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Optimal configuration of heat engines for maximum efficiency with generalized
radiative heat transfer law

Lingen Chen*, Hanjiang Song, Fengrui Sun, and Shengbing Wang
Postgraduate School, Naval University of Engineering,

Wuhan 430033, P.R. China
*e-mail: lgchenna@yahoo.com, lingenchen@hotmail.com,

Fax: 0086-27-83638709 Tel: 0086-27-83615046.

Recibido el 24 de noviembre de 2008; aceptado el 7 de diciembre de 2009

Optimal configuration of a class of endoreversible heat engines with generalized radiative heat transfer law[q ∝ ∆(T n)] has been determined
by this paper. The optimal cycle that maximizes the efficiency of the engines with fixed input energy has been obtained using optimal-control
theory, and the differential equations are solved by Taylor series expansion. It is shown that the optimal cycle for maximum efficiency has
eight branches including two isothermal branches, four maximum-efficiency branches and two adiabatic branches. The interval of each
branch has been obtained, as well as the solutions of the temperatures of heat reservoirs and working fluid. Numerical examples are given
for the optimal configurations withn=− 1, n=1, n=2, n=3 andn=4, respectively. The results obtained are compared with each other and
with those results obtained for maximum power output.
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thermodynamics; generalized thermodynamic optimization.

En este artı́culo se determina la configuración óptima de una clase de motor térmico endoreversible con la ley generalizada de transferencia
de claro radiativa[q ∝ ∆(T n)]. El ciclo óptimo que maximiza la eficiencia de los motores con una entrada de energı́a dada se obtiene
usando la teorı́a del controlóptimo y las ecuaciones diferenciales son resueltas mediante la expanción en series de Taylor. Se muestra que
el ciclo óptimo para ḿaxima eficiencia tiene ocho ramas, incluyendo dos ramas isotérmicas, cuatro de ḿaxima eficiencia y dos adiabáticas.
Se muestra el intervalo para cada rama, ası́ como la temperatura del recipiente calorı́fico y del fluido de trabajo. Los ejemplo numéricos se
muestran para la configuración óptima conn=− 1, n=1, n=2, n=3 y n=4. Los resultado obtenidos son comparados unos con otros, y con
éstos se obtiene la potencia máxima de salida.

Descriptores: Leyes de transferencia de calor; motores endoreversibles; máxima eficiencia; configuraciónóptima; termodińamica de tiempos
finitos.

PACS: 05.70.-a

1. Introduction

There are two standard problems in finite time thermody-
namics: One is to determine the objective function limits
and the relations between objective functions for the given
thermodynamic system, and another is to determine the opti-
mal thermodynamic process for the given optimization ob-
jectives [1-23]. Gutowicz-Krusionet al. [24] proved that
in all acceptable cycles, an endoreversible Carnot cycle can
produce maximum power,i.e. the Curzon-Ahlborn (CA) cy-
cle [25] is the optimal configuration with only First and Sec-
ond Law constraints. Rubin [26,27] analyzed the optimal
configurations of endoreversible heat engines with Newton’s
heat transfer law[q ∝ ∆(T)] and different constraints, and
derived the optimal configuration of the engines. The optimal
configuration with fixed duration for maximum power output
is a six-branch cycle, and the optimal configuration with fixed
energy input for maximum efficiency is an eight-branch cy-
cle [26]. The results were extended to a class of heat engines
with fixed compression ratio, and an optimal eight-branch cy-
cle configuration of the engines for maximum power output
was derived [27]. Since then, many researchers have found
various optimal configurations for various systems and de-
vices using optimal- control theory in the last three decades.

In general, heat transfer is not necessarily linear and also
obeys other laws; heat transfer law has significant influence
on the configuration and performance of heat engine cy-
cles [28-37]. Songet al. [38,39] and Liet al [40] deter-
mined the optimal configurations of endoreversible heat en-
gines for maximum efficiency objective and maximum power
output objective with linear phenomenological heat trans-
fer law [q ∝ ∆(T−1)] [38,40] and those for maximum
power output objective [39] with radiative heat transfer
law [q ∝ ∆(T4)]. In this paper, based on Refs. 26 and 38,
the optimal configuration of endoreversible heat engines for
maximum efficiency objective is obtained with fixed dura-
tion and a universal heat transfer law,i.e. generalized ra-
diative heat transfer [q ∝ ∆(Tn)] in the heat transfer pro-
cesses between working fluid and heat reservoirs. The gener-
alized radiative heat transfer law[q ∝ ∆(Tn)] includes some
special cases. Whenn = 1, the heat transfer obeys Newto-
nian law; whenn= − 1, the heat transfer obeys linear phe-
nomenological law used in irreversible thermodynamics, in
which case the heat transfer coefficients are the so-called ki-
netic coefficients by Callen [41], and they should be negative;
whenn=2, the heat transfer is applicable to radiation prop-
agated along a one-dimensional transmission line [28,29],
and the heat transfer coefficient in this case is equal
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to [π2 k2/6h], where h is the Planck’s constant and k is the
Stefan-Boltzmann constant; whenn=3, the heat transfer is
applicable to radiation propagated along a two-dimensional
surface [28,29]; whenn = 4, the heat transfer obeys radiative
law if all the bodies are black, and the heat transfer coefficient
in this case is related to the Stefan-Boltzmann constant. The
optimal cycles that maximize the efficiency of the engines are
obtained using optimal-control theory. It is shown that the
optimal cycle for maximum efficiency has eight branches in-
cluding two isothermal branches, four maximum-efficiency
branches and two adiabatic branches. The interval of each
branch has been obtained, as well as the solutions of the tem-
peratures of heat reservoirs and working fluid. Numerical
examples for the optimal configurations withn= − 1, n=1,
n=2, n=3 andn=4 are provided, respectively.

