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Using a coordinate system given by the principal axis of inertia, as determined by an angle, and also two distances related to the principal
moments of inertia and an auxiliary angle as coordinates, we consider the Three Body Problem, interacting through gravitational forces in
a plane. The dynamics of the triple Saturn-Janus-Epimetheus has been considered in these coordinates as an adiabatic perturbation of the
classical equilateral triangle Lagrange solution and of the collinear Euler solution. The co-orbital motion remembering the Saturn-Janus-
Epimetheus behavior is then developed theoretically based on numerical and experimental evidence.
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Se usa un sistema de coordenadas dado por los ejes principales de inercia, determinados por unángulo, y adeḿas, dos distancias relacionadas
a los momentos principales de inercia y unángulo auxiliar. Consideramos al problema de tres cuerpos, que interacciona a través de fuerzas
gravitacionales en un plano. La dinámica de la terna Saturno-Jano-Epimeteo se ha descrito en estas coordenadas como una perturbación
adiab́atica de las soluciones clásicas triangular equilátera de Lagrange y la solución colinear de Euler. El movimiento co-orbital semejante al
comportamiento de Saturno-Jano-Epimeteo se desarrolla téoricamente basados en evidencia numérica y experimental.

Descriptores: Problema de tres cuerpos; Saturno; Jano; Epimeteo.

PACS: 45.50.Pk; 95.10.Ce

1. Introduction

Voyager 1flight confirmed the existence of two minor satel-
lites of Saturn: Janus and Epimetheus, providing a first es-
timate of their masses as well as their orbital elements. A
detailed history of this discovery was given by Aksnes [1].

These two moons became familiar after theVoyager 1
travel in space. They received a strong attention from differ-
ent researchers.

Some of them consider their orbits from a numerical point
of view Janus and Epimetheus roughly share the same mean
orbit of a radius of 151440 km from Saturn and a frequency
near 518 deg day−1 [2], they are called coorbital. One of
these moons is faster than the other by the small amount of
velocity produced by a difference of radius of 50 km. Each
4 years [3] the two moons become 15000 km apart, but their
mutual gravitational interaction prevents collision, and they
switch orbits, the one in the interior orbit becoming exterior
and viceversa, the exterior becoming interior at the moment
of close approach called the encounter. Colombo [4], esti-
mates the amplitude of the librations of the moons in a ro-
tating frame. TheCassiniimaging observations at Saturn in
2006 resulted in new data [5] and analysis to fix the parame-
ters for the dynamics of the Saturn’s moons and numerically
calculate their orbits.

The main theoretical approach has been made in the con-
text of the restricted problems in the plane. Dermott and
Murray [6, 7], gave the description of the coorbital motion
of Janus and Epimetheus based on a combination of numeri-
cal integration and perturbation theory, and extrapolate some
results to the case when the third mass is not negligible.

Yoderet al. [8, 9], derived a simple analytic approxima-
tion to the motion of all the Trojans and applied it to the Janus
and Epimetheus motion. Llibre and Ollé [10] proved the ex-
istence of stable horseshoe orbits for the value of the mass
parameter of Saturn and Janus in the context of the circular
restricted three body problem.

Waldvogel & Spirig [11–13], studied the problem of Sat-
urn’s coorbital satellites by means of a singular perturbation
approach, that is, the motion is initially described by an outer
and an inner approximation valid when the satellites are far
apart or close together, respectively; the complete description
of the motion requires the matching of both approximations.

Corresponding to the Hill’s problem, Petit &
Henon [14,15] dealt with satellite encounters in the frame-
work of Hill’s problem from the analytical and numerical
points of view.

Cors and Hall [16] approach this problem analytically
by introducing small parameters into the usual general three
body problem in the plane, truncating high order terms and
deriving dynamic information from the resulting equations.

