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Using mesoscopic nonequilibrium thermodynamics, we calculate the entropy production of a dilute suspension of non-Brownian particles

subject to an oscillatory shear flow. We find that an Onsager coupling leads to a breakdown of the fluctuation-dissipation theorem and to the
shear induced diffusion effect observed in experiments. By contracting the description, we derive a Smoluchowski equation from which the

scaling of the mean square displacement on the shear rate and particle diameter reported in experiments is obtained. We also perform lattic
Boltzmann simulations to show the shear induced diffusion effects, and how the transition to irreversibility can be characterized through the

power spectra of particle trajectories.

Keywords:Mesoscopic entropy; irreversibility; shear induced diffusion; lattice Boltzmann.

Usando la termodiimica de no equilibrio mesoggica, calculamos la produéri de entrofa de una susperisi diluida de paftulas

no Brownianas sujetas a un flujo cortante oscilatorio. Encontramos que un acoplamiento de Onsager produce Gnaleicleaciema

de fluctuaddbn disipacbn asociada a la difusn inducida por corte que ha sido observada previamente en experimentos. Al contraer la
descripodbn, obtenemos la ecuéci de Smoluchowski a partir de la cual se obtiene el desplazamientcativadnedio de las padulas.
Tambén realizamos simulaciones naritas con el ratodo de la ecuash de Boltzmann en redes mostrando que el flujo cortante oscilatorio
induce efectos difusivos. La tranddai a la irreversibilidad puede ser caracterizada &salel espectro de potencia de la trayectoria de las
parfculas.

Descriptores: Entroda mesosapica; irreversibilidad; difusin inducida por corte; ecudsi de Boltzmann en redes.

PACS: 05.70.-a; 05.70.Ln

1. Introduction in the form: (Az?) ~ 2d24t. This result implies that the
effective diffusivity scales withD ~ d24, giving rise to the
In one of his challenging books, Prigogine discussed the idego-called shear induced diffusion effect [2]. A statistical de-
that the non-integrability of the mechanical equations of mo-scription has been offered in Ref. 6 by postulating a diffusion
tion of a system of particles is the cause of the irreversibilityequation in which the diffusivities have been constructed by
of their collective motion. Far beyond this idea, he proposedinalyzing the temporal behavior of the correlation of the po-
that the appropriate mathematical description of these norsition of the particles. Although this approach makes it pos-
integrable systems should be probabilistic [1]. sible to use direct experimental measurements or simulation
In recent years, experiments performed with semi-dilutedesults in order to describe particular systems, it cannot of-
suspensions of spherical polymethylmethacrylate (PMMA)fer a fundamental explanation of the shear induced diffusion
particles of diameterd ~ 230um, have shown that many effect.
body interactions are responsible for the transition from re- In this article, we show that a general statistical descrip-
versible to irreversible motion of non-Brownian particles sus-tion can be derived from more fundamental physics based on
pended in a fluid [2]. In these experiments, the suspensiothe second law of thermodynamics. Our theory leads to the
is contained in a cylindrical Couette cell and is taken out ofsame scaling of the MSD and effective diffusion coefficient
equilibrium by applying an oscillating shear flowcos(wt),  as that found in experiments and may give an explanation of
wherey = wy with v, the applied strain and the character- the transition to irreversibility since it takes into account the
istic frequency of the oscillation. At small enough Reynoldsdependence of these quantities on the volume fraction occu-
numbers it is observed that the motion of the particles igied by the particles. In accordance with previous results, we
reversible, according to the classical result of hydrodynamshow that the origin of the irreversibility is due to an Onsager
ics [5]. When increasing the Reynolds number the trajectoeoupling containing hydrodynamic interactions and leading
ries of the particles become chaotic and then their reversible a breaking down of the fluctuation-dissipation relation.
behavior is lost. The effect of the hydrodynamic interactions on the diffu-
The motion of the particles has been characterizegion of a suspension of Brownian particles has been widely
through the mean square displacement (MSD) which scalestudied in the literature [11-15], and used to describe from
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non-Newtonian effects [30] to jamming effects near the glasgoefficient( is related to inertial effects due to the change
transition [14]. For suspensions under shear flow, a discusn time of 7, whereas constitutes a cross effect relating the
sion of the breaking of the fluctuation-dissipation theoremyohapility flowsif and fV; appearing in Eq. (1). This

result has been found for Brownian motion in rotating flu- fiyctuation-dissipation relation between the drag and diffu-
ids [16]. The influence of external forces taking the systengion terms in Ref. 2, [8, 17, 24].

