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Robustness of noise induced resonances
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In order to confirm the emergence of resonances in the presence of non-stationary noise, an excitable FitzHugh-Nagumo (FN) system is
subjected to stochastic forcing both in the absence and in the presence of sub-threshold signals. This non-stationarity of noise is mimicked
by varying the noise sequence (seed) for each amplitude of the superimposed noise while preserving their statistical properties. Our nu-
merical computations indicate that noise induced resonances for this non-stationarity stochastic forcing become less conclusive for complex
subthreshold signals.
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Para confirmar la aparizn de resonancias en la presencia de ruido no estacionario, utilizamos un sistema tipo FitzHugh-Nagumo (FN) sujeto
a fuerzas estdrsticas tanto en ausenciaj amo en presencia defsdes subumbrales. Simulamos el&zer no estacionaro del ruido
variando las secuencias del ruido (semillas) para cada amplitud de ruido superpuesto, manteniendo sus propieidtidas. eiagstros
resultados nuiricos indican que el ruido para este forzamiento éstil@o no estacionario se vuelve menos contundente conforme aumenta

la complejidad de las §iales subumbrales.

Descriptores: Resonancia estastica; sistema excitable.

PACS: 05.45.-a; 82.40.Bj; 87.19.lc

1. Introduction It is presumed that since stochastic resonance is a generic
phenomena it would appear whenever noise is suitably intro-
duced in nonlinear systems. In the present work, we explore

Since the 1980s, enormous interest has been generated by fioe cases in which it could be difficult to confirm the incep-

studies involving the response of excitable dynamical systion of this stochastic resonance effect. In particular, we con-

tems when subjected to stochastic fluctuations. One of theider the situation where the superimposed stochastic fluctu-
most relevant results obtained was the identification of Peations are drifting with time due to the finite length of the

riodic Stochastic Resonance (PSR) [1, 2], a phenomenon byoise sequence. It is well known that prevalent noise in real
means of which a subthreshold periodic signal is amplifiedsystems, particularly biological systems, is non-stationary.
with a high degree of fidelity and synchrony for an optimal Consequently, it is of relevance, under these conditions, to
amplitude of the superimposed noise. Another manifestatiowerify the robustness of noise invoked resonances. This in-
of this SR phenomenon was detected, when instead of theolves calculating the resonance curves employing different

subthreshold periodic signal, an aperiodic subthreshold sigsequences of the noise signal at each noise amplitude. Di-

nal was employed. In this case, it was found that for an opverse scenarios, both in the absence and the presence of sub-

timal level of noise, response of the excitable system tendthreshold signals (periodic and aperiodic) are analyzed.

to synchronize with the subthreshold aperiodic signal, or in

pther words, an .augmented degree of inforn.‘nati.on transfez Model and method

is observed. This phenomenon, called Aperiodic Stochas-

tic Resonance (ASR), has also been reported in the literarhe excitable FitzHugh-Nagumo system is described by the

ture [3-5]. following set of coupled nonlinear equations:
Subsequently, it was realized [6] that the resonance be- dx 3

havior persists even in the absence of the subthreshold sig- ‘aw "t 3 Y

nal, implying that a purely stochastic signal can also induce d

enhanced regularity in excitable systems. This Coherence d—i =zx+a+5,: 1)

Resonance (CR) [6-8] effect is yet another example of the
constructive role of noise in excitable systems. The reviewwheree = 0.01, a is the bifurcation parameter arftirepre-
article written by Gammaitonet al. [9] is a useful dossier sents the externally superimposed (stochastic and subthresh-
that documents the advances achieved in the field of SR aruld) perturbations. Fot > 1, the autonomous model dy-

its numerous extensions both from a theoretical and an expenamics exhibits an excitable fixed point behavior whereas for
imental perspective. a < 1, a stable limit cycle behavior is found. = 1 corre-



ROBUSTNESS OF NOISE INDUCED RESONANCES 69

sponds to the bifurcation point where the system undergoesgulse width of one time unit. Similar to the CR curves, the
Hopf bifurcation. The integration of differential equations (1) resonance curves observed for the PSR effect seems to be in-
was performed using a second order Stochastic Runge-Kuttensitive to the particular details of the superimposed noise
integrator [10] with a step size &f = 10~3. sequences.