A new perspective is undertaken in this paper with the use
of new coordinates but regarding the Three-Body Problem
without the simplifications of the restricted models. The use
of new coordinates was recommended by the extreme simpli-
fication that the integrable Euler and Lagrange cases attained
in these coordinates; and the relation of these two integrable
cases with the actual dynamics of Janus and Epimetheus rec-
ognized by most of the cited authors. Our main purpose is to
find in this paper new analytical approximations for the mo-
tion of Janus and Epimetheus in these variables, at least not
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close to their encounter where we study the motion doing nu-
merical integration as many of the previous authors working
in this problem.

2. The Piña-Jiménez coordinates

To study the Janus-Epimetheus dynamics we consider the
general Three Body Problem, interacting through gravita-
tional forces in a plane.

The study of this dynamics is made in the coordinate sys-
tem of Pĩna and Jiḿenez [17–19] that is further simplified by
the previous hypothesis of plane two-dimensional motion.

The masses of the three bodiesm1, m2 andm3 are dif-
ferent, and ordered by the inequalitiesm1 À m2 > m3.

Since the motion takes place in a plane, it is sufficient to
take into account only one rotation angleψ in order to trans-
form from the inertial referential, to the frame of principal
inertia axes, instead of three Euler angles.

In addition to this angle three other coordinates were in-
troduced, namedσ, R1, R2, whereσ is an angle, andR1 and
R2 are two distances closely related to the two independent
inertia moments

I1 = µR2
1 , (1)

and

I2 = µR2
2 , (2)

andµ is the mass

µ =
√

m1 m2 m3

m1 + m2 + m3
, (3)

which will be used frequently in this paper.
The cartesian inertial coordinates, with the center of grav-

ity at rest, written in terms of the new coordinates are

rj =
(

xj

yj

)
= aj

(
R2 cos σ cos ψ + R1 sin σ sin ψ
R2 cos σ sin ψ −R1 sin σ cosψ

)

+ bj

(
R2 sin σ cosψ −R1 cos σ sinψ
R2 sin σ sin ψ + R1 cosσ cosψ

)
, (4)

where theaj andbj are constants forming two constant, lin-
early independent vectorsa andb, in the mass space, orthog-
onal to the vectorm = (m1,m2,m3):

a1m1 + a2m2 + a3m3 = b1m1 + b2m2 + b3m3 = 0 . (5)

We introduce the following notation for the matrix

M =




m1 0 0
0 m2 0
0 0 m3


 . (6)

In order to complete the definition of vectorsa andb we
assume

bMaT = 0 , bM2 aT = 0 , (7)

which fixes the two directions ofa andb in the plane orthog-
onal tom, and we assume the normalizations

aMaT = bMbT = µ , (8)

that define the vectorsa andb with no dimensions.
These two vectors are easily computed from the previous

orthogonality conditions. One has

a = µya

(
1

m1 − xa
,

1
m2 − xa

,
1

m3 − xa

)
. (9)

and

b = µyb

(
1

m1 − xb
,

1
m2 − xb

,
1

m3 − xb

)
, (10)

whereya andyb are normalization factors, andxa andxb are
the roots of the quadratic equation

x2

µ2
− 2

x

µ
α + 3 = 0 , (11)

where

α = µ

(
1

m1
+

1
m2

+
1

m3

)
. (12)

The two solutions to that quadratic equation are

xa = µ(α +
√

α2 − 3) (13)

and

xb = µ(α−
√

α2 − 3) . (14)

These quantities are defined in this form only for different
masses. In that case we have the inequalities

m1 > xa > m2 > xb > m3 , (15)

that imply

a1 > 0, a2 < 0, a3 < 0; b1 > 0, b2 > 0, b3 < 0 . (16)

We define the anglesσ1, σ2, σ3 by means of

aj = kj cosσj , bj = kj sin σj (17)

wherekj are positive constants. The anglesσj obey the in-
equalities

0 < σ1 < π/2 < σ2 < π < σ3 < 3π/2 . (18)

To express the potential energy (G is the gravitational con-
stant)

V = −Gm2m3

p
− Gm3m1

q
− Gm1m2

r
, (19)
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we need the relationship among the distances between parti-
clesp, q, r, and the new coordinates.