out of equilibrium and confinement is also connected with

. . . The expressions foi‘?andf have been obtained in Ref. 9
recent works on the existence and interpretation of macr

0By using the generalized Femt theorem giving the force ex-

scopic non-equilibrium parameters of states such as the tenB’erienced by a particle of arbitrary shape in a heat bath under

perature [17,22,24]. non-stationary flow conditions [27]. For spherical particles at
The article is organized as follows. In Sec. 2 we use y [27]. P P

o : low Reynolds numbers one finds
non-equilibrium thermodynamics to formulate the meso-
scopic model based on a Fokker-Planck equation. Section 3 € — 1 m a3k ?)
is devoted to deriving a Smoluchowski equation and to ob- 6 kT "0
tain the effective diffusion tensor accounting for the Shear'wherekw = (14 2aa, + (59/45)a%a2) and¢ = p,/py

induced diffusion effect observed in experiments. In Sec.

we present Lattice-Boltzmann simulations characterizing the, o fuid. o — “iw/v is the inverse viscous penetra-
. e > Ly, = 4/

s_hear-mduced diffusion effect via the power ;pectru_m of Pa%ion length of the host fluid and its kinematic viscosity (see

ticle movements affected by hydrodynamic interactions. Fip.ts 9 and 27)

nally, in Sec. 5 we discuss our main results.

ith p,, the density of the particle, ang: the density of the

At intermediate and high volume fractions, hydrody-
namic interactions become relevant since their magnitude de-
2. Fokker-Planck dynamics of a suspension pends on the relative position between particigs= 7; ;.

under oscillatory flow These interactions introduce corrections to the mobijlity
of a particle and have been calculated by means of the in-
Consider a suspension of spherical particles of radius  duced force formalism [12]. These corrections depend on
and massn embedded in a Newtonian heat bath at constanpowers of the aspect ratios:/r;; anda/r;;. with r;;_ the
temperaturel” and subjected to non-stationary nonequilib- magnitude of the vector that points from sphéte the mir-
rium conditions imposed by the flowg (7, ¢). ror image with respect to a wall of spher§l2].

In order to describe the dynamics of this system, one may We have previously mentioned that hydrodynamic inter-
follow an effective medium approximation that takes into ac-actions will be taken into account in an effective way through
count hydrodynamic interactions in an effective form. In thisine form of the friction tensof or, equivalently, through the

approach, the description is carried out by_meilnf of the nog, hility tensor that in the lower order approximation we as-
malized single-particle probability distributiof(i*, i/, t) de- g me takes the form

pending upon the instantaneous positiband velocityu of

a test particle and time In the literature, it has been shown ﬁij ~ go—lf(;ij + 550 [3“ (f+ fijfij) (1—46,;)

that the evolution in time off is governed by the Fokker- 47y

Planck equation [8, 9] 3. (?JFT N )] @
v = o (172) 1) ot
ot o “)’

where 8, = 6mna/m is the Stokes friction coefficient per

mass unit withy the viscosity of the host fluid. Herg; and

7i;, are the unit relative vectors between particles and be-

ko = 8f tween particlej and the wall. For = j, Eq. (4) reduces to
- kpl 2 J] 2 = well known results for the mobility of a particle in the pres-

fVa==B- (=) + m e ¢ Ff- @) ence of awall:y = ;' (1 — Bya/l), [28]. Herel is the

distance of the particle to the wall a8}, may take differ-

ent values depending on the direction of the motion of the

article with respect to the plane of the wall.

Equation (4) shows that hydrodynamic interactions in-

whereV = 9/07 and the probability current id-space f Va,
is given by

HereF = divp/dt andkp is the Boltzmann constant. Equa-
tion (2) constitutes a linear law obtained after calculating
the entropy production of the system and identifying forces”

and currents in the phase space of the system [10, 25]. Thit?oduce anisotropies depending on the aspect ratigs;,

linear law introduces the Onsager coefficiepise and¢.  andq/r;; . In a first approximation, we shall assume that
For simplicity in notation we have defined the coefficientin oyr description the effective mobility taking into account
&= p—¢€- V. InEq. (2),0 is the friction coefficient that the effects of hydrodynamic interactions can be represented
usually appears when describing Brownian motion in velocthrough the tensor

ity space [8,9, 11] and corresponds to what is referred to as . T

a direct effect in nonequilibrium thermodynamics [25]. The i=p," [1 - §(¢)} ; (5)
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whereg, = (o (1 + aa, + (1/9)a2ai) is a frequency de- Equations (7)-(9) pertain to a time ordered hierarchy of equa-
pendent friction coefficient. The filling fractiog is related tions in which we have neglected the contributions arising
to an average distaneg, between particles. This quantity from higher order moments since they relax much faster than
is related to the free volume in the system that the particleshose involved in (7)-(9), [8].

