : : ; > : : ) 900 -

T, =1000K 7, = 400K
C,=1285s" ¢, =3s"
C, =5k /(kgk) T=1s

K, =10"kg [(K>5)
0, = 6500k7

9008 a .
‘ 80|

700 - g 00T
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7501
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[} 01 0:2 0:3 0.‘4 0:5 0?6 O:T 0.8 0.‘9 I(s]? ) ) o
b) FIGURE 10. The cycle of eight branches for maximum efficiency
FIGURE 9. State variables for maximum efficiency objective with objective with fixed input energg): = 6500 kJ and radiative heat

fixed input energyl; =6500 kJ and radiative heat transfer law. transfer law.
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TABLE V. Parameters v, with cubic heat transfer law

Ty = 1000K, Tr, = 400K, Cyr = 12.557 %, Cpn = 3571, Oy = 5 kJI(kgK), go = 107° kg/(K3s),7 =15

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ
At(s)  T(K) 3 At(s) T(K) 3 At(s)  T(K) 3

t1 0.2803 853.96 1.2367 0.2865 855.72 1.2484 0.2913 857.27 1.2550
to 0.0329 626.56 1.6485 0.0326 628.87 1.6557 0.0299 647.71 1.6284
Ty 0.0054 585.53 1.7163 0.0038 599.401 1.7037 0.0074 590.68 1.7206
t3 0.0424 586.38 2.2463 0.0355 582.30 2.1469 0.0319 574.87 2.1194
ta 0.3332 586.38 1.1016 0.3195 582.30 1.0740 0.3153 574.87 1.0826
to 0.2873 696.41 0.2396 0.2998 705.95 0.1747 0.2916 710.40 0.2079
ts 0.0112 720.17 0.2061 0.0147 737.73 0.1306 0.0260 767.94 0.1300
te 0.0072 853.96 0 0.0076 855.72 0 0.0132 857.27 0

m 0.3604 0.3717 0.4098

P 1992.7 kW 2040.0 kW 2239.0 kW

n 0.3042 0.3138 0.3471

TABLE VI. Parameters v€):with radiative heat transfer law

Ty = 1000 K, Ty, = 400K, Cpy = 125571, Crn =351, Cv = 5 kJI(kgK), o = 10 8 kg /(K3 s), 7 =1s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ
At(s) T(K) B At(s) T(K) B At(s) T(K) 8

t 0.3378 904.00 1.2385 0.3382 904.00 1.2400 0.3386 904.00 1.2414
ts 0.0166 771.66 1.4458 0.0173 765.71 1.4566 0.0181 759.82 1.4673
ty 0.0143 645.35 1.6246 0.0143 640.38 1.6354 0.0143 635.45 1.6461
t3 0.0152 634.00 1.8146 0.0152 634.00 1.8254 0.0152 634.00 1.8361
ta 0.5324 634.00 0.6658 0.5324 634.00 0.6766 0.5324 634.00 0.6873
to 0.0370 654.08 0.5548 0.0370 654.07 0.5656 0.0370 654.06 0.5763
ts 0.0369 730.72 0.4440 0.0369 730.63 0.4549 0.0369 730.54 0.4657
to 0.0151 904.00 0 0.0158 904.00 0 0.0165 904.00 0

L 0.0137 0.0137 0.0137

P 3139.3 KW 3166.8 KW 3193.8 KW

n 0.4867 0.4872 0.4876

the process-times of each branch, the values of the state vadiency objective with); =6500 kJ. Figure 10 shows the cy-
ables at switchings, the maximum efficiengcgnd the corre-  cle of eight branches for maximum efficiency objective with
sponding power outpuP. Figure 7 shows state variables for ¢, =6500 kJ.

maximum efficiency objective witld); =6500 kJ. Figure 8 In this example, time is also mostly spent on two isother-
shows the cycle of eight branches for the maximum efficiencynal branches. The change @ has just a little influence
objective with@); =6500 kJ. The result is similar to that with on the intervals of each branch, the temperatures of working
n=2. fluid at the most switchings and the Lagrange multiplier

It is shown that with the increase @, the power outpuf’

and the maximum efficienayincrease, and the temperatures
In this casely=1000 K, T;=400 K, Cy=8 s, of working fluid att, andt, decrease.
Crn=5s",po=10"%kg/ (K®s),7=1,Cy=5kJ/(kgK), 4.6. Comparisons for several special heat transfer laws
and the mass of working fluid ofkl are set. Table VI

lists the process-times of each branch, the values of the stak®r more clearer observation, one just chooses three
variables at switchings, the maximum efficiengyand the heat transfer lawsi.e. the linear phenomenological heat
corresponding power outpu® with radiative heat transfer transfer law fy=107 kgk2/s), Newton’s heat transfer
law. Figure 9 shows state variables for the maximum effi-law (oo= 20 kg/s) and the radiative heat transfer law

4.5. Optimal configuration with n=4
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(po=10"2 kg/(K? s)), to compare. Figure 11 shows temper-
ature of work fluid versus time with three heat transfer laws
and@;=6500 kJ. Figure 12 shows the relative volume of the
working fluid versus time with three heat transfer laws and
Q1=6500 kJ. Figure 13 shows the cycles of eight branches
for maximum efficiency objective with three heat transfer
laws and@,=6500 kJ. From Figs. 11 and 12, one can see
that time is mostly spent on two isothermal branches. From
Fig. 13, one can see that the optimal configurations with three
heat transfer laws are obviously different from each other, so
the heat transfer law has an obvious influence on the optimal
configurations of the heat engines.

5. Conclusion

The optimal configuration of an endoreversible heat engine
for maximum efficiency objective with fixed cycle period,
fixed input energy and generalized radiative heat transfer law
has eight branches including two isothermal branches, two
adiabatic branches and four maximum efficiency branches
which give maximum efficiency.

The similarities and differences of optimal cycles among
five heat transfer laws are given as follows: the optimal
cycles for five heat transfer laws all contain two isother-
mal branches, two adiabatic branches and four maximum-
efficiency branches; for five different heat transfer laws, the
temperatures of their isothermal branches are different, and
the process paths of four maximum efficiency branches are
different as well; the process-time is different for different
branches under five different optimal configuration. Since
both the process-path and the process-time are different un-
der five different optimal configurations, the maximum effi-
ciencies for the five configurations are different.

The results obtained can also be compared with those re-
sults of Refs. [26, 38-40] for the maximum power output
objective. One can see that, because of the introduction of
the Lagrange multiplie:, the problem becomes complex,
the optimal configuration changes from six branches to eight
branches, and the process-path and the process-time are also
different from the case of six branches. The optimal config-
uration is the same as the case of six branches with the same
heat transfer law if and only ji = 0.

A first-order item of the Taylor series expansion was used
in this paper, and the solutions would be more exact if high-
order items of the Taylor series were used. In the calcula-
tions, there is only one solution for the problem if the initial
values of the parameters for the calculations are located in the
reasonable practical ranges.
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