p2

q2

r2


 = Be




R2
1 + R2

2

(R2
1 −R2

2) cos 2σ
(R2

1 −R2
2) sin 2σ


 , (20)

where Be is the constant matrix, depending only on the
masses,

Be=
1
µ2




m2
1

a2
1+b21
2 m2

1
a2
1−b21
2 m2

1 a1 b1

m2
2

a2
2+b22
2 m2

2
a2
2−b22
2 m2

2 a2 b2

m2
3

a2
3+b23
2 m2

3
a2
3−b23
2 m2

3 a3 b3




. (21)

It has been convenient to introduce polar coordinates for
R1 andR2 namely

R1 = R cos θ , R2 = R sin θ . (22)

Writing these quantities in terms of the coordinates and
the anglesσj one has

p2 =
R2 sin(σ3 − σ2)

2 sin(σ1 − σ3) sin(σ2 − σ1)

×[1 + cos(2θ) cos(2σ1 − 2σ)] ,

q2 =
R2 sin(σ1 − σ3)

2 sin(σ2 − σ1) sin(σ3 − σ2)

×[1 + cos(2θ) cos(2σ2 − 2σ)] ,

r2 =
R2 sin(σ2 − σ1)

2 sin(σ3 − σ2) sin(σ1 − σ3)

×[1 + cos(2θ) cos(2σ3 − 2σ)] . (23)

The binary collisions are defined in our coordinates for
constant values of the coordinatesσ andθ. The value of the
θ angle at collision implies that one of the principal moments
of inertia becomes zero. These collisions are defined by the
equations

cos(2θ) cos(2σi − 2σ) = −1

whenθ = π/2 mod(π) andσ = σi mod(π), σi being one of
the previous defined constants, or whenθ = 0 mod(π) and
σ = σi + π/2 mod(π). We call theseσi angles the collision
angles.

We compute also the kinetic energy as a function of the
new coordinates, it becomes

K =
µ

2

[
Ṙ2 + R2(θ̇2 + σ̇2 − 2 sin(2θ)σ̇ψ̇ + ψ̇2)

]
. (24)

3. Equations of motion

The equations of motion follow from the Lagrange equations
derived from the LagrangianK−V as presented in any stan-
dard text of Mechanics [20].

We noteψ is a cyclic variable that is not present in the
kinetic energy nor in the potential energy. Therefore

Pψ =
∂K

∂ψ̇
= µR2

(
ψ̇ − σ̇ sin(2θ)

)
(25)

is a constant parameter.

The equations of motion for the other three coordinates
are

d

dt
µṘ− µR[θ̇2 + ψ̇2 + σ̇2 − 2σ̇ψ̇ sin(2θ)]

+
V ∗(σ, θ)

R2
= 0 , (26)

d

dt
µR2θ̇ + 2µR2σ̇ψ̇ cos(2θ)− 1

R

∂V ∗

∂θ
= 0 , (27)

d

dt

[
µR2σ̇ − µR2ψ̇ sin(2θ)

]
− 1

R

∂V ∗

∂σ
= 0 , (28)

whereV ∗(σ, θ) is the function defined byV = −V ∗/R.

The equations of motion have other constant of motion,
the total energy namely:

E = K + V =
µ

2

×
[
Ṙ2 + R2(θ̇2 + σ̇2 − 2 sin(2θ)σ̇ψ̇ + ψ̇2)

]
− V ∗

R
. (29)

4. The Euler and Lagrange cases of motion of
the three-body problem

It is convenient to combine the two well known constants of
motion of the Three-Body Problem in the following form, by
substitution of the angular momentumPψ in the energy con-
stant to obtain

E =
µ

2

[
Ṙ2 + R2

(
θ̇2 + σ̇2 cos2(2θ)

)]

+
P 2

ψ

2µR2
− V ∗(σ, θ)

R
. (30)

The Euler and Lagrange cases are obtained when the co-
ordinatesσ andθ are constants of motion, then the previous
two equations (25) and (30) become identical to the equations
of motion for the elliptic two body relative motion in terms
of the radiusR and the true anomalyψ, namely

Pψ = µR2ψ̇ , (31)

and

E =
µ

2
Ṙ2 +

P 2
ψ

2µR2
− V ∗(σ, θ)

R
. (32)
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FIGURE 1. Euler case. Typical elliptic trajectories and two simul-
taneous positions on a straight line. The center of mass is at the
intersection of the two stright lines.

