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Using mesoscopic nonequilibrium thermodynamics, we calculate the entropy production of a dilute suspension of non-Brownian particles
subject to an oscillatory shear flow. We find that an Onsager coupling leads to a breakdown of the fluctuation-dissipation theorem and to the
shear induced diffusion effect observed in experiments. By contracting the description, we derive a Smoluchowski equation from which the
scaling of the mean square displacement on the shear rate and particle diameter reported in experiments is obtained. We also perform lattice
Boltzmann simulations to show the shear induced diffusion effects, and how the transition to irreversibility can be characterized through the
power spectra of particle trajectories.

Keywords:Mesoscopic entropy; irreversibility; shear induced diffusion; lattice Boltzmann.

Usando la termodińamica de no equilibrio mesoscópica, calculamos la producción de entroṕıa de una suspensión diluida de partı́culas
no Brownianas sujetas a un flujo cortante oscilatorio. Encontramos que un acoplamiento de Onsager produce una violación del teorema
de fluctuacíon disipacíon asociada a la difusión inducida por corte que ha sido observada previamente en experimentos. Al contraer la
descripcíon, obtenemos la ecuación de Smoluchowski a partir de la cual se obtiene el desplazamiento cuadrático medio de las partı́culas.
Tambíen realizamos simulaciones numéricas con el ḿetodo de la ecuación de Boltzmann en redes mostrando que el flujo cortante oscilatorio
induce efectos difusivos. La transición a la irreversibilidad puede ser caracterizada a través del espectro de potencia de la trayectoria de las
part́ıculas.

Descriptores: Entroṕıa mesosćopica; irreversibilidad; difusión inducida por corte; ecuación de Boltzmann en redes.

PACS: 05.70.-a; 05.70.Ln

1. Introduction

In one of his challenging books, Prigogine discussed the idea
that the non-integrability of the mechanical equations of mo-
tion of a system of particles is the cause of the irreversibility
of their collective motion. Far beyond this idea, he proposed
that the appropriate mathematical description of these non-
integrable systems should be probabilistic [1].

In recent years, experiments performed with semi-diluted
suspensions of spherical polymethylmethacrylate (PMMA)
particles of diameterd ' 230µm, have shown that many
body interactions are responsible for the transition from re-
versible to irreversible motion of non-Brownian particles sus-
pended in a fluid [2]. In these experiments, the suspension
is contained in a cylindrical Couette cell and is taken out of
equilibrium by applying an oscillating shear floẇγ cos(ωt),
whereγ̇ = ωγ with γ0 the applied strain andω the character-
istic frequency of the oscillation. At small enough Reynolds
numbers it is observed that the motion of the particles is
reversible, according to the classical result of hydrodynam-
ics [5]. When increasing the Reynolds number the trajecto-
ries of the particles become chaotic and then their reversible
behavior is lost.

The motion of the particles has been characterized
through the mean square displacement (MSD) which scales

in the form: 〈∆x2〉 ∼ 2d2γ̇t. This result implies that the
effective diffusivity scales withD ∼ d2γ̇, giving rise to the
so-called shear induced diffusion effect [2]. A statistical de-
scription has been offered in Ref. 6 by postulating a diffusion
equation in which the diffusivities have been constructed by
analyzing the temporal behavior of the correlation of the po-
sition of the particles. Although this approach makes it pos-
sible to use direct experimental measurements or simulation
results in order to describe particular systems, it cannot of-
fer a fundamental explanation of the shear induced diffusion
effect.

In this article, we show that a general statistical descrip-
tion can be derived from more fundamental physics based on
the second law of thermodynamics. Our theory leads to the
same scaling of the MSD and effective diffusion coefficient
as that found in experiments and may give an explanation of
the transition to irreversibility since it takes into account the
dependence of these quantities on the volume fraction occu-
pied by the particles. In accordance with previous results, we
show that the origin of the irreversibility is due to an Onsager
coupling containing hydrodynamic interactions and leading
to a breaking down of the fluctuation-dissipation relation.

The effect of the hydrodynamic interactions on the diffu-
sion of a suspension of Brownian particles has been widely
studied in the literature [11–15], and used to describe from
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non-Newtonian effects [30] to jamming effects near the glass
transition [14]. For suspensions under shear flow, a discus-
sion of the breaking of the fluctuation-dissipation theorem
has been found in previous works [8,9,18,20,23]. A similar
result has been found for Brownian motion in rotating flu-
ids [16]. The influence of external forces taking the system
out of equilibrium and confinement is also connected with
recent works on the existence and interpretation of macro-
scopic non-equilibrium parameters of states such as the tem-
perature [17,22,24].