For the case of PSR and CR, the regularity observed inthe In the third phase of the present work, the robustness of
system dynamics was quantified using the normalized varithe ASR phenomenon was analyzed. An aperiodic pulse train
ance whose inter-pulse interval had a stochastic distribution (up-
per trace in the time series plots from Fig. 3) was constructed
, and subsequently utilized as the subthreshold signal. In the
{tp) left panel of Fig. 3, the curves corresponding to the Power
wheret,, is the time elapsed between two successive spiked\orm (F,) are presented. The upper curve in the left panel
The lower the value oF/,, the higher the degree of coher- Was calculated using the same noise sequence. It exhibits the
ence induced in the system. Meanwhile, to compute the res@tandard unimodal ASR curve. The three time series for this
nance curves for the situations involving complex subthresh-
old signals, normalized cross correlation (Power Norm) was
utilized. This Power Norm is defined as

(1 = (1)) (w2 — (22)))s ,

(T1)e(2)1 0451

V. — var(t,)

05 : . . : ; T : :

P, =

wherex; corresponds to the time series of the subthreshold
signal andrx; is the time series associated with the response *
signal [y in Egs. (1)].(-): denotes the time averagg, gives
us the coincidence measure (fidelity/synchrony) between the
subthreshold signal and the system response. Larger value
of P, reflect higher values of information transfer between
the input (complex subthreshold signal) and the output (re- 55 ) i ‘ ; , ; , ; ,
sponse of the excitable system). -0 0.1 o 0 N4 05

The superimposed noise for all the numerical computa- noise strength (D)
tions presented below is a Gaussian white ngiséth zero FIGURE 1. Plot associated with the Coherence Resonance phe-
average (£(¢)) = 0), unit variance and delta type correla- nomenon. The white curve was generated using the same noise
tions (£(t)¢(t)) = &(t — t')). To ensure reasonable statis- sequence for eaeh velue of the.n0|se strength (D). The black curve
tics, around 10,000 peaks (corresponding to 10,000,000 daf.H\]’Oh’e‘j derlnploymg fllfferfentEouselsequengesc:ortiac(:)hoxialue dOf D.
points) from the system (FN model) response are considere((lj:e model parameters for Eq. (1) were fixedeat= 0.01 an
at each noise amplitude. This information is subsequently
utilized for the calculation o¥/,, (CR and PSR) oP,, (ASR)

041

: ; 05 : : : .
at that noise amplitude. g 01

045 E%gij_ﬂ_m —
3. Results

041
The curves of Fig. 1, corresponding to the CR phenomenon,
were generated by adding noise to the systers= D¢ in V., 035
Egs. (1), whereD is the magnitude of the superimposed
white noise. 03l
The white curve of Fig. 1 corresponds to the situation
where the same noise sequence was used repeatedly (“san  gas-
seed”) for different values of the noise strength. The black
1

curve was generated using distinct noise sequences (“differ-  ¢2 : I : L : I : :
. . ()} 0.1 02 0.3 0.4 0.5
ent seed”) each timg, was calculated. As expected, the res- noise strength (D)

onance curve maintains its unimodal profile for the Scenariq:lGURE 2. Plots associated with the PSR phenomenon. The white

involving different noise sequences. curve was generated using the same noise sequence for each value

The resonanee c_urves in Fig. 2 were ok_)tained by z_idding 8 the noise strength (D). The black curve involved employing dif-
subthreshold periodic componefitto the noise fluctuations,  ferent noise sequences for each value of D. Moreover, in the inset

i.e. S = P+ D¢, corresponding to the PSR phenomenon.qf the panel, the subthreshold periodic sigrid) {s presented. The
This periodic pulse train, shown in the inset of the panel, hasnodel parameters for Eq. (1) were fixeckat 0.01 anda = 1.25.
a period of2 time units, an amplitude df.24 units, and a
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FIGURE 3. Plots corresponding to the ASR phenomenon using an aperiodic pulse train as the subthreshold signal. Left panel: The upper
P, curve in the left panel was generated using the same noise sequence for each value of the noise strength (D). The lower curve in the left
panel involved employing different noise sequences for each value of D. Middle panel: Three time series plots of the mode} vdrable

subjected to the same noise sequence repeatedly. The noise amplitudes correspond to the points (a), (b) and (c) indicated in the upper left
panel. Also superimposed (different scale) is the subthreshold signal constructed for the ASR effect. Right panel: Fifteen superimposed
P,, curves where a different noise sequence was chosen for each noise strength. The average curve, represented by a white line, reveals a
unimodal profile. The model parameters values are identical to the ones presented in the previous figure captions.