FIGURE 2. Lagrange case. Typical elliptic trajectories and two si-
multaneous positions on an equilateral triangle. The center of mass
is at the common focus.

In particular the orbit for these coordinates is the ellipse

Pψ

R
=

µV ∗

Pψ
+

√
2Eµ +

(
µV ∗

Pψ

)2

cos(ψ − ψ0) , (33)

whereψ0 is a constant of integration.
The equations of motion for the two coordinatesσ andθ

give for the Lagrange case the constant values

σ = 0 , cos(2θ) = −
√

α2 − 3
α

. (34)

For the Euler case the coordinateθ is chosen equal to 0
or π/2 and thenσ is a constant that results from the equation

(
q3r3 p3r3 q3p3

)
C




p2

q2

r2


 = 0 , (35)

whereC is the matrix

C=




m2−m3 −(m2+m3) m2+m3

m3+m1 m3−m1 −(m3+m1)
−(m1+m2) m1+m2 m1−m2


 . (36)

The equation (35), obtained for the Euler case, is inter-
esting not only because it is one for the three Euler cases, but
because it gives also theθ andσ coordinates for the Lagrange
cases, for the collision angles, and for fulfill the condition for
equal moments of inertia.

5. Saturn-Janus-Epimetheus dynamics

Our study of the Saturn-Janus-Epimetheus dynamics rest on
numerical integrations of the equations of motion in our co-
ordinates. The first integration produced an orbit that was
very close to a circular orbit in the polarR andψ coordi-
nates with major perturbations in the neighborhood of the
encounter which occurs every four years. The following anal-
ysis was developed in parallel to complete the numerical out-
put.

Based on numerical integration of the Three-Body Prob-
lem in these coordinates we [5] look the Janus Epimetheus
motion around Saturn as an adiabatic motion perturbation of
the Euler and the Lagrange cases. The fast motion is an ellip-
tic motion for theR andψ coordinates as it is in the Euler and
Lagrange cases. The slow motion occurs for the coordinates
θ andσ, that were constants in the Euler and Lagrange cases
and now are assumed to vary slowly.

This hypothesis is related to the observed two time scales
in the actual motion of these two Saturn’s moons. One is a
fast revolution of the moons around Saturn with almost the
same period of 2/3 of a day. The second is the slow rela-
tive approach of the two moons every 4 years, producing an
interchange of relative positions and velocities.

The two particles have almost the same radius of 151450
km with a difference of±50 km. We write

q

r
= 1 + δ , (37)

with δ = ±50/151450 .= ±1/3000. These two values forδ
remain after an encounter that happens each 4 years, whenδ
changes of sign between these two values. Forgetting the en-
counter for a while, most of the time the two particles move in
the combination of the fast elliptic motion of the coordinates
R andψ, and the slow motion of the other two coordinates
that we study now.

Since the masses of Janus and Epimetheus are smaller
than the mass of Saturn by a factor of10−9, we have some
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simplifications (for exampleσ3
.= σ2 + π/2), hence the ratio

of the distancesq andr is given by

q

r
=

√
m2

m3

√
1− cos(2σ3 − 2σ) cos(2θ)
1 + cos(2σ3 − 2σ) cos(2θ)

. (38)

From these two equations it follows to first order inδ

cos(2σ3−2σ) cos(2θ)=
m2−m3

m2+m3
−4δ

m2m3

(m2+m3)2
. (39)

The slow motion occurs very near this curve in theσ/θ plane
represented in Fig.3, that was drawn forδ = 0. This curve
crosses the constant values corresponding to binary collision,
one Euler case, and two Lagrange cases. The curve matches
the condition for equal distance to Saturn of the two moons.
The actual motion happens on two parallel curves very near
the previous one, forming a horseshoe with the two ends
pointing to the binary collision point.