The article is organized as follows. In Sec. 2 we use
non-equilibrium thermodynamics to formulate the meso-
scopic model based on a Fokker-Planck equation. Section 3
is devoted to deriving a Smoluchowski equation and to ob-
tain the effective diffusion tensor accounting for the shear-
induced diffusion effect observed in experiments. In Sec. 4
we present Lattice-Boltzmann simulations characterizing the
shear-induced diffusion effect via the power spectrum of par-
ticle movements affected by hydrodynamic interactions. Fi-
nally, in Sec. 5 we discuss our main results.

2. Fokker-Planck dynamics of a suspension
under oscillatory flow

Consider a suspension ofN spherical particles of radiusa
and massm embedded in a Newtonian heat bath at constant
temperatureT and subjected to non-stationary nonequilib-
rium conditions imposed by the flow~v0(~r, t).

In order to describe the dynamics of this system, one may
follow an effective medium approximation that takes into ac-
count hydrodynamic interactions in an effective form. In this
approach, the description is carried out by means of the nor-
malized single-particle probability distributionf(~r, ~u, t) de-
pending upon the instantaneous position~r and velocity~u of
a test particle and timet. In the literature, it has been shown
that the evolution in time off is governed by the Fokker-
Planck equation [8,9]

∂f

∂t
+∇ · (~uf) =

∂

∂~u
·
(
f ~V~u

)
, (1)

where∇ = ∂/∂~r and the probability current in~u-space,f ~V~u,
is given by

f ~V~u = −~~β · (~u− ~v0)f +
kBT

m
~~ξ · ∂f

∂~u
− ~~ζ · ~Ff. (2)

Here ~F = d~v0/dt andkB is the Boltzmann constant. Equa-
tion (2) constitutes a linear law obtained after calculating
the entropy production of the system and identifying forces
and currents in the phase space of the system [10, 25]. This

linear law introduces the Onsager coefficients~~β, ~~ε and ~~ζ.
For simplicity in notation we have defined the coefficient
~~ξ = ~~β − ~~ε · ∇~v0. In Eq. (2),~~β is the friction coefficient that
usually appears when describing Brownian motion in veloc-
ity space [8, 9, 11] and corresponds to what is referred to as
a direct effect in nonequilibrium thermodynamics [25]. The

coefficient~~ζ is related to inertial effects due to the change
in time of~v0 whereas~~ε constitutes a cross effect relating the
probability flows~uf and f ~V~u appearing in Eq. (1). This
coupling term proportional to~~ε and∇~v0, breaks down the
fluctuation-dissipation relation between the drag and diffu-
sion terms in Ref. 2, [8,17,24].

The expressions for~~ε and~~ζ have been obtained in Ref. 9
by using the generalized Faxén theorem giving the force ex-
perienced by a particle of arbitrary shape in a heat bath under
non-stationary flow conditions [27]. For spherical particles at
low Reynolds numbers one finds

ε =
1
6

m

kBT
a2β2

0kω, (3)

wherekω =
(
1 + 2aαω + (59/45)a2α2

ω

)
and ζ = ρp/ρf

with ρp the density of the particle, andρf the density of the
host fluid. αω =

√
−iω/ν is the inverse viscous penetra-

tion length of the host fluid andν its kinematic viscosity (see
Refs. 9 and 27).

At intermediate and high volume fractions, hydrody-
namic interactions become relevant since their magnitude de-
pends on the relative position between particles~rij = ~ri−~rj .
These interactions introduce corrections to the mobility~~µij

of a particle and have been calculated by means of the in-
duced force formalism [12]. These corrections depend on
powers of the aspect ratios:a/rij anda/rijs with rijs the
magnitude of the vector that points from spherei to the mir-
ror image with respect to a wall of spherej [12].