set of numerical simulations, presented in the middle pan- In the final set of numerical experiments, a more com-
els, correspond to extremal points (a), (b), and (c). They deplex subthreshold signal was used. This aperiodic series was
pict enhanced information transfer between the input (comeonstructed using a stochastic distribution of the pulse am-
plex subthreshold signal) and the output (model response) fglitude including both negative and positive signs. Moreover,
an optimal amplitude (b) of noise. In comparison, the lowerthe inter-pulse interval is stochastically distributed. In the left
curve of the left panel shows the, values when one uses panel of Fig. 4, the computed Power Norm curves using this
different noise sequences for each amplitude of noise. Thaperiodic subthreshold sequence are presented. In the upper
high amplitude fluctuations i®,, values make it hard to re- plot of the left panel, theP, curve is calculated using the
liably detect the presence of an underlying resonance in theame noise sequence. The lower plot in the left panel corre-
individual curve computed using different noise seeds. Consponds to the scenario in which a different noise sequence is
sequently, it is difficult to locate the optimum amplitude of employed for each value of the noise amplitude. It is evident
the superimposed noise which provokes maximal corresporthat in both the curves the ASR phenomenon is, at best, un-
dence between the subthreshold signal and the system relear. Therefore, the augmented complexity of the employed
sponse. To rectify this anomaly, we needed to perform mulsubthreshold signal makes it harder to decipher the noise pro-
tiple numerical calculations and superimpose the generateebked resonance.
resonance curves. As shown in graph of the right panel, the Once again, we needed to compute multiple resonance
average Power Norn,) (white line) from repeated numer- curves for both scenarios (same seed and different seeds) to
ical experiments does reveal a unimodal resonance curve foeveal the underlying resonance behavior. As shown in the
different noise sequences. upper and lower graphs of the right panel in Fig. 4, the com-
puted average’, curves do exhibit a unimodal profile by
virtue of the ASR phenomenon.
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FIGURE 4. The upperP, curve in the left panel was generated using the same noise sequence for each value of the noise strength (D). The
lower curve in the left panel involved employing different noise sequences for each value of D. Also presented in the inset of the upper plot is
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the subthreshold aperiodic signal used for this set of ASR calculations. The upper curves in the right panel represent fifteen sugérimposed

curves where the noise sequence remained unchanged for different noise strengths. The average curve, represented by a white line, reve

a unimodal profile. The lower curves in the right panel correspond to fifteen superimpesaaves where noise sequence was varied for

different noise strengths. Yet again, the average curve, represented by a white line, reveals a unimodal profile. The model parameters value

are identical to the ones presented in the previous figure captions.

4. Remarks

1)

2)

For the simple cases of CR and PSR, it is possible
to confirm the persistence of the noise induced reso-
nances. The observed resonance behavior, as expected,
is insensitive to whether the superimposed noisy per-
turbations emanates from the same seed or from differ-
ent seeds for each value of the superimposed noise.

The invoked resonances become less conclusive as the
complexity of the subthreshold signals is augmented
(ASR). This consequently leads to enhanced uncer-
tainty in the location of the optimal noise amplitude
for which maximum information transfer is achieved.
This result is of possible relevance to systems where
the prevalent noise is non-stationary as it would lead to
the smearing of the ASR effect.

4)

ing their average. This averaging technique [3,12, 13]
seems to be appropriate in revealing the noise induced
resonances in the presence of complex subthreshold
signals and non-stationary noise.

In real systems, since the autonomous dynamics vary
as well, it is quite probable that the ASR effect might
not be recovered using this average technique for the
following reason: The drift of the system behavior
could shift the location of the bifurcation point and ef-
fectively move the set-point. This relocation of the bi-
furcation and the set-points would render the averaging
technique ineffective making it impossible to reveal the
smeared ASR phenomena.
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