can visit. The minus sign takes into account the fact that  For the low Reynolds-number linear flows typical of the
diffusion decreases when the volume fraction grows le-  experiments of interest to us, one may derive the following

CreaseS) [18 19] Thus, the unknown tengmontains on |ong -time @ > T~ ﬁ 1) express|ons for the second mo-
average the effects of hydrodynamic interactions on the paiment:

ticle. Notice that the friction and mobility coefficients satisfy

the relations - ji = 1. pro kBT T ﬂp (ﬁ+eﬁ- Vﬁo) 7 (11)
It is convenient to stress here that a Fokker-Planck equa- m m

tion similar to Egs. (1) and (2) has been derived in Ref. 23

by following the methods of the kinetic theory of gases. Inand the first moment

particular, the authors obtained that the correction of the co- .

efficient in the diffusion term depends on the viscous part of pT ~ piio + pCji - F — [i - (V . §k> , (12)

the pressure tensor of the host fluid.

3. The Smoluchowski equation and the origin where we have used the relation betwgeand 5 and, in

of irreversibility writing (11), used the approximatioh ~ ¥y + O(V 1n p).

Substituting Eq. (11) into (12) and the resulting expression

In order to discuss the origin of the irreversibility it is con- into (7) we finally obtain the Smoluchowski equation [8]
venient to analyze the long-time regime of the system occur-
ring at timest > ;,. In this regime, the description can be 0 . 3 = 2
performed in termsjof the evolution equation for the reduced aifg) =-V: (pvo + G F) +V (D ' v”) o (19
probability density

L where after using (4) we have defined #féective diffusion
/ f (6)  coefficient

To obtain the mentioned equation we must first derive the = kgT =
evolution equations for the first three momentsfadefined D=
by Eq. (6) and

i (1—fi- vao)siazﬁgkwﬁ- (i-Vip)®. (14)
m 6

This coefficient contains two contributions; one depending

pu(rt) = /deﬁ on the temperature and one contribution independent of it.

Therefore, the first terms are related to Brownian motion

and whereas the last one is related to non-thermal effects. This
13’“(7? P = /(U— )(5 — @) fdil Igst term accounts for the Iin_ear scaling on the shear rate an_d
’ ’ time of the mean square displacement when the system is

Taking the time derivative of these definitions, using Egs. (1)subjected to oscillatory flow conditions.

and (2) and integrating by parts, one obtains the following EQquation (13) can also be derived from the meso-

evolution equation for the zero-order moment [8, 9]: scopic nonequilibrium formalism by approaching the prob-
lem through an N-particle theory [29]. In this case, instead
9 =~V (p?). (7)  of the one particle distribution functiofi, one uses the N-
ot particle distribution functionP™) ({#}V, {@}V,t) depend-
For the first order momenti one finds ing on the positions{{}") and velocities {i}*V) of the N-
= _— particles. The mesoscopic thermodynamic approach leads to
o + V. Pk = —pB - (U — o) +pC - F, (8)  the multivariate Fokker-Planck equation [29]
whereas the evolution equation for the second moment is N N
opPW) Z o P
d= = - \° 2T = + 7 - (1
EP’“ +2 (P" 7 —1> B2 pe. ) ot i=1 =1
The upper symbol means the symmetric part of a tensor and . { {(ﬂ} — ) .5:” Q] ) } P
the matrix of relaxation timesg is defined by
- kgT = oPW)
. = 1 47t ML o 20
7= {6+Vﬁ+2(v-6)1} (10) T o } (15)
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where the subindexesand j refer to different particles and which has the same scaling relation for the mean square dis-

the tensors@j, @j andé-j have the same physical interpre- placement as that reported in the experiments [2]. It is i_n-
tation as their one particle counterparts but explicitly con-teresting to notice that, at low shear rates and frequencies,
taining hydrodynamic interactions as given by Eq. (4). InEd. (18)suggests thatthe ext2ernal forcing inducesfiutive
particular one obtaing; = f;; — €, - V¥, where the term temperaturel; /T = 1+2d”g12(¢)7/ Do. Physically this

V#? indicates that the velocity gradient must be evaluated a){means that the applied shear modifies the energy available to

the position of theé—th particle. The definitions of the other eApar_ncIe "; ortd de_;fto perfotr)mt\;ss shIeEar mldguced dolp:fusmnl:
guantities are the same as in the case of Eq. (2). nimportant difference between Eq. (19) and the scaling