2. Heat engine model

The following assumptions are made for the heat engine
model:

1) The engine is an endoreversible one;

2) The heat conductivity between working fluid and reser-
voirs isρ which subject to

0 ≤ ρ ≤ ρ0 (1)

3) The heat transfer between working fluid and reservoirs
obeys a universal heat transfer law, the heat flux is

q̇ = ρ(Tn
R − Tn)sign(n) (2)

whereT is the absolute temperature of the working
fluid, TR is a constant temperature of each heat reser-
voir, and

TL ≤ TR ≤ TH (3)

whereTL andTH are the lower and upper limits of the
temperature of heat reservoirs, respectively. sign(n) is
a sign function, sign(n)=1 if n>0 and sign(n)= − 1
if n < 0.

4) The work done by the engine in one cycle is given by

W =

τ∫

0

PV̇ dt (4)

whereP and V are the pressure and volume of the
working fluid, the time derivative of V is denoted byV̇ ,
andτ is the cycle period of the engine. The working
fluid is an ideal gas.

In terms of the first law of thermodynamics for an ideal
gas one has

CV Ṫ + CV (γ − 1)Ṫ
/

V = q̇ (5)

whereCV is the isometric heat capacity of the gas,γ is the
ratio of isobaric heat capacity toCV , and the time derivative
of T is denoted byṪ .

Substituting Eq. (2) into Eq. (5) and defining some new
variables yields:

Ṫ = −CT + K̂(Tn
R − Tn)sign(n) (6)

β = (γ − 1) ln
V

V0
(7)

β̇ = C (8)

whereρ̂ = ρ/CV , V0 is a constant reference volume, andC
is the change rate of cylinder volume.

In terms of these variables, Eq. (4) becomes:

W = CV

τ∫

0

CTdt (9)

Apparently, derivingβ andC is convenient for solving
the problem one confronts by using optimal control theory.
One also has

Q1 = CV

τ∫

0

∧
K(Tn

R − Tn)sign(n)θ

× [(Tn
R − Tn)sign(n)]dt (10)

whereθ(x) is a Heaviside step function,θ = 1 if x > 0 and
θ=0 if x <0, andQ1 is the work be supplied to system,i.e.
input energy. The cycle efficiency is given byη = W/Q1.

The problem now is to determine parametersρ̂(t), TR(t)
and C(t) so that the work output is a maximum with the
fixedQ1. It is required that C be restricted such that

−Cm ≤ C ≤ CM (11)

where Cm and CM are arbitrary constant positive num-
bers. Then the optimal cycle of the engines for maximum-
efficiency can be derived by the model.

3. Optimization procedure

To determine the optimal configuration for maximum-
efficiency with fixed cycle time and input energy,Q1 is the
same as in determining the optimal configuration for maxi-
mumW − µQ1, whereµ is an ordinary Lagrange multiplier.
The derivation of the optimal solution is complicated by theµ
term. One can show thatµ = ∂Wmax/∂Q1, i.e., µ is a mea-
sure of the sensitivity ofW max with respect to small changes
in the constraint,Q1=const. One can see thatµ can be both
positive and negative andµ vanishes for the maximum power
output, as expected [26]. To simplify the subsequent discus-
sion,µ ≥0 is assumed.
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The Hamiltonian function in terms of Eqs. (6), (7), (11)
andW − µQ1 is (whereT andβ are called state variables
andTR, ρ̂ andC are called control variables) is:

H = CT − µρ̂(Tn
R − Tn)sign(n)

× θ[(Tn
R − Tn)sign(n)] + ψ1F1 + ψ2F2 (12)

where

F1 = −CT + K̂(Tn
R − Tn)sign(n) (13)

F2 = C (14)

Taking (W − µQ1)/CV as the performance index, it is
convenient to rewrite Eq. (12) as

H = [(1−Ψ1)T + Ψ2]C

+ (Ψ1 − µθ)ρ̂(Tn
R − Tn)sign(n) (15)

The equations of adjoint variables are given by

ψ̇1 = −∂H/∂T = −C(1− ψ1)

+ nρ̂Tn−1(ψ1 − µθ) (16)

ψ̇2 = −∂H/∂β = 0 (17)

where

0 ≤ ρ̂ ≤ ρ0/CV = ρ̂0 (18)

3.1. Application of maximum principle

Define

∆H = H[~x∗(t), ~u∗(t), ~ψ∗(t)]

−H[~x∗(t), ~u, ~ψ∗(t)] (19)

where~u is an admissible solution. The asterisk of symbols
state the solutions are optimal. For a maximum, it is required
that∆H≥0, and thus

∆H = [(1− ψ∗1)T ∗ + ψ∗2 ](C∗ − C)

+ [ψ∗1 − µ∗θ((T ∗
n

R − T ∗
n

)sign(n))]

× ρ̂∗(T ∗
n

R − T ∗
n

)sign(n)

− [ψ∗1 − µθ((Tn
R − T ∗

n

)sign(n))]

× ρ̂(Tn
R − T ∗

n

)sign(n) ≥ 0 (20)

where0 ≤ ρ̂ ≤ ρ0/CV = ρ̂0CV = ρ̂0, TL ≤ TR ≤ TH and
-Cm ≤C≤ CM .

Now one can consider various possible cases separately.
First setρ̂ = ρ̂∗ and TR = T ∗R; then the second term of
Eq. (20) vanishes. To assure∆H ≥0 it is required that

C∗=





CM , if (1− ψ∗1)T ∗+ψ∗2 > 0
−Cm, if (1− ψ∗1)T ∗+ψ∗2 < 0
undetermined, if (1−ψ1∗)T ∗ + ψ∗2 = 0

(21)

The last possibility corresponds to what is called the “sin-
gular control problem”, and for the problem it is easy to ob-
tain that along the singular part of the trajectoryC∗ is con-
stant.

