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The initial value problem method for time-dependent harmonic oscillator
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The initial value problem method is formulated to calculate the propagator for time- dependent harmonic oscillators. The method is based
on finding the initial position operator from Heisenberg equations. The investigated models in this paper are the damped harmonic oscillator,
the harmonic oscillator with strongly pulsating mass, and the harmonic oscillator with mass growing with time. The comparison of the initial
value problem method with Feynman path integral and Schwinger method is also described.

Keywords: The initial value problem method; propagator; time-dependent harmonic oscillators.

PACS: 03.65.-w

1. Introduction

The propagators have application in many areas of physics
such as quantum statistical mechanics, condensed matter
physics, polymer physics, and economics [1]. In non-
relativistic quantum mechanics, the propagator describe the
transition probability amplitude for a particle to travel from
initial space-time configuration to final space-time configura-
tion. The most popular methods to calculate the propagator
are the Feynman path integral [2] and the Schwinger method
[3-6]. However, both methods have some mathematical diffi-
culties. The aim of this paper is to present the simple method
called the initial value problem method to calculate the non-
relativistic propagator.

The initial value problem method begins with the as-
sumption that the propagator for the quadratic potentials can
be written as [2]

k(x, t; x0, 0) = φ(t) exp
[

i

h
A(x, t;x0, 0)

]
, (1)

where the pre-exponential factorφ(t) is the pure function of
time andA(x, t; x0, 0) is the two-point characteristic func-
tion.

The main idea of the initial value problem method con-
sists in the following steps.

(1) The first step is solving the Heisenberg equations for
x̂(t) andp̂(t),

i~
dx̂(t)

dt
= [x̂(t), Ĥ], i~

dp̂(t)
dt

= [p̂(t), Ĥ], (2)

and writing the solution for̂x(0) only in terms of the
operatorŝx(t) andp̂(t).

(2) Next, we substitute the propagator in Eq. (1) into an
eigenvalue equation of

x̂(0)k(x, t; x0, 0) = x0k(x, t;x0, 0). (3)

(3) Solving the differential equation forA(x, t; x0, 0), we
obtain the two-point characteristic function.

(4) The final step is findingφ(t) by substituting the ob-
tained propagator form step (3) into the Schrödinger
equation

i~
∂k(x, t;x0, 0)

∂t
= Ĥ(t)k(x, t; x0, 0). (4)

The problem that use to demonstrate the application of
the initial value problem method is the time-dependent har-
monic oscillator described by the Hamiltonian [7]

H(t) =
p2

2m(t)
+

1
2
m(t)ω2x2, (5)

wherem(t) is the time-dependent mass. The time-dependent
massm(t) of this paper can be divided to the three system.

The first system is the damped harmonic oscillator or the
Caldirola-Kanai oscillator, [7-9] which the time-dependent
mass can be written as

m(t) = mert, (6)

wherer is the damping constant coefficient.
The second system is the harmonic oscillator with

strongly pulsating mass, [7,10] which the time-dependent
mass can be described by

m(t) = m cos2 vt, (7)

wherev is the frequency of mass.
The third system is the harmonic oscillator with mass

growing with time, [4,11] which the time-dependent mass has
the law as

m(t) = m(1 + αt)2, (8)

whereα is a constant parameter.
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In Sec. 2, the propagator for a damped harmonic os-
cillator is derived. The calculation of the propagator for a
harmonic oscillator with strongly pulsating mass is shown in
Sec. 3. In Sec. 4, the evaluation of the propagator for a har-
monic oscillator with mass growing with time is illustrated.
Finally, the conclusion and discussion are described in Sec. 5.

2. The initial value problem method for a
damped harminic oscillator

This section is the calculation of the propagator for a damped
harmonic oscillator or the Caldirola-Kanai oscillator [7-9]
described by the Hamiltonian operator

Ĥ(t) = e−rt p̂2

2m
+

1
2
mω2ertx̂2. (9)

By applying the Heisenberg equation in Eq. (2) to the
Hamiltonian operator in Eq. (9), the position operatorx̂(t)
can be written as

x̂(t) = e−rt cosΩtx̂(0) +
re−rt

2Ω
sinΩtx̂(0)

