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The initial value problem method for time-dependent harmonic oscillator
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The initial value problem method is formulated to calculate the propagator for time- dependent harmonic oscillators. The method is based
on finding the initial position operator from Heisenberg equations. The investigated models in this paper are the damped harmonic oscillator,
the harmonic oscillator with strongly pulsating mass, and the harmonic oscillator with mass growing with time. The comparison of the initial
value problem method with Feynman path integral and Schwinger method is also described.

Keywords: The initial value problem method; propagator; time-dependent harmonic oscillators.
PACS: 03.65.-w

1. Introduction (3) Solving the differential equation fot(z, t; ¢, 0), we

o . obtain the two-point characteristic function.
The propagators have application in many areas of physics

such as quantum statistical mechanics, condensed matter(4) The final step is finding(¢) by substituting the ob-
physics, polymer physics, and economics [1]. In non- tained propagator form step (3) into the Sadinger
relativistic quantum mechanics, the propagator describe the equation

transition probability amplitude for a particle to travel from

initial space-time configuration to final space-time configura- mw = H(t)k(z,t; x0,0). (4)
tion. The most popular methods to calculate the propagator ot

are the Feynman path integral [2] and the Schwinger method L
[3-6]. However, both methods have some mathematical diffi- The problem that use to demonstrate the application of

culties. The aim of this paper is to present the simple methoHqe initial value problem method is the time-dependent har-

called the initial value problem method to calculate the non-monic oscillator described by the Hamiltanian [7]

relativistic propagator. P2 1
The initial value problem method begins with the as- H(t) = (D) + gm(t)w2$2» (5)
sumption that the propagator for the quadratic potentials can )
be written as [2] wherem(t) is the time-dependent mass. The time-dependent
; massm(t) of this paper can be divided to the three system.
k(x,t;x0,0) = ¢(t) exp {A(:z:, t; zo, 0)} , 1) The first system is the damped harmonic oscillator or the
h Caldirola-Kanai oscillator, [7-9] which the time-dependent
where the pre-exponential factoft) is the pure function of Mass can be written as
time andA(z, t; 2o, 0) is the two-point characteristic func-
tion.
The main idea of the initial value problem method con-
sists in the following steps.

m(t) = me", (6)

wherer is the damping constant coefficient.
The second system is the harmonic oscillator with

(1) The first step is solving the Heisenberg equations fOIstroneg pulsating mass, [7,10] which the time-dependent

() andp(?), mass can be described by
7 . H . m(t) = mcos® vt, )
im0 . i, w0 ., @ "
dt dt .
whereuv is the frequency of mass.
and writing the solution fot:(0) only in terms of the The third system is the harmonic oscillator with mass
operatorsi(t) andp(t). growing with time, [4,11] which the time-dependent mass has
the |
(2) Next, we substitute the propagator in Eq. (1) into an elawas
eigenvalue equation of m(t) = m(1 + at)?, 8)

2(0)k(z, t; 20, 0) = xok(z,t; 20, 0). () wherea is a constant parameter.
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In Sec. 2, the propagator for a damped harmonic os- Solving Eq. (14) to find4(z, ¢; 2o, 0), the result is
cillator is derived. The calculation of the propagator for a

harmonic oscillator with strongly pulsating mass is shown in Az, t; x9,0) = lmQ cot Qtetz? — }mre”xQ
Sec. 3. In Sec. 4, the evaluation of the propagator for a har- 2
monic oscillator with mass growing with time is illustrated. — mQcsc Qe zg. (15)

Finally, the conclusion and discussion are described in Sec. 5.
So, the propagator can be written as

2. The initial value problem method for a .

damped harminic oscillator K (z,t;20,0) = 6(t) exp [;ﬁ <mQ cot Qe 2
This section is the calculation of the propagator for a damped
harmonic oscillator or the Caldirola-Kanai oscillator [7-9] _ } .2 i rt
described by the Hamiltonian operator e 2miescte o | |- (16)
. 21 .
H(t) = e 2 —puerts?. ) The next step is substituting the propagator in Eq. (16)

2m 2 . ) . . .
By applying the Heisenberg equation in Eq. (2) to the:g:grthe Schrodinger equation for a damped harmonic oscil-

Hamiltonian operator in Eq. (9), the position operatdt)

can be written as maK(gc,t;me) 4 B OPK(x,t;20,0)
—rt 5, T ¢ a3
2(t) = e " cos Qt2(0) + TZQ sin Qt2(0) ot ) 2m Oz
- + §mw2x26”k(cc, t; z,0), a7)
+ & sinQtp(0), (10)
mi to get the differential equation fef(¢) as
wherei(0) andp(0) are the position and momentum opera-
tors respectively at = 0, and?* = w? — (r?/4) L (00() 1 o o
The momentum operatg(0) = me”tz(t) can be written i ot ) §mQ csc” Qtzo(t)

by using Eq. (10) as . ,
- @ cot Qo(t) + ”f{w). (18)

rt mr2 rt
p(t) = —mfe= sin Nz (0) — 0 e sin Qtz(0)