In the long time limitt > 60_1’ the mesoscopic descrip- relations previously obtained from theoretical grounds (see,

tion given through Eqg. (15) can be reduced to a diffusion defor instance, Ref. 6) is the coefficieqt; (¢) due to hydrody-

scription in terms of a multivariate Smoluchowski equation jnnamic interactions. The dependence on the volume fraction

which the diffusion coefficient is of the form (14). However may explain the transition to irreversibility as observed in the

in this case it is possible to show that the effective mobilityexperlments [2]. 'Therefore, by startlr?g from the second 'aW
o : s . of thermodynamics, our theory predicts that hydrodynamic
tensor is, in general, a function of the position, time and the . . . e
filling fraction ¢ ﬁ(F t:6), [29] interactions are responsible for the shear-induced diffusion
T s ' effect and the transition to irreversibility through the depen-

dence of the coefficientg;; on (¢). The results we have

obtained coincide with those emerging from the analysis of

Let us assume now that the flow imposed on the system ithe _dynamics of transition from reversible to irreversible be-
a shear flow in the: direction, i.e., @,(7,t) = 7 -4 with  Daviors.
Y21 = 7 cos(wt) and zero otherwise. The shear rate is re-
lated to the applied straiyy by ¥ = ~yw. For the sake of 4 | attice-Boltzmann simulations
simplicity, we shall neglect inertial effects related(to
The MSD of the particle can be calculated by taking theThe threshold to irreversibility can also be studied by means

3.1. Shear induced diffusion

time derivative of the definition of numerical simulations. This study is necessary to prove
that the statistical description followed here and that based
(r?) = /(;1:2 + %) pdr, (16)  on the analysis of the dynamics of particles trajectories co-

incides. In order to characterize the shear-induced diffusion
where we are considering the two dimensional case due teffect and the transition to the irreversibility, we shall use the
the symmetry of the problem and for simplicity in the pre- lattice-Boltzmann method since it is based on a kinetic equa-
sentation. Let us substitute Eq. (13) now into the result. Arfion that does not contain thermal noise effects.

integration by parts leads to In particular, we shall use thB2Q9 model for the lattice
Boltzmann method with the BGK approximation [33,34]. In
ﬂ<r2> = 29 cos(wt) {xy)(t) + 2Tr[5] a7 this model, space is discretized in a two dimensional square
dt ’ lattice with nine velocitiesd;, 7 = 0. .. 8) allowed. The par-

ticle distribution functiongf (r, ¢), at siter and timet, evolve

where (xy)(t) = [ xypdr. Similarly, we must derive the : ; X
(o)1) = [ zyp ¥ according to the lattice Boltzmann equation

evolution equations fokzy)(t), (x?)(¢t) and (y?)(t). Af-

ter solving the obtained set of differential equations, for low _ ‘ .

shear rates and frequenciés< 1, w < 1), we may expand file + Atei t+ A) = filr,1)

the MSD as a power series érandw in order to obtain At
-

== A = £ )], (20)
(r?) ~ {2D0[3 = 911(¢) — g22(9)] wherer is the dimensionless relaxation time related to vis-
cosity andfi(e’” are the local equilibrium distribution func-

1 . . .
+ 3912(¢)d2’y}t — 2Dog1a(¢)d?4%,  (18)  tons,

(eq) _ 9 2 3 9
whered = 2q and we have assumeg, = g2 for simplic- fi 7 =wip {1 +3¢i-u+t §(Ci u)t - U } - (21)
ity and make explicit the dependence %f on the volume
fraction. For sufficiently large particles one may assume thaln this equationw;=4/9, 1/9, 1/36 are the weights as-

Dy < d?g12(4)+ and then obtain the relation sociated with the lattice [35] for each set of velocities
) lci| = 0,1,v/2 andp andu are the density and velocity de-
(r%) ~ 3012(0)d*3t. (19)  finedby

1
When Eq. (19) is expressed in terms of the numbesf p(r,t) =" fi(r,t),  u(r,t) ==Y fi(r,t)ci. (22)
cycles,t = 2mn/w, it gives: (r2) ~ (27/3)gi2(¢)d>yon, i P
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FIGURE 1. (a) Trajectory and (b) power spectrum of the
x—trajectory of one particle folRe = 0.01, ¢ = 0.14 and

FIGURE 3. (a) Trajectory and (b) power spectrum of the
x—trajectory of one particle foRe = 0.08 and the two previous

fr=100. power spectra corresponding to the last two figuresgnrd 0.14
andf* = 10.0.
_g _ &—
\ ’| T T T T T
a) L L 'b) L N NN A WA WA AT ? e ]

FIGURE 2. (a) Trajectory and (b) power spectrum of the kj\
x—trajectory of one particle foRe = 0.07, ¢ = 0.14 and — : ; , , :
f* =10.0. i i : A

The viscosity is related to the dimensionless relaxation : : : . .
time byv = ¢2(7 — 1/2), wherec, = 1/y/3 is the speed of | ...
sound in theD2@Q9 model.