+
e−rt

mΩ
sin Ωtp̂(0), (10)

wherex̂(0) andp̂(0) are the position and momentum opera-
tors respectively att = 0, andΩ2 = ω2 − (r2/4)

The momentum operator̂p(0) = mert ˙̂x(t) can be written
by using Eq. (10) as

p̂(t) = −mΩe
rt
2 sinΩtx̂(0)− mr2

4Ω
e

rt
2 sinΩtx̂(0)

+ e
rt
2 cosΩtp̂(0)− r

2Ω
e

rt
2 sinΩtp̂(0). (11)

The next step is expressinĝx(0) only in terms of̂x(t) and
p̂(t) by eliminatingp̂(0) from Eq. (11) with the using of Eq.
(10) to obtain

x̂(t) = e
rt
2 cos Ωtx̂(t)− re

rt
2

2Ω
sinΩtx̂(t)

− sin Ωt

mΩ
e−

rt
2 p̂(t). (12)

The eigenvalue equation for the propagator in Eq. (3) can
be written in coordinate representation as

(
xe

rt
2 cosΩt− x

r

2Ω
e

rt
2 sinΩt +

i~ sinΩte−
rt
2

mΩ

× ∂

∂x

)
K(x, t;x0, 0) = x0K(x, t; x0, 0). (13)

Substituting propagator assumed in Eq. (1) into Eq. (13),
the result is(

e
rt
2 cosΩt− r

2Ω
e

rt
2 sinΩt

)
x

− sinΩte−
rt
2

mΩ
∂A(x, t; x0, 0)

∂x
= x0. (14)

Solving Eq. (14) to findA(x, t;x0, 0), the result is

A(x, t; x0, 0) =
1
2
mΩcotΩtertx2 − 1

4
mrertx2

−mΩcsc Ωte
rt
2 xx0. (15)

So, the propagator can be written as

K(x, t;x0, 0) = φ(t) exp

[
i

2~

(
mΩcotΩtertx2

− 1
2
mrertx2 − 2mΩ cscΩte

rt
2 xx0

)]
. (16)

The next step is substituting the propagator in Eq. (16)
into the Schrodinger equation for a damped harmonic oscil-
lator

i~
∂K(x, t; x0, 0)

∂t
= −e−rt ~2

2m

∂2K(x, t; x0, 0)
∂x2

+
1
2
mω2x2ertk(x, t;x0, 0), (17)

to get the differential equation forφ(t) as

i~
(

∂φ(t)
∂t

)
=

1
2
mΩ2 csc2 Ωtx2

0φ(t)

− i~Ω
2

cotΩtφ(t) +
i~r
4

φ(t). (18)

The next step is solving Eq. (18) to obtain the pre-exponential
functionφ(t) as

φ(t) =
Ce

rt
4√

sinΩt
exp

(
imΩ
2~

cot tΩtx2
0

)
, (19)

whereC is a constant. Substituting Eq. (19) into Eq. (16),
the propagator becomes

K(x, t; x0, 0) = C

(
e

rt
2

sinΩt

) 1
2

exp

{
imΩ
2~

×
[
(ertx2 + x2

0) cot Ωt− 2xx0

sinΩt
e

rt
2

]}

× exp

{
− imr

4~
ertx2

}
. (20)

After applying the initial condition

lim
t→0+

K(x, t;x0, 0) = δ(x− x0),

the constantC is

C =

√
mΩ
2πi~

. (21)
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So, the propagator for a damped harmonic oscillator can
be written as

K(x, t;x0, 0) =

(
mΩe

rt
2

2πi~ sinΩt

) 1
2

× exp

{
imΩ

2~ sinΩt

[
(ertx2 + x2

0) cosΩt− 2xx0e
rt
2

]}
,

× exp

{
− imr

4~
ertx2

}
, (22)

which agree with the result of S. Pepore andet. al. [7] calcu-
lated by Feynman path integral.