Next setC = C∗ andTR = T ∗R; then Eq. (20) yields

∆H = [ψ∗1 − µ∗θ((T ∗
n

R − T ∗
n

)sign(n))]

× (T ∗
n

R − T ∗
n

)sign(n)(ρ̂∗ − ρ̂) ≥ 0 (22)

Correspondingly, it is required that

ρ̂∗ =





ρ̂0
∗ if [ψ1 ∗ −µ∗θ((T ∗

n

R − T ∗
n

)sign(n))]
×(T ∗

n

R − T ∗
n

)sign(n) > 0

0 if [ψ∗1 − µ∗θ((T ∗
n

R − T ∗
n

)sign(n))]
×(T ∗

n

R − T ∗
n

)sign(n) > 0

undetermined if [ψ∗1−µ∗θ((T ∗
n

R −T ∗
n

)
×sign(n))](T ∗

n

R −T ∗
n

)sign(n)=0
(23)

The last possibility still corresponds to the singular con-
trol problem, because it would call forΨ1 = µ = 1, further
resulting inH∗=0; since this is not in agreement with the
request forH∗>0, one should exclude this possibility.

Finally, setC = C∗ andρ̂ = ρ̂∗; then Eq. (20) yields

∆H =





K̂∗(ψ∗1 − µ∗)(T ∗
n

R − Tn
R)sign(n)

if T ∗R > T ∗

K̂∗ψ∗1(T ∗
n

R − Tn
R)sign(n)

if T ∗R ≤ T ∗

(24)

From Eq. (23), one can see thatρ̂∗=ρ̂0 requiresΨ∗1 > µ∗

if T ∗ > T ∗ andΨ∗1 <0 if T ∗R < T ∗. ConsiderTR in the
interval [T ∗ ,TH ]; for T ∗R > T ∗, one can findT ∗R = TH in
order that∆H >0. It then follows that∆H ≥ 0 for T ∗R in the
interval [TL ,T ∗], sinceµ∗ ≥ 0. In a similar fashion, when
T ∗R < T ∗, ∆H ≥0, providedT ∗R = TL. Therefore, one has

T ∗R =
{

TH if ψ∗1 > µ∗
TL if ψ∗1 < 0 (25)

and forρ̂∗ 6= 0, one hasTH > T ∗ > TL.
This problem could be changed into finding the optimal

configuration for maximum-power output. Ifµ∗ > 0, ρ̂∗ = 0
andC∗ = C, Eq. (20) can be changed into

∆H = −[ψ∗1 − µ∗θ((Tn
R − T ∗

n

)sign(n))]

× ρ̂(Tn
R − T ∗

n

)sign(n) ≥ 0 (26)

From Eqs. (25) and (26), one can getT ∗>TH if ψ∗1 > µ∗,
andT ∗ < TL if ψ∗1 < 0, so that both cases are impossible.
And if 0 ≤ ψ∗1 ≤ µ∗, T ∗ is possible betweenTH andTL.
From the above argument, one can get that adiabatic branches
may take place whenµ∗ > 0. If µ∗ = 0, the 1 adiabatic
branch vanished [26, 38-40]. The problem would be more
complex ifµ < 0, when2 the optimal configuration may be
without adiabatic branches.
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3.2. Optimal solutions

It is easy to find all possible optimal solutions now; one can
obtain the optimal trajectories by solving the canonical func-
tions. All functions below are optimal. It is convenient to
eliminate the asterisk from the symbols.

(1) Adiabatic branches:̂ρ = 0, C = CM or C = −Cm

T (t)=T (t0)e−C(t−t0), β(t)=β(t0) + C(t− t0),

ψ1(t)=1−[1−ψ1(t0)]eC(t−t0), ψ2= const (27)

H= {[1− ψ1(t)]T + ψ2}C

= {[1− ψ1(t0)]T (t0) + ψ2}C (28)

whereH andψ2 are constants as required and the value
of C is determined by Eq. (21);t0 is the initial time of
the branches.

(2) Maximum-efficiency branches:̂ρ = ρ̂0, TR = TH or
TR = TL, C = CM or C = −Cm

Ṫ = −CT + ρ̂(T−1 − T−1
R ),

β(t) = β(t0) + C(t− t0) (29)

ψ̇1 = −C(1− ψ1) + nρ̂0

× [ψ1 − µθ((Tn
R − Tn)sign(n))]Tn−1,

ψ2(t) = const (30)

where the value of C is determined by Eq. (21) and the
value ofTR is determined by Eq. (25), andt0 is the
initial time of the branches. Analytical solutions are
rare, thus one has to count on numerical techniques to
obtain all the solutions.

(3) Isothermal branches:̂ρ = ρ̂0, TR = TH or TR = TL,
(1− ψ1)T + ψ2 = 0

T = Tr, β(t) = β(t0) + Cr(t− t0),

Cr =
ρ̂0(Tn

R − Tn
r )sign(n)

Tr
(31)

ψ1 =
Tn

R + Tn
r [nµθ((Tn

R − Tn
r )sign(n))− 1]

Tn
R − (1− n)Tn

r

,

ψ2 =
−n[1− µθ((Tn

R − Tn
r )sign(n))]Tn+1

r

Tn
R − (1− n)Tn

r

(32)

whereTr is a constant. This is a singular case that has
not been analyzed. It is easy to prove thatC, T andψ1

are constants by differentiating(1 − ψ1)T + ψ2 = 0
and eliminating the derivative of time using canonical
functions.

The subscriptr used above corresponds toR in TR,
i.e. r = h if TR = TH andr = l if TR = TL. The value

of TR is determined by Eq. (25). It is easy to show that

H=ρ̂0

× (Tn
R−Tn

r )2[1−µθ((Tn
R−Tn

r )sign(n))]
Tn

R−(1−n)Tn
r

sign(n) (33)

From the fact thatψ2 andH are constants, one has

(Tn
H − Tn

h )2(1− µ)
Tn

H − (1− n)Tn
h

=
(Tn

L − Tn
l )2

Tn
L − (1− n)Tn

l

,

Tn+1
h (1− µ)

Tn
H − (1− n)Tn

h

=
Tn+1

l

Tn
L − (1− n)Tn

l

(34)

Ch =
ρ̂0(Tn

H − Tn
h )

Th
sign(n),

Cl =
ρ̂0(Tn

L − Tn
l )

Tl
sign(n) (35)

Thus there are eight different solutions to the equations
above which are presented by 1±, 2±H , 2±L , 3H and3L, where
the symbol “+” refers toC = CM and the symbol “-”
to C = −Cm; the subscriptsH and L correspond to the
subscript ofTR. If µ = 0, the analytical results are the same
as the optimal solutions of endoreversible heat engines for
maximum-power output objective [26, 39, 40].

