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The transformation of the wave functions induced by a given canonical transformation in the classical phase space,(qi, pi) → (Qi, Pi), is
considered. In the examples presented here, the kernel of the integral transform turns out to be essentiallyexp(iΛ/~), whereΛ(qi, Qi) is
defined byPidQi = pidqi + dΛ. In the case of the time evolution, which is a canonical transformation, the kernel of the transform is the
propagator, and is obtained directly by making use of the solution to the classical equations of motion.
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Se considera la transformación de las funciones de onda inducida por una transformación cańonica dada en el espacio fase clásico,
(qi, pi) → (Qi, Pi). En los ejemplos presentados aquı́, el núcleo de la transformada integral resulta ser esencialmenteexp(iΛ/~), donde
Λ(qi, Qi) est́a definida porPidQi = pidqi + dΛ. En el caso de la evolución temporal, la cual es una transformación cańonica, el ńucleo de
la transformada es el propagador, y se obtiene directamente haciendo uso de la solución de las ecuaciones de movimiento clásicas.

Descriptores: Funciones de onda; representación de coordenadas; transformaciones canónicas; propagadores.
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1. Introduction

In the Hamiltonian formulation of classical mechanics it is
convenient to make use of the canonical transformations,
which can mix the coordinates of the configuration space
with their conjugate momenta. A canonical transformation
preserves the form of the Hamilton equations and can sim-
plify the form of the Hamiltonian.

For example, the transformation

x = u + v, y =
c

eB
(pu − pv),

px =
1
2
(pu + pv), py =

eB

2c
(v − u), (1)

wheree, B, andc are constants, is canonical [1] (see below)
and when applied to the Hamiltonian of a particle of massm
and electric chargee moving on thexy-plane subjected to a
magnetic fieldB, perpendicular to this plane,

H =
1

2m

[(
px +

eB

2c
y

)2

+
(

py − eB

2c
x

)2
]

, (2)

yields the Hamiltonian

H =
pu

2

2m
+

mω2

2
u2 (3)

if ω = eB/mc, which corresponds to a one-dimensional har-
monic oscillator. One can convince oneself that these expres-
sions also make sense if the phase space coordinates are sub-
stituted by operators in the framework of quantum mechan-
ics and, therefore, the transformation (1) can be employed

to relate two quantum-mechanical systems corresponding to
the Hamiltonians (2) and (3). However, if we have the wave
functions for the stationary states of the second Hamiltonian,
we cannot simply replace the coordinatesu, v in the wave
functions according to Eqs. (1), since the resulting expres-
sions would depend on the coordinatesx, y and their conju-
gate momenta.

The relationship between wave functions is known from
the elementary formalism of quantum mechanics, namely

φ(Q1, . . . , Qn) =
∫
〈Q1, . . . , Qn|q1, . . . , qn〉

× ψ(q1, . . . , qn) dq1 · · · dqn, (4)

where|q1, . . . , qn〉 is a normalized common eigenket of the
operators q̂1, . . . , q̂n, with eigenvaluesq1, . . . , qn, respec-
tively, that is

q̂i|q1, . . . , qn〉 = qi|q1, . . . , qn〉, (i = 1, . . . , n), (5)

and

〈q′1, . . . , q′n|q1, . . . , qn〉=δ(q′1 − q1) · · · δ(q′n − qn), (6)

with a similar definition for|Q1, . . . , Qn〉. The eigenvalue
equations (5) are equivalent to thepartial differential equa-
tions

q̂i

(
Qj ,

~
i

∂

∂Qj

)
〈Q1, . . . , Qn|q1, . . . , qn〉

= qi〈Q1, . . . , Qn|q1, . . . , qn〉, (i = 1, . . . , n), (7)
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for the functions〈Q1, . . . , Qn|q1, . . . , qn〉, assuming that

〈Q1, . . . , Qn|P̂i|q1, . . . , qn〉

=
~
i

∂

∂Qi
〈Q1, . . . , Qn|q1, . . . , qn〉,

and the solution to these equations yields the required kernel
of the transform (4). (In the Hamiltonians (2) and (3),x, y,
u, andv are considered as Cartesian coordinates.) In the case
where theq̂i depend only on theQi (e.g., when theqi are
Cartesian coordinates and theQi are spherical coordinates)
Eqs. (7) are not differential equations and their solutions are
proportional to products of Dirac delta functions. (See the
examples below.)