3. The initial value problem method for a
harminic oscillator with strongly pulsating
mass

The Hamiltonian operator for a harmonic oscillator with
strongly pulsating mass can be written as [7]

Ĥ(t) =
p̂2

2m cos2 vt
+

1
2

cos2 vtω2x̂2. (23)

By solving Heisenberg equation, the position operator
x̂(t) becomes

x̂(t) = sec vt cosΩtx̂(0) +
sec vt

mΩ
sinΩtp̂(0). (24)

The momentum operator̂p(t) = m cos2 vt ˙̂x(t) can be
expressed as

p̂(t) = −mΩ cos vt sin Ωtx̂(0) + mv sin vt cosΩtx̂(0)

+ cos vt cosΩtp̂(0) +
v

Ω
sin vt sinΩtp̂(0). (25)

By eliminating p̂(0) from Eq. (25), the initial position
operator̂x(0) is

x̂(0) = cos vt cosΩtx̂(t)

+
v

Ω
sin vt sinΩtx̂(t)− sec vt

mΩ
sinΩtp̂(t). (26)

So, we can write the eigenvalue equation for the propaga-
tor as ((

cos vt cos Ωt +
v

Ω
sin vt sinΩt

)
x

+
i~

mΩ
sec vt sinΩt

∂

∂x

)
K(x, t; x0, 0)

= x0K(x, t; x0, 0). (27)

Substituting the propagator in Eq. (1) into Eq. (27), the
differential equation forA(x, t;x0, 0) can be written as

(
cos vt cosΩt +

v

Ω
sin vt sinΩt

)
x− sec vt

mΩ
sinΩt

× ∂A(x, t; x0, 0)
∂x

= x0. (28)

Solving Eq. (28) to findA(x, t; x0, 0), it can be shown
that

A(x, t; x0, 0) =
1
2
mΩcos2 vt cotΩtx2

+
1
2
mv sin vt cos vtx2

−mΩcos vt cscΩtxx0. (29)

So, the propagator becomes

K(x, t; x0, 0) = φ(t) exp

[
i

2~

((
mΩcos2 vt cotΩt

+ mv sin vt cos vt
)
x2

− 2mΩcos vt cscΩtxx0

)]
. (30)

Substituting the propagator in Eq. (30) into the
Schrodinger equation for a harmonic oscillator with strongly
pulsating mass

i~
∂K(x, t;x0, 0)

∂t
= − sec2 vt

~2

2m

∂2K(x, t;x0, 0)
∂x2

+
1
2
m cos2 vtω2x2K(x, t; x0, 0), (31)

it can be shown that

i~
(

∂φ(t)
∂t

)
=

1
2
mΩ2 csc2 Ωtx2

0φ(t)

− i~
2

(Ω cot Ωt + v tan vt)φ(t). (32)

After solving Eq. (32), the pre-exponential functionφ(t)
can be written as

φ(t) = C

√
cos vt

sinΩt
exp

[
imΩ
2~

cotΩtx2
0

]
, (33)

whereC is a constant. Combining Eq. (33) with Eq. (30),
the propagator can be written as

K(x, t;x0, 0) = C

√
cos vt

sinΩt

× exp
[ i

2~
(mΩcot Ωt(cos2 vtx2 + x2

0)

− 2mΩcos vt cscΩtxx0)
]

× exp
[ imv

2~
sin vt cos vtx2

]
. (34)
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To find the constantC, we apply the initial condition of
the propagator

lim
t→0+

K(x, t; x0, 0) = δ(x− x0). (35)

The constantC becomes

C =

√
mΩ
2πi~

. (36)

So, the propagator for a harmonic oscillator with strongly
pulsating mass is

K(x, t;x0, 0) =

√
mΩcos vt

2πi~ sinΩt
exp

[ i

2~
× (mΩcotΩt(cos2 vtx2 + x2

0)

− 2mΩcos vt cscΩtxx0)
]

× exp
[ imv

2~
sin vt cos vtx2

]
, (37)

which is the same result as deriving by Feynman path inte-
gral [7].

4. The initial value problem method for a
harminic oscillator with mass growing with
time

The last system to investigate the initial value problem
method is the harmonic oscillator with mass growing with
time expressed by the Hamiltonian operator

Ĥ(t) =
p̂2

2m(1 + αt)2
+

1
2
m(1 + αt)2ω2x̂2. (38)

By solving the Heisenberg equation, the operatorx̂(t) can
be written as

x̂(t) =
cos ωt

(1 + αt)
x̂(0) +

a sin ωt

ω(1 + αt)
x̂(0)

+
sin ωt

mω(1 + αt)
p̂(0). (39)