We have previously mentioned that hydrodynamic inter-
actions will be taken into account in an effective way through

the form of the friction tensor~~β or, equivalently, through the
mobility tensor that in the lower order approximation we as-
sume takes the form

~~µij ' β−1
0

~~1δij + β−1
0

[
3
4

a

rij

(
~~1 + r̂ij r̂ij

)
(1− δij)

− 3
4

a

rijs

(
~~1 + r̂ijs r̂isj

)]
, (4)

whereβ0 = 6πηa/m is the Stokes friction coefficient per
mass unit withη the viscosity of the host fluid. Herêrij and
r̂ijs are the unit relative vectors between particles and be-
tween particlej and the wall. Fori = j, Eq. (4) reduces to
well known results for the mobility of a particle in the pres-
ence of a wall:µ = β−1

0 (1−B1a/l), [28]. Herel is the
distance of the particle to the wall andB1 may take differ-
ent values depending on the direction of the motion of the
particle with respect to the plane of the wall.

Equation (4) shows that hydrodynamic interactions in-
troduce anisotropies depending on the aspect ratios:a/rij

anda/rijs . In a first approximation, we shall assume that
in our description the effective mobility taking into account
the effects of hydrodynamic interactions can be represented
through the tensor

~~µ = β−1
ω

[
~~1− ~~g(φ)

]
, (5)
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whereβω = β0

(
1 + aαω + (1/9)a2α2

ω

)
is a frequency de-

pendent friction coefficient. The filling fractionφ is related
to an average distancerav between particles. This quantity
is related to the free volume in the system that the particles
can visit. The minus sign takes into account the fact that
diffusion decreases when the volume fraction grows (rav de-
creases) [18, 19]. Thus, the unknown tensor~~g contains on
average the effects of hydrodynamic interactions on the par-
ticle. Notice that the friction and mobility coefficients satisfy

the relation~~β · ~~µ = ~~1.
It is convenient to stress here that a Fokker-Planck equa-

tion similar to Eqs. (1) and (2) has been derived in Ref. 23
by following the methods of the kinetic theory of gases. In
particular, the authors obtained that the correction of the co-
efficient in the diffusion term depends on the viscous part of
the pressure tensor of the host fluid.

3. The Smoluchowski equation and the origin
of irreversibility

In order to discuss the origin of the irreversibility it is con-
venient to analyze the long-time regime of the system occur-
ring at timest À βij . In this regime, the description can be
performed in terms of the evolution equation for the reduced
probability density

ρ(~r, t) =
∫

f(~r, ~u, t)d~u. (6)

To obtain the mentioned equation we must first derive the
evolution equations for the first three moments off defined
by Eq. (6) and

ρ~v(~r, t) =
∫

~ufd~u

and

~~Pk(~r, t) =
∫

(~v − ~u)(~v − ~u)fd~u.

Taking the time derivative of these definitions, using Eqs. (1)
and (2) and integrating by parts, one obtains the following
evolution equation for the zero-order moment [8,9]:

∂ρ

∂t
= −∇ · (ρ~v). (7)

For the first order momentρ~v one finds

ρ
d~v

dt
+∇ · ~~Pk = −ρ

~~β · (~v − ~v0) + ρ
~~ζ · ~F , (8)

whereas the evolution equation for the second moment is

d

dt
~~Pk + 2

(
~~Pk · ~~τ −1

)s

=
2kBT

m
ρ
~~ξ s. (9)

The upper symbols means the symmetric part of a tensor and
the matrix of relaxation times~~τ is defined by

~~τ =
[
~~β +∇~v +

1
2
(∇ · ~v)~~1

]−1

. (10)

Equations (7)-(9) pertain to a time ordered hierarchy of equa-
tions in which we have neglected the contributions arising
from higher order moments since they relax much faster than
those involved in (7)-(9), [8].

For the low Reynolds-number linear flows typical of the
experiments of interest to us, one may derive the following
long-time (t À τij ' β−1

ij ) expressions for the second mo-
ment:

~~Pk' kBT

m
ρ~~1− kBT

m
ρ

(
~~µ + ε~~µ · ∇~v0

)s

, (11)

and the first moment

ρ~v ' ρ~v0 + ρζ~~µ · ~F − ~~µ ·
(
∇ · ~~Pk

)
, (12)

where we have used the relation between~~µ and ~~β and, in
writing (11), used the approximation~v ≈ ~v0 + O(∇ ln ρ).
Substituting Eq. (11) into (12) and the resulting expression
into (7) we finally obtain the Smoluchowski equation [8]