As we shall show below, in some cases, the kernel of
the transform (4) can be expressed in terms of the generating
function of the canonical transformation(qi, pi) → (Qi, Pi).
We recall that a coordinate transformation

Qi = Qi(q1, . . . , qn, p1, . . . , pn),

Pi = Pi(q1, . . . , qn, p1, . . . , pn), (8)

is canonical if and only if there exists (at least locally) a func-
tion Λ such that [2–5]

PidQi = pidqi + dΛ (9)

(with summation over repeated indices) and we shall as-
sume thatΛ is expressed as a function ofqi and Qi:
Λ = Λ(qi, Qi). (Note thatΛ can be equal to zero as in the
case of a point transformation,Qi = Qi(q1, . . . , qn), with
pi = Pj ∂Qj/∂qi.)

If the set {q1, . . . , qn, Q1, . . . , Qn} is independent,
which amounts to the condition that the Jacobian determinant

∣∣∣∣
∂(Q1, . . . , Qn)
∂(p1, . . . , pn)

∣∣∣∣ (10)

be different from zero, thenΛ has a unique expression as a
function ofq1, . . . , qn, Q1, . . . , Qn, and Eq. (9) is equivalent
to

Pi =
∂Λ
∂Qi

, pi = − ∂Λ
∂qi

. (11)

On the other hand, when the determinant (10) is equal to zero,
the expression ofΛ as a function ofq1, . . . , qn, Q1, . . . , Qn

is not uniqueand the relations (11) do not hold (nor make
sense). (See the examples below.)

The coordinate transformation

Qi = pi, Pi = −qi (12)

is canonical. In fact,PidQi = pidqi + d(−piq
i); that is,

comparing with Eq. (9),

Λ = −qiQi. (13)

The coordinate transformation in the phase space (12) gives
rise to the relation between operatorsQ̂i = p̂i, P̂i = −q̂i,
and, as is well known, in this case,

〈Q1, . . . , Qn|q1, . . . , qn〉 = 〈p1, . . . , pn|q1, . . . , qn〉
= (2π~)−n/2 exp(−ipiq

i/~) (14)

[see Eq. (7)]. Substitution of Eq. (14) into Eq. (4) yields the
well-known relation between the wave function in the config-
uration space and that in the momentum space

φ(p1, . . . , pn) = (2π~)−n/2

∫
exp(−ipiq

i/~)

× ψ(q1, . . . , qn) dq1 · · · dqn.

As pointed out in Ref. 6, taking into account Eq. (13), the
function (14) can be expressed as

〈Q1, . . . , Qn|q1, . . . , qn〉 = N exp(iΛ/~), (15)

whereN is a normalization factor (in this case, a normaliza-
tion constant).

The aim of this paper is to show that Eq. (15) applies for
many other canonical transformations, including all the lin-
ear transformations [see Eqs. (1) and (12)], even if the Jaco-
bian (10) is equal to zero, in which case the right-hand side of
Eq. (15) must include Dirac delta functions, corresponding to
the relations between the variablesq1, . . . , qn, Q1, . . . , Qn.

If Qi(t), Pi(t) are the solutions of the (classical) equa-
tions of motion, the transformation(qi, pi) → (Qi, Pi), with
qi ≡ Qi(0), pi ≡ Pi(0), is canonical and the kernel of the
integral transform (4),〈Q1, . . . , Qn|q1, . . . , qn〉, is the prop-
agator (see,e.g., Refs. 7 and 8). Therefore, in those cases
where Eq. (15) holds, one readily obtains the corresponding
propagator.

