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Using a coordinate system given by the principal axis of inertia, as determined by an angle, and also two distances related to the principal
moments of inertia and an auxiliary angle as coordinates, we consider the Three Body Problem, interacting through gravitational forces in
a plane. The dynamics of the triple Saturn-Janus-Epimetheus has been considered in these coordinates as an adiabatic perturbation of t
classical equilateral triangle Lagrange solution and of the collinear Euler solution. The co-orbital motion remembering the Saturn-Janus-
Epimetheus behavior is then developed theoretically based on numerical and experimental evidence.
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Se usa un sistema de coordenadas dado por los ejes principales de inercia, determinadasguio unaderas, dos distancias relacionadas

a los momentos principales de inercia yamgulo auxiliar. Consideramos al problema de tres cuerpos, que interaccionesadeduerzas
gravitacionales en un plano. La dmica de la terna Saturno-Jano-Epimeteo se ha descrito en estas coordenadas como unagperturbaci
adiakatica de las solucionesadicas triangular equéitera de Lagrange y la soléci colinear de Euler. El movimiento co-orbital semejante al
comportamiento de Saturno-Jano-Epimeteo se desareolimamente basados en evidencia &tioa y experimental.

Descriptores: Problema de tres cuerpos; Saturno; Jano; Epimeteo.

PACS: 45.50.Pk; 95.10.Ce

1. Introduction Yoderet al. [8, 9], derived a simple analytic approxima-
tion to the motion of all the Trojans and applied it to the Janus

Voyager 1flight confirmed the existence of two minor satel- 5nq Epimetheus motion. Llibre and ©I]10] proved the ex-

lites of Saturn: Janus and Epimetheus, providing a first eSgtence of stable horseshoe orbits for the value of the mass

timate of their masses as well as their orbital elements. Ayarameter of Saturn and Janus in the context of the circular
detailed history of this discovery was given by Aksnes [1]. yestricted three body problem.

¢ T?gse two rrjr%ons began:je fa:mllar atfttert_ttlki)fagerdlﬁ Waldvogel & Spirig [11-13], studied the problem of Sat-
erﬁzlfeg;;re:iceer.s €y received a strong attention from difery, s coorbital satellites by means of a singular perturbation

. . . _ ._approach, that is, the motion is initially described by an outer
Some of them consider their orbits from a numerical point i y y

of view Janus and Epimetheus roughly share the same me%nd an inner approximation valid when the satellites are far
: . art or close together, respectively; the complete description
orbit of a radius of 151440 km from Saturn and a frequenc rﬂ) 9 P y b b

Yof the moti ires the matching of both imati
near 518 deg day [2], they are called coorbital. One of of the motion reqiires the matching of both approximations.

these moons is faster than the other by the small amount of Corresponding to. the H,'"’S problem,. Petit &
velocity produced by a difference of radius of 50 km. EachHenon [1‘_1',15] dealt with satellite encounters in the f“f"me'
4 years [3] the two moons become 15000 km apart, but theiYVO_rk of H!Ils problem from the analytical and numerical
mutual gravitational interaction prevents collision, and theyP°INts of view.
switch orbits, the one in the interior orbit becoming exterior ~ Cors and Hall [16] approach this problem analytically
and viceversa, the exterior becoming interior at the momenY introducing small parameters into the usual general three
of close approach called the encounter. Colombo [4], estibody problem in the plane, truncating high order terms and
mates the amplitude of the librations of the moons in a ro-deriving dynamic information from the resulting equations.
tating frame. TheCassiniimaging observations at Saturn in A new perspective is undertaken in this paper with the use
2006 resulted in new data [5] and analysis to fix the parameef new coordinates but regarding the Three-Body Problem
ters for the dynamics of the Saturn’s moons and numericallyithout the simplifications of the restricted models. The use
calculate their orbits. of new coordinates was recommended by the extreme simpli-
The main theoretical approach has been made in the coffication that the integrable Euler and Lagrange cases attained
text of the restricted problems in the plane. Dermott andn these coordinates; and the relation of these two integrable
Murray [6, 7], gave the description of the coorbital motion cases with the actual dynamics of Janus and Epimetheus rec-
of Janus and Epimetheus based on a combination of numergnized by most of the cited authors. Our main purpose is to
cal integration and perturbation theory, and extrapolate som#nd in this paper new analytical approximations for the mo-
results to the case when the third mass is not negligible.  tion of Janus and Epimetheus in these variables, at least not