∂ρ

∂t
= −∇ ·

(
ρ~v0 + ζ~~µ · ~F

)
+∇ ·

(
~~D · ∇ρ

)
, (13)

where after using (4) we have defined theeffective diffusion
coefficient

~~D=
kBT

m
~~µ · (~~1−~~µ · ∇~v0)s−1

6
a2β2

0kω
~~µ · (~~µ · ∇~v0)s. (14)

This coefficient contains two contributions; one depending
on the temperature and one contribution independent of it.
Therefore, the first terms are related to Brownian motion
whereas the last one is related to non-thermal effects. This
last term accounts for the linear scaling on the shear rate and
time of the mean square displacement when the system is
subjected to oscillatory flow conditions.

Equation (13) can also be derived from the meso-
scopic nonequilibrium formalism by approaching the prob-
lem through an N-particle theory [29]. In this case, instead
of the one particle distribution functionf , one uses the N-
particle distribution functionP (N)({~r}N , {~u}N , t) depend-
ing on the positions ({~r}N ) and velocities ({~u}N ) of the N-
particles. The mesoscopic thermodynamic approach leads to
the multivariate Fokker-Planck equation [29]

∂P (N)

∂t
+

N∑

i=1

∇~ri
· (~uiP

(N)) =
N∑

i,j=1

∂

∂~ui

·
{[

(~ui − ~v0
i ) · ~~βij − ~~ζij · ~Fi

]
P (N)

+
kBT

m
~~ξij · ∂P (N)

∂~ui

}
, (15)
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where the subindexesi andj refer to different particles and

the tensors~~βij , ~~ζij and~~ξij have the same physical interpre-
tation as their one particle counterparts but explicitly con-
taining hydrodynamic interactions as given by Eq. (4). In

particular one obtains~~ξij = ~~βij − ~~εij · ∇~v0
i , where the term

∇~v0
i indicates that the velocity gradient must be evaluated at

the position of thei−th particle. The definitions of the other
quantities are the same as in the case of Eq. (2).

In the long time limitt À β−1
0 , the mesoscopic descrip-

tion given through Eq. (15) can be reduced to a diffusion de-
scription in terms of a multivariate Smoluchowski equation in
which the diffusion coefficient is of the form (14). However,
in this case it is possible to show that the effective mobility
tensor is, in general, a function of the position, time and the
filling fraction φ, ~~µ(~r, t; φ), [29].

3.1. Shear induced diffusion

Let us assume now that the flow imposed on the system is
a shear flow in thex direction, i.e., ~v0(~r, t) = ~r · ~~γ with
γ21 = γ̇ cos(ωt) and zero otherwise. The shear rate is re-
lated to the applied strainγ0 by γ̇ = γ0ω. For the sake of
simplicity, we shall neglect inertial effects related toζ.

The MSD of the particle can be calculated by taking the
time derivative of the definition

〈r2〉 =
∫

(x2 + y2) ρ d~r, (16)

where we are considering the two dimensional case due to
the symmetry of the problem and for simplicity in the pre-
sentation. Let us substitute Eq. (13) now into the result. An
integration by parts leads to

d

dt
〈r2〉 = 2γ̇ cos(ωt) 〈xy〉(t) + 2Tr[ ~~D], (17)

where〈xy〉(t) =
∫

xy ρ d~r. Similarly, we must derive the
evolution equations for〈xy〉(t), 〈x2〉(t) and 〈y2〉(t). Af-
ter solving the obtained set of differential equations, for low
shear rates and frequencies (γ̇ < 1, ω < 1), we may expand
the MSD as a power series onγ̇ andω in order to obtain

〈r2〉 '
{

2D0[3− g11(φ)− g22(φ)]

+
1
3
g12(φ)d2γ̇

}
t− 2D0g12(φ)d2γ̇t2, (18)

whered = 2a and we have assumedg12 = g21 for simplic-
ity and make explicit the dependence ofgij on the volume
fraction. For sufficiently large particles one may assume that
D0 ¿ d2g12(φ)γ̇ and then obtain the relation

〈r2〉 ∼ 1
3
g12(φ)d2γ̇t. (19)

When Eq. (19) is expressed in terms of the numbern of
cycles,t = 2πn/ω, it gives: 〈r2〉 ∼ (2π/3)g12(φ)d2γ0n,

which has the same scaling relation for the mean square dis-
placement as that reported in the experiments [2]. It is in-
teresting to notice that, at low shear rates and frequencies,
Eq. (18) suggests that the external forcing induces aneffective
temperatureTeff/T0 = 1+2d2g12(φ)γ̇/D0. Physically this
means that the applied shear modifies the energy available to
the particle in order to perform its shear induced diffusion.