In order to determine the actual optimal trajectory, one
must examine the constancy H and the continuity of the state
variables and costate variables at switchings between pairs of
optimal solutions.

3.3. Switching

The surfaces in state variable phase space across which
optimal-control variables change discontinuously are called
“switching surface” in optimal control theory. The switch-
ings of the problem are summarized in Table I.

If there is a switching between branches 1+ and 1−,
Eq. (21) requires that(1 − ψ1)T + ψ2 vanish, then Eq. (28)
leads toH = 0, so there cannot be a switching between
branches 1+ and 1−. Similarly, there is no switching between
branches 3H and 3L because of the continuity ofψ1.

However, there may be switchings betweenTR = TH

andTR = TL in case (2), in whichC remains constant andψ1

passes through zero at the switching time.−Cm andCM , in

TABLE I. Switchings

1 2 3

1 1© 2© or 3© 1©
2 2© or 3© 4© 4©
3 1© 4© 1©

1© Forbidden switchings

2© Allowed switchings:∆C = 0 andΨ1 = 0

3© Allowed switchings:∆C = 0 andΨ1 = µ

4© Allowed switchings:∆TR = 0, (1−Ψ1)T + Ψ2 = 0
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which TR remains constant and(1 − ψ1)T + ψ2 vanishes.
But TR andC cannot change continuously because of H6= 0.

A switching between 1+ and2+
H is allowed by increas-

ing ψ1 and making it acrossµ, and a switching between1+

and 2+
L is allowed by decreasingψ1 and making it across

zero. The switching condition of each branch is shown be-
low:

• The switching condition between3H and 2+
H is

[1− ψ1(t1)]T (t1) + ψ2(t1) = 0;

• The switching condition between2+
H and 1+ is

ψ1(t2) = µ;

• The switching condition between1+ and 2+
L is

ψ1(t2′) = 0;

• The switching condition between2+
L and 3L is

[1− ψ1(t3)]T (t3) + ψ2(t3) = 0;

• The switching condition between3L and 2−L is
[1− ψ1(t4)]T (t4) + ψ2(t4) = 0;

• The switching condition between2−L and 1− is
ψ1(t5′) = 0;

• The switching condition between1− and 2−H is
ψ1(t5) = µ.

3.4. Optimal controls and trajectory

The case discussed above is an autonomous system,i.e., in-
variant with respect to time translation, so one may choose
any point along optimal trajectory as a starting point. Here
one assumes that it begins from branch3H , i.e. TR=TH

andT=Th, etc. For0 ≤ t ≤ t1, the only allowed switch-
ing is to a branch2+

H , i.e. TR = TH , C = CM , etc. For
t1 ≤ t ≤ t2, ψ1 decreases and(1 − ψ1)T + ψ2 increases
from zero; thus the only possible transition occurs att2 when
ψ1 = 0, and one can obtain the branch2+

L . Notice that there
is an adiabatic branch1+ betweent2 and t2′ , which is dif-
ferent from the optimal configuration for maximum power
configuration [26,39,40].

From t2′ to t3, ψ1 continues to decrease and so does
(1−ψ1)T +ψ2 until it vanishes, at which time another switch
becomes possible. Att3, one begins an isothermal branch3L

which lasts until timet4 when one switches to branch2−L .
Along this branch,(1−ψ1)T +ψ2 decreases from zero while
ψ1 increases until it reaches zero att5′ . There is also an adi-
abatic branch1− betweent5′ andt5. Then one switches to
branch2−H until (1− ψ1)T + ψ2 returns to zero at the end of
the cyclet6 = τ .

Consequently, one can obtain the solution to the prob-
lem. Sinceψ2 is constant throughout the cycle, one records
it only once. The state and costate variables are given as the
following:

For 0 ≤ t ≤ t1:

T=Th, C=Ch, β=Cht, TR=TH , ρ̂=ρ̂0 (36)

ψ1(t) =
Tn

H + Tn
h (nµ− 1)

Tn
H − (1− n)Tn

h

,

ψ2(t) =
n(µ− 1)Tn+1

h

Tn
H − (1− n)Tn

h

(37)

For t1 ≤t≤t2:

ExpandingT (t) with a Taylor series att1 gives

T (t) = T (t1) + Ṫ (t1)(t− t1) + O(t− t1) (38)

Taking off high-order infinitely-smallO(t− t1) gives

T (t) ≈ T (t1) + Ṫ (t1)(t− t1) (39)

From the continuity ofT (t), one can obtainT (t1)=Th,
and from

Ṫ (t)=−CMT (t)+ρ̂0[Tn
H(t)−Tn(t)]sign(n) (40)

i.e.