98 A. BENGOCHEA AND E. PNA

close to their encounter where we study the motion doing nuwhich fixes the two directions ef andb in the plane orthog-
merical integration as many of the previous authors workingonal tom, and we assume the normalizations
in this problem.

aMa® =bMb" =y, (8)

2. The Pha-Jiménez coordinates that define the vectors andb with no dimensions.

To study the Janus-Epimetheus dynamics we consider the These t,WO vectp_rs are easily computed from the previous
general Three Body Problem, interacting through gravita°rthogonality conditions. One has
tional forces in a plane. 1 1 1

a = UYaq

The study of this dynamics is made in the coordinate sys-

tem of Pfia and Jirenez [17-19] that is further simplified by

the previous hypothesis of plane two-dimensional motion. 5,4
The masses of the three bodies, my andms are dif-

ferent, and ordered by the inequalities > mo > ma. _ 1 1 1 (10)
Since the motion takes place in a plane, it is sufficient to B my— Ty M —Tp M3 —Tp)

take into account only one rotation anglén order to trans- o

form from the inertial referential, to the frame of principal Wherey. andy, are normalization factors, and andz, are

©)

my — Ty My — X, M3 — T

inertia axes, instead of three Euler angles. the roots of the quadratic equation
In addition to this angle three other coordinates were in- 22 .
troduced, named, R, Ro, whereo is an angle, andk; and = —2-a+3=0, (11)
R, are two distances closely related to the two independent K K
inertia moments where
Il = /J’R2 ) (l) 1 1 1
! a:,u<++>‘ (12)
and mp mg M3
I, = uR? @ The two solutions to that quadratic equation are
2 = 2
andy is the mass g = a4+ Va2 —3) (13)
mimsm and
= s (3)
m1 + mo + M3
xp = pla— Va2 —3). (14)

which will be used frequently in this paper.

The cartesian inertial coordinates, with the center of grav-  These quantities are defined in this form only for different
ity at rest, written in terms of the new coordinates are masses. In that case we have the inequalities

_ ( Zj ) _ ( Rs cosocosyp + Ry sinosiny )
r —Clj

T\ Ry cososiny — Ry sino costp

b, Ry sino costy — Ry cos o siny @) that imply
7\ Rysinosinty + Rjcosocosty )’

my > XTg > Mo > Ty > M3, (15)

) ) ay > 0,a2 <0,a3 <0;b; >0,b2 >0,b3<0. (16)
where theu; andb; are constants forming two constant, lin-
early independent vectossandb, in the mass space, orthog- We define the angles,, o, o3 by means of
onal to the vectom = (mq, mz, ms):
a; =kjcosoj, b;=kjsing; a7)
aimi + asgma + agmsg = bymy + bomso + bgmz = 0. (5)

We introduce the following notation for the matrix wherel; are positive constants. The angtesobey the in-

equalities
mq 0 0
M= 0 me O ) (6) 0<o1<7/2<0y<m<o03<3m/2. (18)
0 0 ms

To express the potential energ¥ (s the gravitational con-
In order to complete the definition of vectarsandb we  stant)
assume
Gmoams Gmasm;  Gmimo