An important difference between Eq. (19) and the scaling
relations previously obtained from theoretical grounds (see,
for instance, Ref. 6) is the coefficientg12(φ) due to hydrody-
namic interactions. The dependence on the volume fraction
may explain the transition to irreversibility as observed in the
experiments [2]. Therefore, by starting from the second law
of thermodynamics, our theory predicts that hydrodynamic
interactions are responsible for the shear-induced diffusion
effect and the transition to irreversibility through the depen-
dence of the coefficientsgij on (φ). The results we have
obtained coincide with those emerging from the analysis of
the dynamics of transition from reversible to irreversible be-
haviors.

4. Lattice-Boltzmann simulations

The threshold to irreversibility can also be studied by means
of numerical simulations. This study is necessary to prove
that the statistical description followed here and that based
on the analysis of the dynamics of particles trajectories co-
incides. In order to characterize the shear-induced diffusion
effect and the transition to the irreversibility, we shall use the
lattice-Boltzmann method since it is based on a kinetic equa-
tion that does not contain thermal noise effects.

In particular, we shall use theD2Q9 model for the lattice
Boltzmann method with the BGK approximation [33,34]. In
this model, space is discretized in a two dimensional square
lattice with nine velocities (ci, i = 0 . . . 8) allowed. The par-
ticle distribution functionsf(r, t), at siter and timet, evolve
according to the lattice Boltzmann equation

fi(r + ∆tci, t + ∆t)− fi(r, t)

= −∆t

τ

[
fi(r, t)− f

(eq)
i (r, t)

]
, (20)

whereτ is the dimensionless relaxation time related to vis-
cosity andf

(eq)
i are the local equilibrium distribution func-

tions,

f
(eq)
i = wiρ

[
1 + 3ci · u +

9
2
(ci · u)2 − 3

2
u2

]
. (21)

In this equationwi=4/9, 1/9, 1/36 are the weights as-
sociated with the lattice [35] for each set of velocities
|ci| = 0, 1,

√
2 andρ andu are the density and velocity de-

fined by

ρ(r, t) =
∑

i

fi(r, t), u(r, t) =
1
ρ

∑

i

fi(r, t)ci. (22)
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FIGURE 1. (a) Trajectory and (b) power spectrum of the
x−trajectory of one particle forRe = 0.01, φ = 0.14 and
f∗ = 10.0.

FIGURE 2. (a) Trajectory and (b) power spectrum of the
x−trajectory of one particle forRe = 0.07, φ = 0.14 and
f∗ = 10.0.

The viscosity is related to the dimensionless relaxation
time byν = c2

s(τ − 1/2), wherecs = 1/
√

3 is the speed of
sound in theD2Q9 model.

The no-slip boundary conditions are simulated on the
solid particles and the torques and forces are also evaluated to
update the particles position at all times [36]. The particles’
interactions are implemented with the method proposed by
Ladd [37] and with the corrections made by Aidunet al [36].
The walls of the cavity use the bounce-back boundary condi-
tion, which consists in reversing the incoming particle distri-
bution function after the stream process.

4.1. Dimensionless numbers and numerical simulations

The problem can be characterized by three dimensionless
numbers. The first one is the Reynolds number

Re =
UoH

ν
, (23)

where Uo cosωt is the velocity of the upper wall,H the
height of the cavity,ν the viscosity of the fluid,t the time and
ω the angular frequency. The second dimensionless number
is the volume fraction occupied by the particles inside the
cavity

φ =
Nπr2

WH
, (24)

whereN is the number of particles,r the radius andW the
width of the cavity. Finally, the third number is the dimen-
sionless frequency given by

f∗ =
ω

2πγ
, (25)

whereω = 2πf is the angular frequency,f the frequency and
γ = Uo/H the shear rate. The time is scaled with the period
t∗ = t/τ and the position and lengths with the radius of the
particle(x∗, y∗) = (x/r, y/r).