T (t) ≈ Th + [−CMTh

+ ρ̂0(Tn
H − Tn

h )sign(n)](t− t1) (41)

Expandingψ(t) with Taylor series att1 gives

ψ1(t) = ψ1(t1) + ψ̇1(t1)(t− t1) + O(t− t1) (42)

From the continuity ofψ1(t), one can obtain

ψ1(t) =
Tn

H + Tn
h (nµ− 1)

Tn
H − (1− n)Tn

h

,

and from

ψ̇1(t) = −CM [1− ψ1(t)]

+ nρ̂0T
n−1(t)[ψ1(t)− µ] (43)

one can obtain

ψ1(t) ≈ Tn
H + Tn

h (nµ− 1)
Tn

H − (1− n)Tn
h

+
[−nCMTn

h +nρ̂0T
n−1
h (Tn

H−Tn
h )sign(n)](1−µ)

Tn
H−(1−n)Tn

h

× (t− t1) (44)
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Combining all the analysis above yields

T (t) ≈ Th + [−CMTh

+ K̂0(Tn
H − Tn

h )sign(n)](t− t1) (45)

ψ1(t) ≈ Tn
H + Tn

h (nµ− 1)
Tn

H − (1− n)Tn
h

+
[−nCMTn

h +nρ̂0T
n−1
h (Tn

H−Tn
h )sign(n)](1−µ)

Tn
H−(1−n)Tn

h

× (t−t1) (46)

β = CM (t− t1) + Cht1, TR = TH ,

ρ̂ = ρ̂0, C = CM (47)

From above process, the details of each branch can be ob-
tained. The other branches of the maximum-efficiency cycle
are presented in detail below:

For t2 ≤ t ≤ t2′ :

T (t) = T (t2)e−CM (t−t2),

β = CM (t− t1) + Cht1,

ψ1(t) = 1− (1− µ)eCM (t−t2),

C = CM , ρ̂ = 0 (48)

where

T (t2) ≈ Th + [−CMTh + ρ̂0

× (Tn
H − Tn

h )sign(n)](t2 − t1) (49)

For t2′ ≤ t ≤ t3:

T (t) ≈ T (t2)e−CM (t2′−t2) + {−CMT (t2)

× e−CM (t2′−t2) + ρ̂0(Tn
L − Tn(t2)

× e−nCM (t2′−t2))sign(n)}(t− t2′) (50)

β=CM (t−t1)+Cht1, ψ1(t) ≈ −CM (t−t2′),

TR = TL, ρ̂ = ρ̂0, C = CM (51)

For t3 ≤ t ≤ t4:

T = Tl,

β = CM (t3 − t1) + Cht1 + Cl(t− t3) (52)

ψ1 =
Tn

L − Tn
l

Tn
L − (1− n)Tn

l

, TR = TL,

ρ̂ = ρ̂0, C = Cl (53)

For t4 ≤ t ≤ t5′ :

T (t) ≈ Tl + [CmTl

+ ρ̂0(Tn
L − Tn

l )sign(n)](t− t4) (54)

ψ1(t) ≈ Tn
L−Tn

l

Tn
L−(1− n)Tn

l

+
nCmTn

l +nρ̂0(Tn
L−Tn

l )Tn−1
l sign(n)

Tn
L−(1−n)Tn

l

(t−t4) (55)

β = Cl(t4 − t3) + CM (t3 − t1) + Cht1 − Cm(t− t4),

TR = TL, ρ̂ = ρ̂0, C = −Cm (56)

For t5′ ≤ t ≤ t5:

T (t) = T (t5′)eCm(t−t5′ ),

β = CM (t3 − t1) + Cht1

+ Cl(t4 − t3)− Cm(t− t4),

ψ1(t)=1−e−Cm(t−t5′ ), ρ̂ = 0, C = −Cm (57)

where

T (t5′) ≈ Tl + [CmTl + ρ̂0

× (Tn
L − Tn

l )sign(n)](t5′ − t4) (58)

For t5 ≤ t ≤ t6 = τ :

T (t) = T (t5′)eCm(t5−t5′ )

+ {CmT (t5′)eCm(t5−t5′ ) + ρ̂0[Tn
H − Tn(t5′)

× enCm(t5−t5′ )]sign(n)}(t− t5) (59)

β = CM (t3 − t1) + Cht1

+ Cl(t4 − t3)− Cm(t− t4),

ψ1 ≈ µ + Cm(1− µ)(t− t5),

TR = TH , ρ̂ = ρ̂0, C = −Cm (60)

From the continuity of the cycle, one can obtain

T (t6)=T (0), ψ1(t6)=ψ1(0), β(t6)=β(0)=0 (61)

From the switching condition, one can obtain

ψ1(t2)=µ, ψ1(t2′)=0, ψ1(t5′)=0, ψ1(t5)=µ (62)

From the fixed cycle duration one can obtain

t1+(t4 − t3)=τ−(τ−t5)−(t5−t5′)

−(t5′ − t4)−(t3 − t2′)−(t2′−t2)−(t2 − t1) (63)

From the fixed input energy, one can obtain

Q1 = CV

τ∫

0

ρ̂(Tn
R − Tn)sign(n)θ

× [(Tn
R − Tn)sign(n)]dt = const (64)
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TABLE II. Parameters vs.Q1 with linear phenomenological heat transfer law

TH = 1000 K, TL = 400 K, CM = 8 s−1, Cm = 38 s−1, CV = 5 kJ/(kgK), ρ̂0 = 107 kgK2/s,τ = 1 s

Q1 = 8000 kJ Q1 = 10000 kJ Q1 = 12000 kJ

∆ t(s) T(K) β ∆ t(s) T(K) β ∆ t(s) T(K) β

t1 0.2862 730.00 1.5362 0.3944 730.00 2.1167 0.5025 730.00 2.6971

t2 0.0887 540.03 2.2460 0.0887 540.03 2.8264 0.0887 540.03 3.4069

t2′ 0.0034 525.44 2.2734 0.0034 525.44 2.8538 0.0034 525.44 3.4343

t3 0.1850 467.95 3.7530 0.0949 467.95 3.6128 0.0048 467.95 3.4726

t4 0.4246 467.95 0.4590 0.4065 467.95 0.4590 0.3885 467.95 0.4590

t5′ 0.0056 547.45 0.2455 0.0056 547.45 0.2455 0.0056 547.45 0.2455

t5 0.0007 562.64 0.2181 0.0007 562.64 0.2181 0.0007 562.64 0.2181

t6 0.0057 730.00 0 0.0057 730.00 0 0.0057 730.00 0

µ 0.0270 0.0270 0.0270

P 2578.3 kW 3235.3 kW 3892.2 kW

η 0.3223 0.3235 0.3244

TABLE III. Parameters vs.Q1 with Newton’s heat transfer law

TH = 1000 K, TL = 400 K, CM = 12.5 s−1, Cm = 3 s−1, CV = 5 kJ/(kgK), ρ̂0 = 20 kg/s,τ = 1 s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ

∆ t(s) T(K) β ∆ t(s) T(K) β ∆ t(s) T(K) β

t1 0.3080 931.53 0.4269 0.3082 931.53 0.4272 0.3084 931.53 0.4276

t2 0.0219 706.18 0.7011 0.0219 706.18 0.7014 0.0219 706.18 0.7017

t2′ 0.0248 518.16 1.0107 0.0248 518.16 1.0110 0.0248 518.16 1.0113

t3 0.0139 431.73 1.1844 0.0139 431.73 1.1841 0.0138 431.73 1.1839

t4 0.5440 431.73 0.4308 0.5438 431.73 0.4308 0.5436 431.73 0.4308

t5′ 0.0555 468.42 0.2642 0.0555 468.42 0.2642 0.0555 468.42 0.2642

t5 0.0275 508.66 0.1818 0.0275 508.66 0.1818 0.0275 508.66 0.1818

t6 0.0210 931.53 0 0.0212 931.53 0 0.0215 931.53 0

µ 0.4630 0.4630 0.4630

P 2042.8 kW 2043.2 kW 2044.6 kW

η 0.3119 0.3142 0.3165

Combining Eqs. (61), (62), (63), and (64) with the equa-
tions ofTh, Tl, Ch, andCl, one can solve out numerical so-
lutions for all the intervals of each branch,i.e. t1, (t2−t1),
(t2′ − t2), (t3 − t2′), (t4 − t3), (t5′ − t4), (t5 − t5′),
and (τ − t5), as well asTh, Tl, Ch, Cl and the Lagrange
multiplier µ. Substituting them into equations inT (t), one
can solve out numerical solutions for all temperatures of the
working fluid, i.e. T (t1), T (t2), T (t2′), T (t3), T (t4), T (t5′),
T (t5), andT (t6). The equations are presented in detail be-
low:

Th ≈ T (t5′)eCm(t5−t5′ )+{CmT (t5′)eCm(t5−t5′ )

+ρ̂0[Tn
H−Tn(t5′)enCm(t5−t5′ )]sign(n)}(t6−t5) (65)

µ + Cm(1− µ)(t6 − t5)
≈ [Tn

H + Tn
h (nµ− 1)]

(Tn
H − (1− n)Tn

h )
(66)

CM (t3 − t2′)+CM (t2′−t2)+CM (t2−t1)

+Cht1+Cl(t4−t3)−Cm(t6−t5)

−Cm(t5−t5′)−Cm(t5′−t4)=0 (67)

µ ≈ Tn
H+Tn

h (nµ−1)
Tn

H−(1−n)Tn
h

+
[−nCMTn

h +nρ̂0T
n−1
h (Tn

H−Tn
h )sign(n)](1−µ)

Tn
H−(1−n)Tn

h

× (t2−t1) (68)

1− (1− µ)eCM (t2′−t2) = 0 (69)
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FIGURE 1. State variables for maximum efficiency objective with
fixed input energyQ1=10000 kJ and linear phenomenological heat
transfer law.

FIGURE 2. The cycle of eight branches for maximum efficiency
objective with fixed input energyQ1=10000 kJ and linear phe-
nomenological heat transfer law.

0 ≈ Tn
L − Tn

l

Tn
L − (1− n)Tn

l

+
nCmTn

l +nρ̂0(Tn
L−Tn

l )Tn−1
l sign(n)

Tn
L−(1− n)Tn

l

(t5′−t4) (70)

1− e−Cm(t5−t5′ ) = µ (71)

t1+(t4−t3) = τ−(τ−t5)−(t5−t5′)

−(t5′−t4)−(t3−t2′)−(t2′−t2)−(t2−t1) (72)

Q1 = CV

τ∫

0

ρ̂(Tn
R − Tn)sign(n)θ

× [(Tn
R − Tn)sign(n)]dt = const (73)

FIGURE 3. State variables for maximum efficiency objective with
fixed input energyQ1=6500kJ and Newton’s heat transfer law.

FIGURE 4. The cycle of eight branches for maximum efficiency
objective with fixed input energyQ1=6500kJ and Newton’s heat
transfer law.

Ch =

∧
ρ
0
(Tn

H − Tn
h )

Th
sign(n) (74)

Cl =

∧
ρ
0
(Tn

L − Tn
l )

Tl
sign(n) (75)

(Tn
H − Tn

h )2(1− µ)
Tn

H − (1− n)Tn
h

=
(Tn

L − Tn
l )2

Tn
L − (1− n)Tn

l

(76)

Tn+1
h (1− µ)

Tn
H − (1− n)Tn

h

=
Tn+1

l

Tn
L − (1− n)Tn

l

(77)

Maximum efficiency is

η =
W

Q1
=

CV

τ∫
0

CTdt

Q1
(78)
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FIGURE 5. State variables for maximum efficiency objective with
fixed input energyQ1=6500kJ and square heat transfer law.

FIGURE 6. The cycle of eight branches for maximum efficiency ob-
jective with fixed input energyQ1=6500kJand square heat trans-
fer law.

4. Numerical Examples

Now, numerical examples for the optimal configurations of
the heat engines for different heat transfer laws are provided.
The results include all special heat transfer laws, such as
n = −1, n = 1, n = 2, n = 3 andn = 4.