The momentum operator̂p(t) = m(1 + αt)2 ˙̂x(t) can be
expressed as

p̂(t) = mα cosωtx̂(0)−mω(1 + αt) sin ωtx̂(0)

+ mα(1 + αt) cos ωtx̂(0)− mα2

ω
sin ωtx̂(0)

+ (1 + αt) cos ωtp̂(0)− α

ω
sin ωtp̂(0). (40)

Eliminating p̂(t) from Eq. (40) by using Eq. (39), the
initial position operator is

x̂(0) =
[
(1 + αt) cos ωt− α

ω
sin ωt

]
x̂(t)

− sin ωt

mω(1 + αt)
p̂(t). (41)

The eigenvalue equation for the propagator in Eq. (3) can
be shown that

(
x
[
(1 + αt) cos ωt− α

ω
sin ωt

]
+

i~ sin ωt

mω(1 + αt)
∂

∂x

)

×K(x, t;x0, 0) = x0K(x, t; x0, 0). (42)

The next step is substituting the propagator in Eq. (1) into
Eq. (42) to obtain

x
[
(1 + αt) cos ωt− α

ω
sin ωt

]
− sin ωt

mω(1 + αt)

× ∂A(x, t; x0, 0)
∂x

= x0. (43)

By solving Eq. (43), the answer is

A(x, t;x0, 0) =
1
2
m(1 + αt)[ω(1 + αt) cot ωt− α]x2

−mω csc ωt(1 + αt)xx0. (44)

So, the propagator becomes

K(x, t; x0, 0) = φ(t) exp
[ i

2~
(m(1 + αt)x2

× [
ω(1 + αt) cot ωt− α

]

− 2mω csc ωt(1 + αt)xx0)
]
. (45)

The next step is substituting the propagator in Eq. (45)
into the Schrodinger equation for a harmonic oscillator with
mass growing with time

i~
∂K(x, t; x0, 0)

∂t
= − ~2

2m(1 + αt)
∂2K(x, t; x0, 0)

∂x2

+
1
2
m(1 + αt)2ω2x2K(x, t; x0, 0), (46)

to obtain the differential equation forφ(t) as

i~
∂φ(t)

∂t
=

1
2
mω2 csc2 ωtx2

0φ(t)

− i~
2(1 + αt)

(ω(1 + αt) cot ωt− α)φ(t). (47)

The next step is solving Eq. (47) forφ(t) as

φ(t) = C

√
1 + αt

sinωt
exp

(
imω

2~
cot ωtx2

0

)
, (48)

whereC is a constant. Substituting Eq. (48) into Eq. (45),
the result is

K(x, t; x0, 0) = C

√
1 + αt

sin ωt
exp

[ i

2~
([mω(1 + αt)2

× cot ωt−mα(1 + αt)]x2 + mω cot ωtx2
0

− 2mω csc wt(1 + αt)xx0)
]
. (49)
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The last step is finding the constantC by using

lim
t→0+

K(x, t;x0, 0) = δ(x− x0), (50)

to get

C =
√

mω

2πi~
. (51)

Finally, the propagator for a harmonic oscillator with
mass growing with time can be written as

K(x, t;x0, 0) =
[
mω(1 + αt)
2πi~ sin ωt

] 1
2

exp
[ i

2~

× (
[mω(1 + αt)2 cot ωt−mα(1 + αt)]x2

+ mω cot ωtx2
0 − 2mω csc ωt(1 + αt)xx0

)]
, (52)

which agree with the calculation of S. Pepore and B. Sukbot
by Schwinger method and Feynman path integral [4].

5. Conclisions

We have successfully calculated the exactly propagator for
three systems of time-dependent harmonics oscillators. The
method in this paper is simple. It requires only solving the
Heisenberg equation for̂x(t). This method reduce the solv-
ing second order differential equation of Schrodinger equa-
tion to solve the first order differential equation of the pre-
exponential factorφ(t).

The initial value problem method in this paper have
some similarity with the Schwinger method [3-6] in solving
Heisenberg equation but the Schwinger methods requires the
knowledge of commutator algebra for [x̂(0), x̂(t)]. The cal-
culation of propagator for Feynman path integral have some
mathematical difficulties in deriving the classical action and
in time-slicing process [2].

We can conclude here that the initial value problem
method may be the new techniques to calculate the non-
relativistic propagator for the quadratic potentials.
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