The next step is solving Eq. (18) to obtain the pre-exponential

+ e cos Qtp(0) — %e* sin Qtp(0). (11)  functiong(t) as
The next step is expressirg0) only in terms ot_fs(t) and Ce't imQ )
H(t) by eliminatingp(0) from Eq. (11) with the using of Eq. o(t) = Ve d T cottQdtzg ),  (19)
(10) to obtain st
. res whereC' is a constant. Substituting Eq. (19) into Eq. (16),
Z(t) = e cos QtE(t) — 50 sin Qti(t) the propagator becomes
sin Qt rt 1
- e 2 p(t). 12 T\’ i
ms) p(t) (12) K(x,t;xo,O)C< ,69 ) exp{zmQ
The eigenvalue equation for the propagator in Eq. (3) can sin {2 2h

be written in coordinate representation as
X

r 2 rt
(e"'2? + 23) cot Ot — el 6;‘| }

rt rt ihsin Qt -5 -
(me? cos Qt — az%e7 sin Qt + % sin Ot

o X exp { — —lz;; e”xQ}. (20)
X 8) K(z,t;x0,0) = 20K (x,t; 20, 0). (13)

x

Substituting propagator assumed in Eg. (1) into Eq. (13), After applying the initial condition

the result is 11%1+ K(z,t;19,0) = §(x — x9),
t—
rt T rt
El Ot — —e2 sin it
<e * cos o€ S )‘T the constan€ is
sin Qte= 7 0A(z,t; x0,0) ms)
. s Uy ) _ = . 21
mS oz o 14) ¢ 2mik @
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So, the propagator for a damped harmonic oscillator can  Solving Eq. (28) to findA(z, ¢; o, 0), it can be shown
be written as that

mQe? ’ 1
K(x,t;20,0) = | ——————— _— _ = 2 2
(z,t;20,0) <2mhsinﬂt> A(x, t; zo,0) 2chos vt cot Qtx

1
+ imv sin vt cos vix?

) Q rt
X exp {%Zglnm [(e”xz + 22) cos Ot — 217£E067:| },

— m$) cos vt csc Qtxxg. (29)
i
x eXp { an ¢ ° }’ (22) So, the propagator becomes
which agree with the result of S. Pepore atdal. [7] calcu- .
lated by Feynman path integral. K(z,t; 70,0) = 6(t) exp [227@ ((mQ cos2 vt cot Ot

3. The initial value problem method for a
harminic oscillator with strongly pulsating

mass — 2mfQ cos vt csc thmo)l . (30)

The Hamiltonian operator for a harmonic oscillator with
strongly pulsating mass can be written as [7]

+ muo sin vt cos vt) x2

Substituting the propagator in Egq. (30) into the

FI(t) _ P — + }COSQ vtw?i2. (23) SchroQinger equation for a harmonic oscillator with strongly
2mcos?vt = 2 pulsating mass
By solving Heisenberg equation, the position operator
#(t) becomes . OK(z,t;x0,0) o . h? O*K(x,t;20,0)
th———————= = —sec“Vt— —————

ot 2m o2

#(t) = secvt cos Qtz(0) + sec;))t sin Qtp(0). (24)
m

1
. + —mcos® vtw? s K (x,t; 29,0), (31)
The momentum operatgi(t) = mcos? vtz (t) can be 2

expressed as )
it can be shown that
p(t) = —mS cos vt sin Q& (0) + mo sin vt cos QtE(0)

. [ Op(t 1
+ cos vt cos Qtp(0) + % sin vt sin Qtp(0). (25) ih ( (gi )> = imQQ csc? Qtago(t)
By eliminatingp(0) from Eq. (25), the initial position ih
operatori(0) is - E(Q cot 2t + vtanvt)P(t). (32)

%(0) = cos vt cos Nz (t)
After solving Eqg. (32), the pre-exponential functiog)

t .
+ ZsinutsinQta(t) — " sinQtp(t).  (26)  can be written as
Q ms)
So, we can write the eigenvalue equation for the propaga- n im0
tor as o(t) = Cy/ c.os;;t exp [z;nh cot Qt:x%} , (33)
Sin

(( cos vt cos Qt + 2 sin vt sin Qt) T
Q where(' is a constant. Combining Eq. (33) with Eq. (30),

ih o the propagator can be written as
+ ——secvtsin Qta) K(x,t;20,0)
T

mS)
cos vt
= w9 K (x,t;20,0). (@7) K(x,t;20,0) = C sin Qt
Substituting the propagator in Eq. (1) into Eq. (27), the i . )
differential equation ford(z, ¢; z:o, 0) can be written as X exp {%(mﬂ cot t(cos™ viz” + 1)
5 t
( cos vt cos Qt + Y sinvtsin Qt):c o — 2mf2 cos vt csc th:o)}
Q mS)
Az, t; )
X 9A(@, t0,0) = 0. (28) X exp [@ sin vt cos vtxﬂ . (34)
oz 2h
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To find the constan’, we apply the initial condition of The eigenvalue equation for the propagator in Eq. (3) can
the propagator be shown that
1. K N = — . . .
. (x,t;20,0) = d(x — o) (35) x[(l + at) coswt — ® nwt] + ihsinwt 9
w mw(l + at) Oz
The constan’ becomes

x K(x,t;20,0) = 20K (x,t; 29,0). (42)
C = \/m (36)
2mih The next step is substituting the propagator in Eq. (1) into

