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Robustness of noise induced resonances
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bDepartment of Physics, Indian Institute of Technology Bombay,
Powai, Mumbai 400076, India.

Recibido el 10 de diciembre de 2008; aceptado el 20 de enero de 2009

In order to confirm the emergence of resonances in the presence of non-stationary noise, an excitable FitzHugh-Nagumo (FN) system is
subjected to stochastic forcing both in the absence and in the presence of sub-threshold signals. This non-stationarity of noise is mimicked
by varying the noise sequence (seed) for each amplitude of the superimposed noise while preserving their statistical properties. Our nu-
merical computations indicate that noise induced resonances for this non-stationarity stochastic forcing become less conclusive for complex
subthreshold signals.
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Para confirmar la aparición de resonancias en la presencia de ruido no estacionario, utilizamos un sistema tipo FitzHugh-Nagumo (FN) sujeto
a fuerzas estocásticas tanto en ausencia, ası́ como en presencia de señales subumbrales. Simulamos el carácter no estacionaro del ruido
variando las secuencias del ruido (semillas) para cada amplitud de ruido superpuesto, manteniendo sus propiedades estadı́sticas. Nuestros
resultados nuḿericos indican que el ruido para este forzamiento estocástico no estacionario se vuelve menos contundente conforme aumenta
la complejidad de las señales subumbrales.

Descriptores: Resonancia estocástica; sistema excitable.

PACS: 05.45.-a; 82.40.Bj; 87.19.lc

1. Introduction

Since the 1980s, enormous interest has been generated by the
studies involving the response of excitable dynamical sys-
tems when subjected to stochastic fluctuations. One of the
most relevant results obtained was the identification of Pe-
riodic Stochastic Resonance (PSR) [1, 2], a phenomenon by
means of which a subthreshold periodic signal is amplified
with a high degree of fidelity and synchrony for an optimal
amplitude of the superimposed noise. Another manifestation
of this SR phenomenon was detected, when instead of the
subthreshold periodic signal, an aperiodic subthreshold sig-
nal was employed. In this case, it was found that for an op-
timal level of noise, response of the excitable system tends
to synchronize with the subthreshold aperiodic signal, or in
other words, an augmented degree of information transfer
is observed. This phenomenon, called Aperiodic Stochas-
tic Resonance (ASR), has also been reported in the litera-
ture [3–5].

Subsequently, it was realized [6] that the resonance be-
havior persists even in the absence of the subthreshold sig-
nal, implying that a purely stochastic signal can also induce
enhanced regularity in excitable systems. This Coherence
Resonance (CR) [6–8] effect is yet another example of the
constructive role of noise in excitable systems. The review
article written by Gammaitoniet al. [9] is a useful dossier
that documents the advances achieved in the field of SR and
its numerous extensions both from a theoretical and an exper-
imental perspective.

It is presumed that since stochastic resonance is a generic
phenomena it would appear whenever noise is suitably intro-
duced in nonlinear systems. In the present work, we explore
for cases in which it could be difficult to confirm the incep-
tion of this stochastic resonance effect. In particular, we con-
sider the situation where the superimposed stochastic fluctu-
ations are drifting with time due to the finite length of the
noise sequence. It is well known that prevalent noise in real
systems, particularly biological systems, is non-stationary.
Consequently, it is of relevance, under these conditions, to
verify the robustness of noise invoked resonances. This in-
volves calculating the resonance curves employing different
sequences of the noise signal at each noise amplitude. Di-
verse scenarios, both in the absence and the presence of sub-
threshold signals (periodic and aperiodic) are analyzed.

2. Model and method

The excitable FitzHugh-Nagumo system is described by the
following set of coupled nonlinear equations:

ε
dx

dt
= x− x3

3
− y,

dy

dt
= x + a + S, : (1)

whereε = 0.01, a is the bifurcation parameter andS repre-
sents the externally superimposed (stochastic and subthresh-
old) perturbations. Fora > 1, the autonomous model dy-
namics exhibits an excitable fixed point behavior whereas for
a < 1, a stable limit cycle behavior is found.a = 1 corre-
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sponds to the bifurcation point where the system undergoes a
Hopf bifurcation. The integration of differential equations (1)
was performed using a second order Stochastic Runge-Kutta
integrator [10] with a step size ofh = 10−3.