The approach followed in this paper differs from that fol-
lowed in Ref. 6 in several ways; in Ref. 6 only systems
with one degree of freedom are considered, looking for the
relation between eigenfunctions of Hamiltonians related by
a canonical transformation, instead of considering the more
basic problem of relating the eigenfunctions of the coordi-
nate operators. In fact, in our treatment, a Hamiltonian need
not be specified. Furthermore, the possibility that the vari-
ablesq1, . . . , qn, Q1, . . . , Qn are not independent is not even
considered in Ref. 6, assuming that Eqs. (11) are always ap-
plicable.

In Sec. 2 we give some explicit examples for which
the ansatz (15) gives the right expression and in Sec. 3 we
prove that in the case of any linear canonical transformation
Eq. (15) gives the kernel of (4).

2. Examples

In this section we consider several examples of
canonical transformations for which the kernel
〈Q1, . . . , Qn|q1, . . . , qn〉 can be readily obtained starting
from Eq. (15).
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2.1. A canonical transformation for systems with one
degree of freedom

We begin by considering the simple example

Q = −p, P = q + ap2, (16)

wherea is a constant. This transformation is canonical since
PdQ = pdq+d(−pq−ap3/3) [cf.Eq. (9)] and the variables
q, Q are independent. In this exampleΛ = qQ + aQ3/3 and
from Eq. (15) we assume that

〈Q|q〉 = N exp
[

i
~

(
qQ +

a

3
Q3

)]
. (17)

Equations (16) can be translated into relations between the
corresponding operators (that is,Q̂ = −p̂, P̂ = q̂ + ap̂2) and
one can readily verify that (17) is an eigenfunction ofq̂, with
eigenvalueq [see Eq. (5)], and that the complex conjugate
of (17) is an eigenfunction of̂Q, with eigenvalueQ, if N is a
constant, which can be chosen as(2π~)−1/2.

Note that, as pointed out above, it is not necessary to
specify a Hamiltonian.

2.2. Two degrees of freedom

A second example is provided by the canonical transforma-
tion already mentioned in the Introduction, from

(q1, q2, p1, p2) ≡ (u, v, pu, pv)

to

(Q1, Q2, P1, P2) ≡ (x, y, px, py),

given by [1]

x = u + v, y =
c

eB
(pu − pv),

px =
1
2
(pu + pv), py =

eB

2c
(v − u), (18)

wheree, B, andc are constants. We have

pxdx+pydy=pudu + pvdv + d
[
1
2 (v − u)(pu − pv)

]
,

that is,

Λ =
1
2
(v − u)(pu − pv) =

eB

2c
y(v − u). (19)

From the first equation in (18) we see that the
coordinates q1, q2, Q1, Q2 are not independent and
therefore the function (19) can be expressed in in-
finitely many different ways in terms of them [e.g.,
Λ=(eB/2c)y(v−u)=(eB/2c)y(2v−x)=(eB/2c)y(x−2u)].

Assuming that relations identical to Eq. (18) hold for the
corresponding operators (in this case there are no ordering
ambiguities), Eqs. (7) take the explicit forms

(
1
2
x− ~c

ieB
∂

∂y

)
〈x, y|u, v〉 = u〈x, y|u, v〉,

(
1
2
x +

~c
ieB

∂

∂y

)
〈x, y|u, v〉 = v〈x, y|u, v〉. (20)

(Note that we are treating hereu andv as parameters, inde-
pendent ofx andy.) By combining these equations we find

(x− u− v)〈x, y|u, v〉 = 0,

which implies that 〈x, y|u, v〉 must be proportional to
δ(x− u− v). Hence, taking into account Eqs. (15) and (19),
we propose

〈x, y|u, v〉 = Nδ(x− u− v) exp
[
ieB
2~c

y(v − u)
]

, (21)

whereN is a normalization factor. The presence of the delta
function in Eq. (21) implies that all the expressions ofΛ in
terms ofx, y, u, v, give an equivalent result. Taking

N =
(

eB

4π~c

)1/2

,

the normalization condition (6) is satisfied. It can be readily
verified that the expression (21) satisfies Eqs. (20).