T 2.T _ V= — — ) (19)
bMa =0, bM“a =0, (7) P q r
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we need the relationship among the distances between parti- We notes) is a cyclic variable that is not present in the

clesp, g, r, and the new coordinates. kinetic energy nor in the potential energy. Therefore
P’ R} + R3 0K Sl
¢® | =Be| (R?—R3)cos20 |, (20) Py = % = pR (7/) - USln(29)) (25)
r? (R? — R3) sin20
where Be is the constant matrix, depending only on the S & constant parameter.
masses, The equations of motion for the other three coordinates
a?4b? a?—b? are
m%—12 : m%—l2 L m?ayby
d - iy o L
1 —pR — pR[O° 4 ° + 67 — 20 sin(20)]
Be:—2 m% 7"’3'2“]% m% 7{13;})3 m% as b2 . (21) dt
H V*(0,0)
=0, (29)
m3 s m3 R m3 as bs R
. . . d o 2. Lov”
It has been convenient to introduce polar coordinates for £MR 0 + 2uR761) cos(20) — a0 — O (27)
R, and R, namely 1 av*

4 [uR% — uR%) sin(za)] =% o, (28)

Ry =Rcosf, Ry= Rsiné. (22) dt R Oo
Writing these quantities in terms of the coordinates andvhereV* (o, ) is the function defined by’ = —V*/R.
the anglesr; one has The equations of motion have other constant of motion,
5 . the total energy namely:
9 R?sin(o3 — 03)

o QSiH(Ul - 0'3) Sin(O'Q — 0'1)
x[1 + cos(20) cos(201 — 20)],
. R sin(or — 03) x [+ (02 + 6% — 25in(20)69) + 02)| -

E:K+V:§

V*
R.

(29)

~ 2sin(oy — 01)sin(oz — 09)

X[1 4 cos(20) cos(205 = 20)], 4. The Euler and Lagrange cases of motion of

) R%sin(oy — 01) the three-body problem

~ 2sin(o3 — 09) sin(oy — 03)

23) It is convenient to combine the two well known constants of
motion of the Three-Body Problem in the following form, by
The binary collisions are defined in our coordinates forSubstitution of the angular momentufy, in the energy con-
constant values of the coordinatesndd. The value of the Stantto obtain
# angle at collision implies that one of the principal moments

x[1 + cos(20) cos(203 — 20)] .

of inertia becomes zero. These collisions are defined by the E = g [RQ + R? (92 + a2 cos2(29))}
equations )
. < o - _ P * /]
cos(260) cos(20; — 20) 1 LY V*(o,0) _ (30)
21 R2 R

whené = 7 /2 mod(w) ando = o; mod(w), o; being one of
the previous defined constants, or wher= 0 mod(w) and
o = o0; + m/2 mod(w). We call theser; angles the collision
angles.

We compute also the kinetic energy as a function of th
new coordinates, it becomes

The Euler and Lagrange cases are obtained when the co-
ordinatess andd are constants of motion, then the previous
dwo equations (25) and (30) become identical to the equations
of motion for the elliptic two body relative motion in terms
of the radiusk and the true anomaly, namely

K= % R%+ R%(6° + 62 — 2 sin(20)64) + 1&2)} . (24)

Py = pR*y, (31)
3. Equations of motion
and
The equations of motion follow from the Lagrange equations
; : : P} V*(0,0)
derived from the LagrangiaR’ — V' as presented in any stan- E=Fpry v _ 9,7) (32)
dard text of Mechanics [20]. 2 2uR? R
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For the Euler case the coordingtés chosen equal to 0
or /2 and therv is a constant that results from the equation

2
p
(@ p*r ¢pP )| ¢ | =0, (35)
2
whereC' is the matrix
mMo—ms —(ma+ms) mo+ms
C= ms-+mq ms3—mq —(m3—|—m1) . (36)
—(m1+mz2) mi+mso mi—ms

The equation (35), obtained for the Euler case, is inter-
esting not only because it is one for the three Euler cases, but
because it gives also tifeando coordinates for the Lagrange
cases, for the collision angles, and for fulfill the condition for
equal moments of inertia.

5. Saturn-Janus-Epimetheus dynamics

Our study of the Saturn-Janus-Epimetheus dynamics rest on
FIGURE 1. Euler case. Typical elliptic trajectories and two simul- numerical integrations of the equations of motion in our co-
taneous positions on a straight line. The center of mass is at th@rdinates. The first integration produced an orbit that was
intersection of the two stright lines. very close to a circular orbit in the pold and coordi-
nates with major perturbations in the neighborhood of the
encounter which occurs every four years. The following anal-
) ysis was developed in parallel to complete the numerical out-
put.