4.1. Optimal configuration with n=− 1

In this case, TH=1000K, TL=400 K, CM=8 s−1,
Cm= 38 s−1, ρ̂0=107 kgK2/s, τ=1 s, CV =5 kJ/(kgK) and
the mass of working fluid of 1kg are set. Also, sign(n)=− 1
holds. Based on the method mentioned above, one can obtain
all the numerical solutions. Table II lists the process-times of
each branch, the values of the state variables at switchings,
the maximum efficiencyη and the corresponding power out-
putP .

FIGURE 7. State variables for maximum efficiency objective with
fixed input energyQ1=6500 kJ and cubic heat transfer law.

FIGURE 8. The cycle of eight branches for maximum efficiency ob-
jective with fixed input energyQ1=6500 kJ and cubic heat transfer
law.

Figure 1 shows state variables for the efficiency objec-
tive with Q1=10000 kJ. Figure 2 shows the cycle of
eight branches for the maximum efficiency objective with
Q1=10000 kJ.

In this example, time is mostly spent on two isothermal
branches. The change inQ1 has an obvious influence on
the intervals of two isothermal branches and the2+

L branch,
and has little influence on the intervals of other branches, the
temperatures of working fluid at the switchings, and the La-
grange multiplierµ. It is shown that, with the increase inQ1,
the power outputP and the maximum efficiencyη increase,
as well as the interval of3H branch, and the interval of3L

branch decreases.

4.2. Optimal configuration with n=1

In this case, TH=1000 K, TL=400 K, CM=100 s−1,
Cm=100 s−1, ρ̂0=20 kg/s,τ=1 s,CV =5 kJ/(kgK) , and the
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TABLE IV. Parameters vs.Q1 with square heat transfer law

TH = 1000 K, TL = 400 K, CM = 12.5 s−1, Cm = 3 s−1, CV = 5 kJ/(kgK), ρ̂0 = 3× 10−2 kg/(Ks),τ = 1 s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ

∆t(s) T (K) β ∆t(s) T (K) β ∆t(s) T (K) β

t1 0.2770 929.31 0.8864 0.2611 927.23 0.8859 0.2632 927.90 0.8999

t2 0.0069 877.51 0.9725 0.0091 860.30 0.9992 0.0112 844.45 1.0403

t2′ 0.0419 519.56 1.4966 0.0407 517.16 1.5081 0.0411 505.31 1.5539

t3 0.0409 444.99 2.0073 0.0403 447.01 2.0119 0.0366 447.01 2.0117

t4 0.0211 444.99 1.9629 0.0375 447.01 1.9280 0.0085 447.01 1.9925

t5′ 0.5153 545.23 0.4169 0.5142 522.36 0.3855 0.5397 526.02 0.3736

t5 0.0964 728.07 0.1277 0.0970 698.76 0.0946 0.1015 713.26 0.0691

t6 0.0126 929.31 0 0.0143 927.23 0 0.0142 927.90 0

µ 0.5942 0.5446 0.5424

P 2520.3 kW 2565.7 kW 2592.1 kW

η 0.3848 0.3978 0.3988

mass of working fluid of 1 kg are set. Table III lists the
process-times of each branch, the values of the state variables
at switchings, the maximum efficiencyη and the correspond-
ing power outputP . Figure 3 shows state variables for the
maximum efficiency objective withQ1=6500 kJ. Figure 4
shows the cycle of eight branches for the maximum efficiency
objective withQ1=6500 kJ.

4.3. Optimal configuration with n=2

In this case, TH=1000 K, TL=400 K, CM=8 s−1,
Cm= 8 s−1, ρ̂0=3 × 10−2 kg/Ks, τ=1 s, CV =5 kJ/(kgK),
and the mass of working fluid of 1 kg are set. Table IV lists
the process-times of each branch, the values of the state vari-
ables at switchings, the maximum efficiencyη and the cor-
responding power outputP . Figure 5 shows state variables

FIGURE 9. State variables for maximum efficiency objective with
fixed input energyQ1=6500 kJ and radiative heat transfer law.

for the maximum efficiency objective withQ1=6500 kJ. Fig-
ure 6 shows the cycle of eight branches for the maximum ef-
ficiency objective withQ1=6500 kJ.

In this example, time is mostly spent on two isothermal
branches. It is shown that, with the increase inρ̂0, there is
little influence on the temperatures of working fluid at the
switchings and intervals of each branch, and the maximum
power output per cycleP increases, but the corresponding
efficiencyη decreases.

4.4. Optimal configuration with n=3

In this case, TH=1000 K, TL=400 K, CM=100 s−1,
Cm=100 s−1, ρ̂0 = 10−5 kg/(K2s),τ=1 s,CV =5 kJ/(kgK),
and the mass of working fluid of 1 kg are set. Table V lists

FIGURE 10. The cycle of eight branches for maximum efficiency
objective with fixed input energyQ1 = 6500 kJ and radiative heat
transfer law.
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TABLE V. Parameters vs.Q1 with cubic heat transfer law

TH = 1000 K, TL = 400 K, CM = 12.5 s−1, Cm = 3 s−1, CV = 5 kJ/(kgK), ρ̂0 = 10−5 kg/(K2s),τ = 1 s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ

∆t(s) T (K) β ∆t(s) T (K) β ∆t(s) T (K) β

t1 0.2803 853.96 1.2367 0.2865 855.72 1.2484 0.2913 857.27 1.2550

t2 0.0329 626.56 1.6485 0.0326 628.87 1.6557 0.0299 647.71 1.6284

t2′ 0.0054 585.53 1.7163 0.0038 599.401 1.7037 0.0074 590.68 1.7206

t3 0.0424 586.38 2.2463 0.0355 582.30 2.1469 0.0319 574.87 2.1194

t4 0.3332 586.38 1.1016 0.3195 582.30 1.0740 0.3153 574.87 1.0826

t5′ 0.2873 696.41 0.2396 0.2998 705.95 0.1747 0.2916 710.40 0.2079

t5 0.0112 720.17 0.2061 0.0147 737.73 0.1306 0.0260 767.94 0.1300

t6 0.0072 853.96 0 0.0076 855.72 0 0.0132 857.27 0

µ 0.3604 0.3717 0.4098

P 1992.7 kW 2040.0 kW 2239.0 kW

η 0.3042 0.3138 0.3471

TABLE VI. Parameters vs.Q1with radiative heat transfer law

TH = 1000 K, TL = 400K, CM = 12.5 s−1, Cm = 3 s−1, CV = 5 kJ/(kgK), ρ̂0 = 10−8 kg /(K3 s),τ = 1 s