The slow motion is an adiabatic motion [21] of the two
coordinatesθ and σ. We assume the adiabatic hypothesis
which implies the conservation of the actionJ of the elliptic
motion, that is equal to [22]

J =
πV ∗

√
− E

2µ

. (40)

We repeat the computation of the invariance of this action as
was made by Becker [23] for the pendulum with a slow mo-
tion of the length; but here for the case of the elliptic motion.
The differential of this action, assuming a slow motion of the
parametersV ∗ andE is

dJ =
π√
− E

2µ

(
dV ∗ − V ∗

2E
dE

)
. (41)

The Hamiltonian of the elliptic movement is written as

H = K − V ∗

R
(42)

We changeV ∗ by the action of a forceF

F = − ∂H
∂V ∗ =

1
R

= − V

V ∗ . (43)

The last expression was written to take the time average force
in one period of the elliptic motion. According to the Virial
theorem the time average in a period of the potential energy
is equal to2E,

〈F 〉 = − 1
V ∗ 〈V 〉 = −2E

V ∗ . (44)

The adiabatic work to changedV ∗ is

dE = −〈F 〉dV ∗ =
2E

V ∗ dV ∗ . (45)

Therefore substitution into (41) results in the actionJ re-
maining invariant during this adiabatic change.

FIGURE 3. Central curve for the motion of theσ andθ coordinates
of Janus and Epimetheus slow dynamics.

The adiabatic hypothesis demands the invariance of the
V ∗ function in the slow motion of the coordinatesθ andσ.
We turn now to study this function of those coordinates. We
begin by writing it in terms of the distancesp, q, r

V ∗ = −V R = Gm1m2m3

(
1

m1p
+

1
m2q

+
1

m3r

)

×√µ

√
p2

m1
+

q2

m2
+

r2

m3
(46)

and we concentrate on the two factors

(
1

m1p
+

1
m2q

+
1

m3r

) √
p2

m1
+

q2

m2
+

r2

m3
(47)

on both of them the terms divided by the massm1 are smaller
by a factor of10−9 compared with the other terms. Neglect-
ing the smaller terms for a while we study the larger ones

(
1

m2q
+

1
m3r

) √
q2

m2
+

r2

m3
, (48)

that is a function ofz = q/r namely

f(z) =
(

1
m2z

+
1

m3

) √
z2

m2
+

1
m3

. (49)

This function has a minimum inz = 1 since

2f(z)f ′(z) =
2

m2m3z2

(
1

m2z
+

1
m3

)
(z3 − 1) . (50)
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According to (37), the system moves near this minimum
z = 1 + δ, hence we approximate the functionf(z) by a
Taylor expansion that to second order inδ gives

f(z)=
(

1
m2

+
1

m3

)3/2

+
3

2
√

m2m3(m2+m3)1/2
δ2. (51)

But now we see that becauseδ is of the order of 1/3000, the
corrections to the first term are of the order of the neglected
terms. These terms are now calculated assuming thatq = r
since the corrections are of higher order. We consider then
the factors

[
1 +

1
m1p
m2q + m1p

m3r

] √√√√1 +
p2

m1

q2

m2
+ r2

m3

(52)

that are approximated by

1 +
1

m1
m2

+ m1
m3

(
1
w

+
w2

2

)
, (53)

wherew = p/q. The function in parenthesis has a minimum
at w = 1, (p = q) where it has the value 1.5. For Janus and
Epimetheusw has the maximum value atw = 2 when the
function is equal to 2.5. The function becomes important at
the smaller values ofw near the value1/12 when the func-
tion become larger than 12 at the encounter. To low order in
small quantities the functionV ∗ becomes

V ∗ = Gm1m2m3
√

µ

(
1

m2
+

1
m3

)1/2 [
1

m2
+

1
m3

+
3

2(m2 + m3)
δ2 +

1
m1

(
1
w

+
w2

2

)]
. (54)

We confirm the hypothesis thatV ∗ is almost a constant by
verifying the adiabatic hypothesis that makes constant the an-
gular part of the potential energy. According to (38) if we
assumeV ∗ is a function ofq/r, then it is a functional of the
function (39) that is almost constant during the motion. The
correction term inδ2 is very small. Thew-dependent term
is the smallest except at the encounter when it grows to his
highest value and simultaneously theδ goes to zero.