The no-slip boundary conditions are simulated on the
solid particles and the torques and forces are also evaluated tif
update the particles position at all times [36]. The particles’ .
interactions are implemented with the method proposed by b)
Ladd [37] and with the corrections made by Aideinal [36]. _

The walls of the cavity use the bounce-back boundary condiF!GURE 4. Power spectrum of the mean square dlsplacemt_ant for
tion, which consists in reversing the incoming particle distri- (@ and (b)y and e = 0.08 and different values of the particle
bution function after the stream process. concentration.

7 = 20.0 andr = 4.5. We varied the Reynolds numbekd),
the volume fraction of particles.

The problem can be characterized by three dimensionless The diffusion of the particles can be increased by increas-

4.1. Dimensionless numbers and numerical simulations

numbers. The first one is the Reynolds number ing the particle concentratiahor by increasing the Reynolds
U.H number, even at small values of tli. As an example, in
Re = ;’/ , (23)  Fig. 1 we present the trayectory of one of the sixteen particles

_ ) and the power spectrum of themovement. As can be ap-
where U, coswt is the velocity of the upper wall/l the  hreciated in Fig. 1a the particle describes a regular movement
height of the cavityy the viscosity of the fluid; the ime and 5,4 even though in Fig. 1b we can notice some harmonics,

w the angular frequency. The second dimensionless numbegg it of the hydrodynamic interactions between all particles,
is the volume fraction occupied by the particles inside th&ne motion can be described as regular.

cavity N2 When increasing the Reynolds numberRe = 0.07,

o= W (24)  the trajectory of the particle changes considerably as can be
whereN is the number of particles, the radius andV the seen from Fig. 2a; also, thg power spectrum shown in Fig. 2b
: . : . . . changes, new subharmonics appear and the energy of each
width of the cavity. Finally, the third number is the dimen- X ;
. . peak is smaller than the previous power spectrum shown, thus
sionless frequency given by X o
showing how the energy is distributed more homogeneously
= L, (25)  inmany modes.
2my Finally, whenRe = 0.08 the particles exhibit a very ir-
wherew = 27 f is the angular frequency,the frequency and regular movement as shown in Fig. 3a; this can also be ap-
~ = U, /H the shear rate. The time is scaled with the periodpreciated from thé>S shown in Fig. 3b, where the only peak
t* = t/7 and the position and lengths with the radius of thecorresponds to the source of the oscillatory flow and now the
particle(z*, y*) = (x/r,y/r). other modes are gone due to the strength of the hydrodynamic
The numerical simulations are carried out in a cavity ofparticle interactions. In Fig. 3b we have added it of the
H* = 11.33 andW* = 44.66. The relaxation time and the two previous figures in order to make a visual comparison of
radius of the particles are kept constant in all simulation at the modes contained in the trajectories.
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To obtain more evidence of the hydrodynamic interac- a) Hydrodynamic interaction between particles,
tions we keptRe = 0.08 and varied the concentration of
particles¢ as can be seen from Fig. 4, where we present the
PS for the (ay and (b)y msd. When the concentrationislow ¢y the violation of the fluctuation-dissipation theorem due
there is only one peak for both thgandy msd, showing a to the imposed flow.
weak coupling for thgg msd. When increasing the concentra-
tion of particles the harmonics start to appear and grow. Fokattice-Boltzmann simulations were performed to reinforce
the highest values of the particle concentration the peaks dhe theoretical results, indicating that the threshold to irre-
the harmonics almost disappear and the energy is distributecersibility can be characterized through the power spectra of
along all the frequencies. the trajectories of the particles.

Our theory shows that the appropriate analysis of the en-
tropy production at the mesoscale gives a thermodynamic
5. Discussion explanation of the transition to irreversibility and the shear-
induced diffusion effect. This explanation leads to the same
In this paper we have explained the origin of the chaotic (irresults as those obtained from the theory of dynamical sys-
reversible) motion of a semi-diluted suspension of particlegems.
under the action of oscillating shear and extensional flows.
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