Q1 = 6450 kJ Q1 = 6500 kJ Q1 = 6550 kJ

∆t(s) T (K) β ∆t(s) T (K) β ∆t(s) T (K) β

t1 0.3378 904.00 1.2385 0.3382 904.00 1.2400 0.3386 904.00 1.2414

t2 0.0166 771.66 1.4458 0.0173 765.71 1.4566 0.0181 759.82 1.4673

t2′ 0.0143 645.35 1.6246 0.0143 640.38 1.6354 0.0143 635.45 1.6461

t3 0.0152 634.00 1.8146 0.0152 634.00 1.8254 0.0152 634.00 1.8361

t4 0.5324 634.00 0.6658 0.5324 634.00 0.6766 0.5324 634.00 0.6873

t5′ 0.0370 654.08 0.5548 0.0370 654.07 0.5656 0.0370 654.06 0.5763

t5 0.0369 730.72 0.4440 0.0369 730.63 0.4549 0.0369 730.54 0.4657

t6 0.0151 904.00 0 0.0158 904.00 0 0.0165 904.00 0

µ 0.0137 0.0137 0.0137

P 3139.3 kW 3166.8 kW 3193.8 kW

η 0.4867 0.4872 0.4876

the process-times of each branch, the values of the state vari-
ables at switchings, the maximum efficiencyη and the corre-
sponding power outputP . Figure 7 shows state variables for
maximum efficiency objective withQ1=6500 kJ. Figure 8
shows the cycle of eight branches for the maximum efficiency
objective withQ1=6500 kJ. The result is similar to that with
n=2.

4.5. Optimal configuration with n=4

In this case,TH=1000 K, TL=400 K, CM=8 s−1,
Cm= 5 s−1, ρ̂0 = 10−8 kg / (K3 s),τ=1 s,CV =5 kJ/(kgK),
and the mass of working fluid of 1kg are set. Table VI
lists the process-times of each branch, the values of the state
variables at switchings, the maximum efficiencyη and the
corresponding power outputP with radiative heat transfer
law. Figure 9 shows state variables for the maximum effi-

ciency objective withQ1=6500 kJ. Figure 10 shows the cy-
cle of eight branches for maximum efficiency objective with
Q1=6500 kJ.

In this example, time is also mostly spent on two isother-
mal branches. The change inQ1 has just a little influence
on the intervals of each branch, the temperatures of working
fluid at the most switchings and the Lagrange multiplierµ.
It is shown that with the increase inQ1, the power outputP
and the maximum efficiencyη increase, and the temperatures
of working fluid att2 andt2 decrease.

4.6. Comparisons for several special heat transfer laws

For more clearer observation, one just chooses three
heat transfer laws,i.e. the linear phenomenological heat
transfer law (̂ρ0=107 kgK2/s), Newton’s heat transfer
law (ρ̂0= 20 kg/s) and the radiative heat transfer law

Rev. Mex. F́ıs. 55 (1) (2009) 55–67



66 L. CHEN, H. SONG, F. SUN, AND S. WANG

FIGURE 11. Optimal temperature of working fluid vs. time for
maximum efficiency objective with three heat transfer laws.

FIGURE 12. Optimal temperature of working fluid vs. time for
maximum efficiency objective with three heat transfer laws.

FIGURE 13. The cycles of eight branches for maximum efficiency
objective with three heat transfer laws.

(ρ̂0=10−8 kg/(K3 s)), to compare. Figure 11 shows temper-
ature of work fluid versus time with three heat transfer laws
andQ1=6500 kJ. Figure 12 shows the relative volume of the
working fluid versus time with three heat transfer laws and
Q1=6500 kJ. Figure 13 shows the cycles of eight branches
for maximum efficiency objective with three heat transfer
laws andQ1=6500 kJ. From Figs. 11 and 12, one can see
that time is mostly spent on two isothermal branches. From
Fig. 13, one can see that the optimal configurations with three
heat transfer laws are obviously different from each other, so
the heat transfer law has an obvious influence on the optimal
configurations of the heat engines.

5. Conclusion

The optimal configuration of an endoreversible heat engine
for maximum efficiency objective with fixed cycle period,
fixed input energy and generalized radiative heat transfer law
has eight branches including two isothermal branches, two
adiabatic branches and four maximum efficiency branches
which give maximum efficiency.

The similarities and differences of optimal cycles among
five heat transfer laws are given as follows: the optimal
cycles for five heat transfer laws all contain two isother-
mal branches, two adiabatic branches and four maximum-
efficiency branches; for five different heat transfer laws, the
temperatures of their isothermal branches are different, and
the process paths of four maximum efficiency branches are
different as well; the process-time is different for different
branches under five different optimal configuration. Since
both the process-path and the process-time are different un-
der five different optimal configurations, the maximum effi-
ciencies for the five configurations are different.

The results obtained can also be compared with those re-
sults of Refs. [26, 38-40] for the maximum power output
objective. One can see that, because of the introduction of
the Lagrange multiplierµ, the problem becomes complex,
the optimal configuration changes from six branches to eight
branches, and the process-path and the process-time are also
different from the case of six branches. The optimal config-
uration is the same as the case of six branches with the same
heat transfer law if and only ifµ = 0.

A first-order item of the Taylor series expansion was used
in this paper, and the solutions would be more exact if high-
order items of the Taylor series were used. In the calcula-
tions, there is only one solution for the problem if the initial
values of the parameters for the calculations are located in the
reasonable practical ranges.
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