Based on numerical integration of the Three-Body Prob-
lem in these coordinates we [5] look the Janus Epimetheus
motion around Saturn as an adiabatic motion perturbation of
the Euler and the Lagrange cases. The fast motion is an ellip-
tic motion for theR andy coordinates as itis in the Euler and
Lagrange cases. The slow motion occurs for the coordinates
# ando, that were constants in the Euler and Lagrange cases
and now are assumed to vary slowly.

This hypothesis is related to the observed two time scales
in the actual motion of these two Saturn’s moons. One is a
fast revolution of the moons around Saturn with almost the
same period of 2/3 of a day. The second is the slow rela-
tive approach of the two moons every 4 years, producing an
FIGURE 2. Lagrange case. Typical elliptic trajectories and two si- interchange of relative positions and velocities.
multaneous positions on an equilateral triangle. The center of mass  The two particles have almost the same radius of 151450
is at the common focus. km with a difference oft50 km. We write

In particular the orbit for these coordinates is the ellipse g =149, (37)

A

Py uvr® v\ 2 with 6 = £50/151450 = £+1/3000. These two values faf
R~ P, + \/ 2Bp+ ( P, ) cos( =o),  (33)  remain after an encounter that happens each 4 years, &vhen

changes of sign between these two values. Forgetting the en-

wherey) is a constant of integration. counter for a while, most of the time the two particles move in
The equations of motion for the two coordinateandf  the combination of the fast elliptic motion of the coordinates
give for the Lagrange case the constant values R andv, and the slow motion of the other two coordinates
that we study now.
o=0, cos(20)=— Va2 =3 . (34) Since the masses of Janus and Epimetheus are smaller
’ @ than the mass of Saturn by a factorl®f*, we have some
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simplifications (for example; = o2 + 7/2), hence the ratio
of the distances andr is given by

1 — cos(203 — 20) cos(26)
\/ \/1 + cos(203 — 20) cos(26) (38)

From these two equations it follows to first ordetin

15708, 0.16985
Binary collision

1.17306, 0
Lagrange

1.96854, 0
Lagrange

ma—mg maimsg

cos(203—20) cos(20)= (39)

m2+m3 (m2+m3)2 ’

. . . anus and Epimetheus, equal distance from Saturn
The slow motion occurs very near this curve in th@ plane J P d

represented in Fig.3, that was drawn fore= 0. This curve
crosses the constant values corresponding to binary collision
one Euler case, and two Lagrange cases. The curve matche
the condition for equal distance to Saturn of the two moons.
The actual motion happens on two parallel curves very near
the previous one, forming a horseshoe with the two ends
pointing to the binary collision point.

The slow motion is an adiabatic motion [21] of the two
coordinatesd and 0. We assume the adiabatic hypothesis
which implies the conservation of the actidrof the elliptic ~ FiIGure 3. Central curve for the motion of theandd coordinates

curveinthe 6/c plane

Euler
1.5708, -0.77099

motion, that is equal to [22] of Janus and Epimetheus slow dynamics.
J = Vv ) (40) The adiabatic hypothesis demands the invariance of the
/_% V* function in the slow motion of the coordinatésando.

We turn now to study this function of those coordinates. We
We repeat the computation of the invariance of this action aegin by writing it in terms of the distancesg, r
was made by Becker [23] for the pendulum with a slow mo-
tion of the length; but here for the case of the elliptic motion. -« _ < 1 + 1 4 1 >
The differential of this action, assuming a slow motion of the mip  Moq  Mar
parameterd ™ and £ is

p2 q2 7"2
v v < Vi B g (46)
dJ = —— (dV" — =dE ) . (41) my o mg  mg

2p
and we concentrate on the two factors

The Hamiltonian of the elliptic movement is written as
1 1 1 2 2 2
v ( +—+ ) Z T @