The leading time behavior of theσ andθ coordinates is
predicted satisfactorily as follows. We write the equation (30)
of energy conservation in the form

(
Ṙ

R

)2

+ θ̇2 + σ̇2 cos2(2θ)

=
1

µ2R2

[
2µE +

Pψ

R

(
2µV ∗

Pψ
− Pψ

R

)]
(55)

We take the average on the right hand side over the fast vari-
ableR making the substitution of the averageR by

R −→ −V ∗
2E

(56)

to obtain

(
Ṙ

R

)2

+ θ̇2 + σ̇2 cos2(2θ)

= − 8E3

µV ∗2

(
1 +

2EP 2
ψ

µV ∗2

)
, (57)

where the over line denotes the above substitution

X(R) = X[−V ∗/(2E)] . (58)

We introduce the hypothesis, confirmed by numerical in-
tegration that the slow variables satisfy the equation

θ̇2 + σ̇2 cos2(2θ) = λ2 (constant) (59)

whereλ2 is a constant of the order of the quantity on the right
hand side of (57). Assuming the equations (39) and (59) hold
for the variablesσ andθ, they lead to the time dependence of
these slow variables

sin(2θ) = ±
√

1− k2 sin(ω′t) ,

tan(2σ3 − 2σ) =
√

1− k2

k
cos(ω′t) , (60)

whereω′ is

ω′ = 2λ/
√

1− k2 , (61)

and k is the constant on the right hand side of (39)

k = cos(2σ3 − 2σ) cos(2θ) =
m2 −m3

m2 + m3

− 4δ
m2m3

(m2 + m3)2
. (62)

Numerical integration agrees up to a maximum of2% of the
predicted values (60) of theθ andσ coordinates if one tunes
theω′ frequency to the observed value near 4 years, that we
remark it is half the value of the complete journey. The ampli-
tudes of these variables fit very well the numerical integration
values. Small discrepancies arises at the encounter.

Comparing experimentalversusnumerical evidence give
a value forλ2 near of the right hand side of (57)

λ2 = − 8E3

µV ∗2

(
1 +

2EP 2
ψ

µV ∗2

)
. (63)

The sign of the time dependent quantities in (60) has been
fixed from comparison with the numerical integration. The
function of σ is the same for any time in the 8 years pe-
riod. Both signs are included in thesin 2θ function because
a change of sign occurs in the neighborhood of the encounter
at the closest approach of Janus and Epimetheus each four
years.
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Upon comparing the frequencyω′ predicted by (61)
and (63) with the frequencyω of the elliptic motion

ω =

√
−8E3

µV ∗2 , (64)

we obtain
(

ω′

ω

)2

=
4e2

1− k2
, (65)

which has been written in terms of the eccentricity of the el-
liptic motion that obeys the equation

1− e2 =
−2EP 2

ψ

µV ∗2 . (66)

For the eccentricity we have the expression

e =
ω′

2ω

√
(1− k2) . (67)

that predicts a value of the eccentricity of the ellipse near
2 · 10−4, that is one order of magnitude smaller that the com-
puted best values obtained by Spitaleet al. [5] for the eccen-
tricities of Janus and Epimetheus. The Spitaleet al. compu-
tation takes in account the influence of the Sun, Jupiter and
many of the moons of Saturn, and deviates essentially from
the point of view in this paper.

6. Perturbing the circular solution

Most of the results presented in the previous sections were
suggested and confirmed on the basis of a first numerical in-
tegration of the equations of motion. However the elliptic
motion associated to the fast variablesR andψ in this first
integration was nearly circular with an eccentricity of10−8.