For the case of PSR and CR, the regularity observed in the
system dynamics was quantified using the normalized vari-
ance

Vn =

√
var(tp)
〈tp〉 ,

wheretp is the time elapsed between two successive spikes.
The lower the value ofVn, the higher the degree of coher-
ence induced in the system. Meanwhile, to compute the reso-
nance curves for the situations involving complex subthresh-
old signals, normalized cross correlation (Power Norm) was
utilized. This Power Norm is defined as

Pn =
∣∣∣ 〈(x1 − 〈x1〉)(x2 − 〈x2〉)〉t

〈x1〉t〈x2〉t
∣∣∣,

wherex1 corresponds to the time series of the subthreshold
signal andx2 is the time series associated with the response
signal [y in Eqs. (1)].〈·〉t denotes the time average.Pn gives
us the coincidence measure (fidelity/synchrony) between the
subthreshold signal and the system response. Larger values
of Pn reflect higher values of information transfer between
the input (complex subthreshold signal) and the output (re-
sponse of the excitable system).

The superimposed noise for all the numerical computa-
tions presented below is a Gaussian white noiseξ with zero
average (〈ξ(t)〉 = 0), unit variance and delta type correla-
tions (〈ξ(t)ξ(t′)〉 = δ(t − t′)). To ensure reasonable statis-
tics, around 10,000 peaks (corresponding to 10,000,000 data
points) from the system (FN model) response are considered
at each noise amplitude. This information is subsequently
utilized for the calculation ofVn (CR and PSR) orPn (ASR)
at that noise amplitude.

3. Results

The curves of Fig. 1, corresponding to the CR phenomenon,
were generated by adding noise to the systemS = Dξ in
Eqs. (1), whereD is the magnitude of the superimposed
white noise.

The white curve of Fig. 1 corresponds to the situation
where the same noise sequence was used repeatedly (“same
seed”) for different values of the noise strength. The black
curve was generated using distinct noise sequences (“differ-
ent seed”) each timeVn was calculated. As expected, the res-
onance curve maintains its unimodal profile for the scenario
involving different noise sequences.

The resonance curves in Fig. 2 were obtained by adding a
subthreshold periodic componentP to the noise fluctuations,
i.e. S = P + Dξ, corresponding to the PSR phenomenon.
This periodic pulse train, shown in the inset of the panel, has
a period of2 time units, an amplitude of0.24 units, and a

pulse width of one time unit. Similar to the CR curves, the
resonance curves observed for the PSR effect seems to be in-
sensitive to the particular details of the superimposed noise
sequences.

In the third phase of the present work, the robustness of
the ASR phenomenon was analyzed. An aperiodic pulse train
whose inter-pulse interval had a stochastic distribution (up-
per trace in the time series plots from Fig. 3) was constructed
and subsequently utilized as the subthreshold signal. In the
left panel of Fig. 3, the curves corresponding to the Power
Norm (Pn) are presented. The upper curve in the left panel
was calculated using the same noise sequence. It exhibits the
standard unimodal ASR curve. The three time series for this

FIGURE 1. Plot associated with the Coherence Resonance phe-
nomenon. The white curve was generated using the same noise
sequence for each value of the noise strength (D). The black curve
involved employing different noise sequences for each value of D.
The model parameters for Eq. (1) were fixed atε = 0.01 and
a = 1.25.

FIGURE 2. Plots associated with the PSR phenomenon. The white
curve was generated using the same noise sequence for each value
of the noise strength (D). The black curve involved employing dif-
ferent noise sequences for each value of D. Moreover, in the inset
of the panel, the subthreshold periodic signal (P ) is presented. The
model parameters for Eq. (1) were fixed atε = 0.01 anda = 1.25.
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FIGURE 3. Plots corresponding to the ASR phenomenon using an aperiodic pulse train as the subthreshold signal. Left panel: The upper
Pn curve in the left panel was generated using the same noise sequence for each value of the noise strength (D). The lower curve in the left
panel involved employing different noise sequences for each value of D. Middle panel: Three time series plots of the model variabley when
subjected to the same noise sequence repeatedly. The noise amplitudes correspond to the points (a), (b) and (c) indicated in the upper left
panel. Also superimposed (different scale) is the subthreshold signal constructed for the ASR effect. Right panel: Fifteen superimposed
Pn curves where a different noise sequence was chosen for each noise strength. The average curve, represented by a white line, reveals a
unimodal profile. The model parameters values are identical to the ones presented in the previous figure captions.