H=K- iz (42) mip  m2q  msr mi  mz M3
We changéd’™ by the action of a forcé’ on both of them the terms divided by the massare smaller
by a factor ofl0~? compared with the other terms. Neglect-
OH 1 14 . :
F=- =—=— . (43) ing the smaller terms for a while we study the larger ones
ov: R Vv
The last expression was written to take the time average force 1 1 e 2
in one period of the elliptic motion. According to the Virial (m W) oo, + e (48)
theorem the time average in a period of the potential energy 24 3 2 3
Is equal t2 £, that is a function ot = ¢/r namely
1 2F
Fy=——-(V)=——. 44
(F) == V) =17 (44) R S
— : f@O=\—+— |\ =+ — (49)
The adiabatic work to chang8/* is moz M3 mo M3
dE = —(F)dV* = gdv* ) (45) This function has a minimum in = 1 since
Therefore substitution into (41) results in the actidrre- 2f(2)f'(2) = _ 2 <1 + 1> (23 —1). (50)
maining invariant during this adiabatic change. mamsz® \maz - ms

Rev. Mex. 5. 55 (2) (2009) 97-105



102 A. BENGOCHEA AND E. PNA

According to (37), the system moves near this minimumto obtain
z = 1+ ¢, hence we approximate the functigiiz) by a
Taylor expansion that to second ordevigives

N 2
g) + 62 + 52 cos?(26)

1 1\*? 3 )
2= —+—) + 5% (51
/e (m2 ms) 2y/mams(ma+ms)!/? &0 _ _8E° ( + 2Ep3’> (57)
But now we see that becauéés of the order of 1/3000, the pv2 pv=2

corrections to the first term are of the order of the neglectet\jNhere the over line denotes the above substitution
terms. These terms are now calculated assuminggtkat
since the corrections are of higher order. We consider then

the factors X(R) = X[-V"/(2E)]. (58)

We introduce the hypothesis, confirmed by numerical in-

p? . . . .
14 1 my (52) tegration that the slow variables satisfy the equation
mip | muip 7> r2
maq msr Mo + ms

0% + 5% cos?(20) = \? (constant) (59)
that are approximated by
where)? is a constant of the order of the quantity on the right
14 1 (1 n w2> (53) hand side of (57). Assuming the equations (39) and (59) hold
Mmoo g 2 )7 for the variablesr andf, they lead to the time dependence of
these slow variables
wherew = p/q. The function in parenthesis has a minimum

atw = 1, (p = ¢) where it has the value 1.5. For Janus and sin(26) = £v/1 — k2 sin(w't)
Epimetheusw has the maximum value at = 2 when the

function is equal to 2.5. The function becomes important at .

the smaller values ob near the valud /12 when the func- tan(203 — 20) = vi—k cos(w't) (60)
tion become larger than 12 at the encounter. To low order in

small quantities the functiol’* becomes

mo ms

wherew’ is
1/2
V* :GmlQOS\/ﬁ <1+1) |:1+1 w/:2A/\/ 1—]{}2’ (61)
mo ms mo ms
3 1 ( 1 w2 and k is the constant on the right hand side of (39)
2

0+ — =+ )] . (54) B

2(7”2 + mB) mp \w 2 k= COS(20'3 B 20_) COS(QH) _ w
We confirm the hypothesis th&t* is almost a constant by M2 T ms3
verifying the adiabatic hypothesis that makes constant the an- Y LU 5. (62)
gular part of the potential energy. According to (38) if we (my +ms)

assumev* is a funption ofq/r, then itis a functional pf the  Numerical integration agrees up to a maximun2f of the
function (39) that s almost constant during the motion. The, qjicted values (60) of theando coordinates if one tunes
correction term iny” is very small. Thew-dependent term 4,0/ frequency to the observed value near 4 years, that we
is the smallest except at the encounter when it grows to higy 4k jt is half the value of the complete journey. The ampli-

hlghehst \lla“(’f and S|mbulthangouslfy ﬂgoe; to zer(()j: . tudes of these variables fit very well the numerical integration
The leading time behavior of the and¢ coordinates is 5 65 Small discrepancies arises at the encounter.