Some of the previous results are true only for this partic-
ular numerical integration. Nevertheless it is easy to find the
changes one must to attain with a similar solution but with an
eccentricity small, of the order of10−4.

Starting from the equations of motion (27) and (28) we
substitute theψ̇ dependence by using the conservation of an-
gular momentum and then multiply the first byR2θ̇ and the
second byR2σ̇, and add the two resulting equations to obtain

d

dt

µ

2
R4[θ̇2 + σ̇2 cos2(2θ)] = R

d

dt
V ∗ . (68)

This equation shows that assumingV ∗ = constant, to obtain
a constant value oḟθ2 + σ̇2 cos2(2θ), one should have also
R = constant. Suppressing this last restriction but conserv-
ing V ∗ = constant, which is confirmed by a numerical inte-
gration with initial conditions driven to an eccentricity non
zero, we are led to the result

θ̇2 + σ̇2 cos2(2θ) =
Λ2P 2

ψ

µ2R4
, (69)

whereΛ is a constant of integration.

Now we introduce a new independent variableτ defined
by

dt =
µ

Pψ
R2dτ . (70)

Variableτ could be identified with the angleψ if the quantity
σ̇ could be equal to zero.

We obtain the equation
(

dθ

dτ

)2

+
(

dσ

dτ

)2

cos2(2θ) = Λ2 , (71)

that is similar to the equation (59). Assuming again that ex-
pression (62) remain constant we deduce the couple of equa-
tions that are similar to the previous (60)

sin(2θ) = ±
√

1− k2 sin(Ωτ) ,

tan(2σ3 − 2σ) =
√

1− k2

k
cos(Ωτ) , (72)

with Ω defined by

Ω = 2
Λ√

1− k2
(73)

That is the analogous to (61).
Next we obtain the coordinateR as a function ofτ . To

this end we write the equation of energy conservation in terms
of the new independent variable, and using as is usual in the
Kepler problem the change of variable

u =
1
R

, (74)

we have
(

du

dτ

)2

= −
[
1 +

(
dθ

dτ

)2

+
(

dσ

dτ

)2

cos2(2θ)

]
u2

+
2µV ∗

P 2
ψ

u +
2µE

P 2
ψ

. (75)

Making the substitution of equation (71) in the square bracket
we obtain

(
du

dτ

)2

= − [
1 + Λ2

]
u2 +

2µV ∗

P 2
ψ

u +
2µE

P 2
ψ

. (76)

If Λ were zero, the previous equation could be the differen-
tial equation for the orbit of the Kepler motion in terms of the
true anomalyτ . Solution to this equation is similar, although
the orbit now is a precessing ellipse in the polar coordinates
R andτ . It is also an ellipse if the polar angle is defined as√

1 + Λ2τ as is shown next:

1
R

= u =
µV ∗

P 2
ψ(1 + Λ2)

+

√
2µE

P 2
ψ(1 + Λ2)

+
µ2V ∗2

P 4
ψ(1 + Λ2)2

× cos
(√

1 + Λ2(τ − τ0)
)

(77)
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hereτ0 is an integration constant. Comparing with (33) we
note the constants are modified by the transformation

Pψ −→ Pψ

√
1 + Λ2 . (78)

This ellipse has been compared with a numerical integra-
tion having the qualitative expected behavior for the Janus
and Epimetheus dynamics. The initial conditions were se-
lected near the Euler collinear configuration. The numerical
data fit very well these equations, in particular the mean ra-
dius and eccentricity of the ellipse are very close to both the
numerical integration and to the theoretical value predicted
by equation (77); the mean radius is as usual

a = −V ∗

2E
, (79)

whereas the eccentricity is modified by the transforma-
tion (78)

e =

√
1 +

2EP 2
ψ(1 + Λ2)
µV ∗2 . (80)

The cyclic variableψ is now expressed in terms of the
independent variable. From the conservation of angular mo-
mentum (25) we deduce the differential identity

dψ = dτ + sin(2θ)dσ . (81)

Substitution in it of the functionsθ andσ as functions of
τ , according to (72), produces the derivative

dψ

dτ
= 1± kΩ

2
(1− k2) sin2(Ωτ)

1− (1− k2) sin2(Ωτ)
(82)

this is trivially integrated to

ψ = τ ∓ kΩ
2

τ ± 1
2

tan−1 (k tan(Ωτ)) . (83)

In this form we have written the four coordinates in terms of
the new variableτ .