So, the propagator for a harmonic oscillator with stronglyEd. (42) to obtain
pulsating mass is

a sin wt
x[(l + at)coswt — —sinwt| — ———
K(z,t;x0,0) = 7mﬂcosvt e {i . il + o)
BTN =N st O 126 dA(x, t; 20,0
~ ( s by L0y ) = 1. (43)

x (mQ cot Qt(cos® vtx? + a2) oz

By solving Eq. (43), the answer is
— 2mS2 cos vt csc thmo)} Y 9Fa. (43)
1
{imv . , Az, t;20,0) = im(l + at)[w(1 + at) cot wt — a]z?
X exp ST sin vt cos vtz }, (37)
— mw cscwt(l + at)xxo. (44)
which is the same result as deriving by Feynman path inte-
gral [7]. So, the propagator becomes
: _ i 2
4. The initial value problem method for a K{(,t;20,0) = ¢(t) exp [2h(m(1 +at)x
harminic oscillator with mass growing with x [w(1+ at) cotwt — a]
time

— 2mw cscwit(l + at)wxo)] . (45)
The last system to investigate the initial value problem

method is the harmonic oscillator with mass growing with  The next step is substituting the propagator in Eq. (45)

time expressed by the Hamiltonian operator into the Schrodinger equation for a harmonic oscillator with
P 1 mass growing with time
Ht)= ——— + ~m(1 t)2w?i2. 38
®) 2m(1 + at)? + Qm( +at) W (38) ihaK(a:,t;me) I O*K (z,t; 30,0)
By solving the Heisenberg equation, the operatej can ot 2m(1 + at) O
i 1

be written as . + —m(1 4 at)?w?2* K (z,t; 10, 0), (46)

R coswt asinwt 2

I(t) = =/ #(0) + ———=2(0) : : . .

(1+at) w(l+ at) to obtain the differential equation fei(t) as
sin wt
" 5 L O0P(t 1
+ mw(1 + ozt)p(o)' (39) ih Q;(t ) = imwQ esc” wtago(t)
The momentum operatgi(t) = m(1 + at)2i(t) can be b _
expressed as 72(1 ey (w(1 + at) cotwt — a)o(t). (47)
p(t) = macoswtz(0) — mw(l + at) sinwti(0) The next step is solving Eq. (47) fo(t) as
R ma? / '
+ ma(l + at) coswti(0) — sin wt(0) o(t)=C 1_+ at exp MY ot wtz? ),  (48)
w sin wt 2h
R a .
+ (1 + at) coswtp(0) — = sinwtp(0). (40)  whereC is a constant. Substituting Eq. (48) into Eq. (45),

Lo : the resultis
Eliminating p(¢) from Eqg. (40) by using Eq. (39), the

initi iti i 14+ at
initial position operator is K (2.t 29,0) = C +

exp [%h([mw(l + at)?

x cot wt —ma(l + at))z? + mw cot wta?

a sin wt
#(0) = [(1 + at) coswt — = sinwt| 2(t)
w

B #ﬁlt)ﬁ(ﬂ' (41) — 2mw csc wt(1 + ozt)xaco)] . (49)
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The last step is finding the constagitby using

lim K(z,t;x0,0) = d(z — x0), (50)

t—0t+
mw
C=\2min (51)

get

Finally, the propagator for a harmonic oscillator with

mass growing with time can be written as

K(z,t;x0,0) = [

mw(1l + at) H [ i
e exXp | =%
2mih sin wt 2h

x ([mw(l + at)? cotwt — ma(l + at)]z?

+ mw cot wtm% — 2mw cscwit(l + at)wxo)} , (52)

5. Conclisions

We have successfully calculated the exactly propagator for
three systems of time-dependent harmonics oscillators. The
method in this paper is simple. It requires only solving the
Heisenberg equation far(¢). This method reduce the solv-
ing second order differential equation of Schrodinger equa-
tion to solve the first order differential equation of the pre-
exponential facton(t).

The initial value problem method in this paper have
some similarity with the Schwinger method [3-6] in solving
Heisenberg equation but the Schwinger methods requires the
knowledge of commutator algebra fa¥(D), Z(¢)]. The cal-
culation of propagator for Feynman path integral have some
mathematical difficulties in deriving the classical action and
in time-slicing process [2].

We can conclude here that the initial value problem

which agree with the calculation of S. Pepore and B. Sukbomethod may be the new techniques to calculate the non-
by Schwinger method and Feynman path integral [4].
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