p;edicted satisfactorjly as fﬁllo;/vs. We write the equation (30) Comparing experimentalersusnumerical evidence give
of energy conservation in the form a value for\? near of the right hand side of (57)

N 2
R 2 2 2 8E3 2EP;
(R) + 0 + 67 cos”(20) 22 = e 1+ MV*g ) (63)

— % |:2ME + Py <2“V _ P‘b)] (55)  The sign of the time dependent quantities in (60) has been
p*R R Py R fixed from comparison with the numerical integration. The

We take the average on the right hand side over the fast varfunction of o is the same for any time in the 8 years pe-

able R making the substitution of the averageby riod. Both signs are included in thén 26 function because
a change of sign occurs in the neighborhood of the encounter
R—s Vi (56) at the closest approach of Janus and Epimetheus each four
2F years.
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Upon comparing the frequency’ predicted by (61) Now we introduce a new independent variabldefined
and (63) with the frequency of the elliptic motion by

Koo
_QF3 dt = — R“dt. 70
Y=y 3%7 (64) Py 7o)
)%

Variabler could be identified with the angtg if the quantity

we obtain & could be equal to zero.
W\ 2 o2 We obtain the equation
<w> Tk ©9 o> 2 )
(> + (> cos”(20) = A=, (71)
which has been written in terms of the eccentricity of the el- dr dr
liptic motion that obeys the equation that is similar to the equation (59). Assuming again that ex-
_9EP2 pression (62) remain constant we deduce the couple of equa-
1—¢e2 = % 2‘” ) (66) tions that are similar to the previous (60)
/’L *
For the eccentricity we have the expression sin(26) = £/ 1 — k2sin(Qr),
wl
= /(1 —k2). VI— k2
T W (1-k?) (67) tan(203 — 20) = — cos(Q7), (72)

that predicts a value of the eccentricity of the ellipse near . o defined by
2-1074, that is one order of magnitude smaller that the com-
puted best values obtained by Spitateal. [5] for the eccen- O—o A (73)
tricities of Janus and Epimetheus. The Spittlal. compu- Vi

tation takes in account the influence of the Sun, Jupiter and

many of the moons of Saturn, and deviates essentially from halilis the a”ﬁ'ogouﬁ to (613'_ ¢ _ P
the point of view in this paper. ext we obtain the coordinat® as a function ofr. To

this end we write the equation of energy conservation in terms
of the new independent variable, and using as is usual in the

6. Perturbing the circular solution Kepler problem the change of variable
Most of the results presented in the previous sections were " — 1 (74)
suggested and confirmed on the basis of a first numerical in- R’

tegration of the equations of motion. However the elliptic,,e have
motion associated to the fast variabl@sand+) in this first

integration was nearly circular with an eccentricitylof 5. du\* o> do\? 9 2
Some of the previous results are true only for this partic- <dr) = (dr> + (dr> cos™(20)| u

ular numerical integration. Nevertheless it is easy to find the

changes one must to attain with a similar solution but with an + 2uV" + 2pE . (75)

eccentricity small, of the order ab—*. P} P}

Starting from the equations of motion (27) and (28) we . I . .
substitute the) dependence by using the conservation of an_Maklng the substitution of equation (71) in the square bracket

gular momentum and then multiply the first ®#6 and the we obtain
second by%¢4, and add the two resulting equations to obtain du\? 2uV* 2uFE
y}z gdq d?;) =—[1+A*]u*+ l;i u+ ;1/2) : (76)
LR RIG2 1 52 cos?(20)] = RE V™. (68)
dt 2 dt If A were zero, the previous equation could be the differen-

This equation shows that assumi¥ig = constant, to obtain tial equation for the orbit of the Kepler motion in terms of the
a constant value of? + &2 cos?(26), one should have also true anomalyr. Solution to this equation is similar, although
R = constant. Suppressing this last restriction but conservthe orbit now is a precessing ellipse in the polar coordinates
ing V* = constant, which is confirmed by a numerical inte- R andr. Itis also an eIIipse if the polar angle is defined as
gration with initial conditions driven to an eccentricity non V1 + A?7 as is shown next:
zero, we are led to the result

) \/ 2

pve

1
A%P? U= 2
¥ (69) R Pi1+A

2uFE N p2V2
(1 +A2) " PI(L+A2)?