The quantitiesψ andτ are near the same. This is con-
firmed numerically by plotting and computing the previous
equation. The numerical integration agrees very well with
the predicted equations of this section.

This solution is based on the assumptions that the poten-
tial energy is constant and the slow variables move on the
curve (39). Both conditions are nearly satisfied by the nu-
merical solution and confirmed by the theoretical and exper-
imental analysis.

7. Conclusions

Our coordinates seem suitable for formulate important cases
of motion of the Three-Body Problem.

In the square determined by the coordinatesσ and θ,
the binary collisions are determined by a finite number of
points of this square with coordinates determined only by
the masses of the three particles. The Lagrange and Euler
cases of motion are also determined as functions of the three
masses by a finite number of points in this square.

The elliptic motion of Janus and Epimetheus is repre-
sented in this paper by a corresponding elliptic motion of the
coordinatesR andψ corresponding to a small adiabatic per-
turbation of the Euler and Lagrange cases of motion, where
now the coordinatesσ andθ move slowly on a curve in the
σ/θ square. This last motion is periodic in these two co-
ordinates with the frequency of the encounter, and the time
behavior of the slow coordinates is predicted satisfactorily.

To compute this behavior of the slow coordinates we fol-
low the data of a numerical integration that allow to deter-
mine two approximate constants of motion for those coordi-
nates. The assumption that in some equationsR should be
replaced by the constant value−V ∗/(2E) is consistent with
the neglect of the term(Ṙ/R)2 and with a first numerical
integration.

In this paper we find that the angular part of the potential
energy represented by the functionV ∗ is almost a constant.
That the minimum of this function is the Lagrange case with
three equal distances between particles. That the correction
terms allowed by the experiment are of the order10−8. Based
on this reality we deduce the behavior of the four coordinates:
theR andψ move in a precessing ellipse with an average ra-
dius determined as usual by the energy and the angular part
of the potential energy. For the eccentricity we discover a
perturbation of the classical terms by the slow terms. The
slow dynamics has been described in these conclusions with
small corrections that take into account the eccentricity up
the order10−3.

The difficult point in this study is the behavior at the en-
counter. We fill this gap only by a numerical integration as
was made by other authors [6-16]. We have noted however
the change of sign of theθ derivative at the encounter and
the opposite behavior of the correction terms in the angular
part of the potential energy at the encounter: one term be-
coming important when the other term vanishes. The use of
the Hill model as was developed by other authors requires
also of a numerical integration and no similar approach was
undertaken in this paper.
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10. J. Libre and M. Olĺe, Astronomy & Astrophysics378 (2001)
1087.

11. F. Spirig and J. Waldvogel inStability of the Solar System and
its Minor and Artificial Bodies, V. Szebehely ed. (D. Reidel
Publ. Co. Netherlands, 1985) p. 53.

12. J. Waldvogel and F. Spirig inLong-Term Dynamical Behaviour
of Natural and Artificial N-Body Systems, A.E. Roy ed. (Kluwer
Academic Publishers, 1988) p. 223.

13. A.E. Roy,Orbital Motion(Institute of Physics Publishing, Bris-
tol 2005).

14. J.-M. Petit and M. Henon,Icarus66 (1986) 536.

15. M. Henon and J.-M. Petit,Celestial Mechanics and Dynamical
Astronomy38 (1986) 67.

16. J.M. Cors and G.R. Hall,SIAM J. Appl. Dyn. Sys.2 (2003) 219.
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