The numerical simulations are carried out in a cavity of
H∗ = 11.33 andW ∗ = 44.66. The relaxation time and the
radius of the particles are kept constant in all simulation at

FIGURE 3. (a) Trajectory and (b) power spectrum of the
x−trajectory of one particle forRe = 0.08 and the two previous
power spectra corresponding to the last two figures andφ = 0.14
andf∗ = 10.0.

FIGURE 4. Power spectrum of the mean square displacement for
(a) x and (b)y andRe = 0.08 and different values of the particle
concentration.

τ = 20.0 andr = 4.5. We varied the Reynolds number (Re),
the volume fraction of particlesφ.

The diffusion of the particles can be increased by increas-
ing the particle concentrationφ or by increasing the Reynolds
number, even at small values of theRe. As an example, in
Fig. 1 we present the trayectory of one of the sixteen particles
and the power spectrum of thex movement. As can be ap-
preciated in Fig. 1a the particle describes a regular movement
and even though in Fig. 1b we can notice some harmonics,
result of the hydrodynamic interactions between all particles,
the motion can be described as regular.

When increasing the Reynolds number toRe = 0.07,
the trajectory of the particle changes considerably as can be
seen from Fig. 2a; also, the power spectrum shown in Fig. 2b
changes, new subharmonics appear and the energy of each
peak is smaller than the previous power spectrum shown, thus
showing how the energy is distributed more homogeneously
in many modes.

Finally, whenRe = 0.08 the particles exhibit a very ir-
regular movement as shown in Fig. 3a; this can also be ap-
preciated from thePS shown in Fig. 3b, where the only peak
corresponds to the source of the oscillatory flow and now the
other modes are gone due to the strength of the hydrodynamic
particle interactions. In Fig. 3b we have added thePS of the
two previous figures in order to make a visual comparison of
the modes contained in the trajectories.

Rev. Mex. F́ıs. 55 (2) (2009) 77–83
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To obtain more evidence of the hydrodynamic interac-
tions we keptRe = 0.08 and varied the concentration of
particlesφ as can be seen from Fig. 4, where we present the
PS for the (a)x and (b)y msd. When the concentration is low
there is only one peak for both thex andy msd, showing a
weak coupling for they msd. When increasing the concentra-
tion of particles the harmonics start to appear and grow. For
the highest values of the particle concentration the peaks of
the harmonics almost disappear and the energy is distributed
along all the frequencies.

5. Discussion

In this paper we have explained the origin of the chaotic (ir-
reversible) motion of a semi-diluted suspension of particles
under the action of oscillating shear and extensional flows.

By analyzing the problem in phase space through the
methods of the mesoscopic nonequilibrium thermodynam-
ics, we conclude that the origin of the irreversibility is due
to three factors:

a) Hydrodynamic interaction between particles,

b) finite-size effects and

c) the violation of the fluctuation-dissipation theorem due
to the imposed flow.

Lattice-Boltzmann simulations were performed to reinforce
the theoretical results, indicating that the threshold to irre-
versibility can be characterized through the power spectra of
the trajectories of the particles.

Our theory shows that the appropriate analysis of the en-
tropy production at the mesoscale gives a thermodynamic
explanation of the transition to irreversibility and the shear-
induced diffusion effect. This explanation leads to the same
results as those obtained from the theory of dynamical sys-
tems.

Acknowledgments

ISH and GBV wish to acknowledge financial support by
DGAPA-UNAM under grant IN-102609.

1. I. Prigogine,Les lois du chaos(Flammarion, Paris, 1993).

2. D.J. Pine, J.P. Gollub, J.F. Brady, and A.M. Leshansky,Nature
438(2005) 997.

3. D. Drazer, J. Koplik, B. Khusid, and A. Acrivos,J. Fluid Mech.
460(2002) 307.

4. V. Breedveld, D. van den Ende, A. Tripathi, and A. Acrivos,J.
Fluid Mech.375(1998) 297.

5. G.I. Taylor and J. Friedman,Low Reynolds Number Flows(Na-
tional Committe on Fluid Mechanics Films, Encyclopedia Bri-
tannica Educational Corp., United States, 1996).

6. A. Seriou and J.F. Brady,J. Fluid Mech.506 (2004) 285.

7. G. Boffeta, M. Cencini, M. Falcioni, and A. Vulpiani,Phys.
Rep.356(2002) 367.
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13. M. López de Haro, J.M. Rubi,J.Chem. Phys.88 (1987 1248).
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