9.2 + d2 COSQ(29) = W 5

X CoS (\/ 14+ A2(r — 7'0)) (77)

whereA is a constant of integration.
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herer, is an integration constant. Comparing with (33) we7. Conclusions

note the constants are modified by the transformation
Our coordinates seem suitable for formulate important cases

Py — Py 1+ A2, (78)  of motion of the Three-Body Problem.
In the square determined by the coordinatesnd 6,

This ellipse has been compared with a numerical integrathe binary collisions are determined by a finite number of
tion having the qualitative expected behavior for the Janugoints of this square with coordinates determined only by
and Epimetheus dynamics. The initial conditions were sethe masses of the three particles. The Lagrange and Euler
lected near the Euler collinear configuration. The numericatases of motion are also determined as functions of the three
data fit very well these equations, in particular the mean ramasses by a finite number of points in this square.
dius and eccentricity of the ellipse are very close to both the  The elliptic motion of Janus and Epimetheus is repre-
numerical integration and to the theoretical value pl’ediCte%ented in this paper by a corresponding elliptic motion of the
by equation (77); the mean radius is as usual coordinatesk andy corresponding to a small adiabatic per-
Vv turbation of the Euler and Lagrange cases of motion, where
— (79)  now the coordinates and® move slowly on a curve in the
2F . L BT

o /0 square. This last motion is periodic in these two co-
whereas the eccentricity is modified by the transforma-ordinates with the frequency of the encounter, and the time

a = —

tion (78) behavior of the slow coordinates is predicted satisfactorily.
To compute this behavior of the slow coordinates we fol-
. \/1 N 2EP;(1+ A?) (80) low the data of a numerical integration that allow to deter-
- uV*2 ’ mine two approximate constants of motion for those coordi-

nates. The assumption that in some equatiBrehould be

The cyclic variable) is now expressed in terms of the replaced by the constant valud’* /(2E) is consistent with
independent variable. From the conservation of angular moge neglect of the tern(nR/R)2 and with a first numerical
mentum (25) we deduce the differential identity integration.

In this paper we find that the angular part of the potential
energy represented by the functidii is almost a constant.
That the minimum of this function is the Lagrange case with
three equal distances between particles. That the correction
terms allowed by the experiment are of the ortler®. Based

dy = dt + sin(26)do . (81)

Substitution in it of the function8 ando as functions of
7, according to (72), produces the derivative

dyp EQ (1 -k?) Sin2(QT) on this reality we deduce the behavior of the four coordinates:
dr 91— (1 — k2)sin?(Qr) (82)  ther andy move in a precessing ellipse with an average ra-
dius determined as usual by the energy and the angular part
this is trivially integrated to of the potential energy. For the eccentricity we discover a
O 1 perturbation of the classical terms by the slow terms. The
Y=TF 5T + 3 tan~! (ktan(Q7)) . (83) slow dynamics has been described in these conclusions with

small corrections that take into account the eccentricity up
In this form we have written the four coordinates in terms ofthe order10—3.
the new variable-. The difficult point in this study is the behavior at the en-
The quantities) andr are near the same. This is con- counter. We fill this gap only by a numerical integration as
firmed numerically by plotting and computing the previouswas made by other authors [6-16]. We have noted however
equation. The numerical integration agrees very well withthe change of sign of theé derivative at the encounter and
the predicted equations of this section. the opposite behavior of the correction terms in the angular
This solution is based on the assumptions that the poterpart of the potential energy at the encounter: one term be-
tial energy is constant and the slow variables move on theoming important when the other term vanishes. The use of
curve (39). Both conditions are nearly satisfied by the nuthe Hill model as was developed by other authors requires
merical solution and confirmed by the theoretical and experalso of a numerical integration and no similar approach was
imental analysis. undertaken in this paper.
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