set of numerical simulations, presented in the middle pan-
els, correspond to extremal points (a), (b), and (c). They de-
pict enhanced information transfer between the input (com-
plex subthreshold signal) and the output (model response) for
an optimal amplitude (b) of noise. In comparison, the lower
curve of the left panel shows thePn values when one uses
different noise sequences for each amplitude of noise. The
high amplitude fluctuations inPn values make it hard to re-
liably detect the presence of an underlying resonance in the
individual curve computed using different noise seeds. Con-
sequently, it is difficult to locate the optimum amplitude of
the superimposed noise which provokes maximal correspon-
dence between the subthreshold signal and the system re-
sponse. To rectify this anomaly, we needed to perform mul-
tiple numerical calculations and superimpose the generated
resonance curves. As shown in graph of the right panel, the
average Power Norm (Pn) (white line) from repeated numer-
ical experiments does reveal a unimodal resonance curve for
different noise sequences.

In the final set of numerical experiments, a more com-
plex subthreshold signal was used. This aperiodic series was
constructed using a stochastic distribution of the pulse am-
plitude including both negative and positive signs. Moreover,
the inter-pulse interval is stochastically distributed. In the left
panel of Fig. 4, the computed Power Norm curves using this
aperiodic subthreshold sequence are presented. In the upper
plot of the left panel, thePn curve is calculated using the
same noise sequence. The lower plot in the left panel corre-
sponds to the scenario in which a different noise sequence is
employed for each value of the noise amplitude. It is evident
that in both the curves the ASR phenomenon is, at best, un-
clear. Therefore, the augmented complexity of the employed
subthreshold signal makes it harder to decipher the noise pro-
voked resonance.

Once again, we needed to compute multiple resonance
curves for both scenarios (same seed and different seeds) to
reveal the underlying resonance behavior. As shown in the
upper and lower graphs of the right panel in Fig. 4, the com-
puted averagePn curves do exhibit a unimodal profile by
virtue of the ASR phenomenon.
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FIGURE 4. The upperPn curve in the left panel was generated using the same noise sequence for each value of the noise strength (D). The
lower curve in the left panel involved employing different noise sequences for each value of D. Also presented in the inset of the upper plot is
the subthreshold aperiodic signal used for this set of ASR calculations. The upper curves in the right panel represent fifteen superimposedPn

curves where the noise sequence remained unchanged for different noise strengths. The average curve, represented by a white line, reveals
a unimodal profile. The lower curves in the right panel correspond to fifteen superimposedPn curves where noise sequence was varied for
different noise strengths. Yet again, the average curve, represented by a white line, reveals a unimodal profile. The model parameters values
are identical to the ones presented in the previous figure captions.

4. Remarks

1) For the simple cases of CR and PSR, it is possible
to confirm the persistence of the noise induced reso-
nances. The observed resonance behavior, as expected,
is insensitive to whether the superimposed noisy per-
turbations emanates from the same seed or from differ-
ent seeds for each value of the superimposed noise.

2) The invoked resonances become less conclusive as the
complexity of the subthreshold signals is augmented
(ASR). This consequently leads to enhanced uncer-
tainty in the location of the optimal noise amplitude
for which maximum information transfer is achieved.
This result is of possible relevance to systems where
the prevalent noise is non-stationary as it would lead to
the smearing of the ASR effect.

3) One can unmask the ASR phenomenon by superim-
posing numerous noise provoked curves and calculat-

ing their average. This averaging technique [3, 12, 13]
seems to be appropriate in revealing the noise induced
resonances in the presence of complex subthreshold
signals and non-stationary noise.

4) In real systems, since the autonomous dynamics vary
as well, it is quite probable that the ASR effect might
not be recovered using this average technique for the
following reason: The drift of the system behavior
could shift the location of the bifurcation point and ef-
fectively move the set-point. This relocation of the bi-
furcation and the set-points would render the averaging
technique ineffective making it impossible to reveal the
smeared ASR phenomena.
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