As pointed out above, under the canonical transforma-
tion (18), the Hamiltonian

H =
pu

2

2m
+

mω2

2
u2 (22)

is transformed into

H =
1

2m

[(
px +

eB

2c
y

)2

+
(

py − eB

2c
x

)2
]

, (23)

if ω = eB/mc. Hence, the function (21) allows us to relate
the eigenfunctions of the Hamiltonian of a one-dimensional
harmonic oscillator (22) with those of the Hamiltonian of a
particle in a uniform magnetic field (23). In fact, a direct,
lengthy, computation shows that the expression

φ(x, y)=N

∞∫

−∞
ψ(u, x− u) exp

[
ieB
2~c

y(x− 2u)
]

du,

obtained by substituting Eq. (21) into Eq. (4), is an eigenfunc-
tion of the Hamiltonian (23) with eigenvalueE, if ψ(u, v) is
an eigenfunction with eigenvalueE of the Hamiltonian (22).

2.3. A one-parameter group of transformations

In the foregoing examples, the canonical transformations
have been essentially discrete transformations. Now we con-
sider an example of a one-parameter group of canonical trans-
formations.

The coordinate transformations in the phase space

Q1=q1 cos θ+
p2

mω
sin θ, Q2=q2 cos θ+

p1

mω
sin θ,

P1=p1 cos θ−mωq2 sin θ, P2=p2 cos θ−mωq1 sin θ, (24)
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wherem andω are nonzero constants, form a one-parameter
group of canonical transformations (parameterized byθ). It
can be readily verified that Eq. (9) is satisfied by

Λ =
mω

sin θ

[
(Q1Q2 + q1q2) cos θ −Q1q2 −Q2q1

]
. (25)

Then, a straightforward computation shows that

〈Q1, Q2|q1, q2〉 = N exp
{

imω

~ sin θ

× [
(Q1Q2 + q1q2) cos θ −Q1q2 −Q2q1

]}
(26)

satisfies Eq. (7), withN independent ofQi andqi, assuming
that Eqs. (24) hold for the operatorsq̂i, p̂i, Q̂i, P̂i. In order to
satisfy the normalization condition (6), up to a phase factor,
the normalization constantN appearing in the last equation
must be

N =
mω

2π~ sin θ
. (27)

By contrast with the examples of the preceding subsection,
where a constant phase in the normalization factorN can be
chosen in an arbitrary way, in the present case it is natural to
impose the condition

lim
θ→0

〈Q1, Q2|q1, q2〉 = δ(Q1 − q1)δ(Q2 − q2)

and one finds that this condition is satisfied withN given by
Eq. (27).

The canonical transformations (24) leave invariant the
Hamiltonian of a two-dimensional isotropic harmonic oscil-
lator

H =
1

2m
(p1

2 + p2
2) +

mω2

2
[(q1)2 + (q2)2]. (28)

Hence, the integral transform (4) with the kernel (26) maps
an eigenfunction of the Hamiltonian (28) into another eigen-
function ofH with the same eigenvalue.

2.4. Propagators

As pointed out above, the time evolution is a canonical trans-
formation and, therefore, making use of Eq. (15) we have a
straightforward procedure to find the corresponding propaga-
tors.

2.4.1. Free particle

As a first example we consider the simple case of a free parti-
cle with (q1, q2, q3) being Cartesian coordinates. If(Qi, Pi)
denote the values of theqi and their conjugate momenta a
time t later, we have

Q = q +
p
m

t, P = p. (29)

For a fixed value oft, this transformation is indeed canonical
since

P · dQ = p · dq + d
(

p2

2m
t

)
,

with the functionΛ being given by

Λ =
m

2t
(Q− q)2.

Substituting this expression into Eq. (15), from the normal-
ization condition (6) one finds that

|N | =
( m

2π~t

)3/2

.

As in the preceding example, we impose the condition

lim
t→0

〈Q|q〉 = δ(Q− q).

Then, the final expression with the appropriate phase factor
is

〈Q|q〉 =
( m

2πi~t

)3/2

exp
[

im
2~t

(Q− q)2
]

(cf. Refs. 7 and 8).

2.4.2. One-dimensional harmonic oscillator

The expressions

Q = q cos ωt +
p

mω
sin ωt,

P = p cos ωt−mωq sin ωt, (30)

are the solution to the equations of motion of a one-
dimensional harmonic oscillator with initial conditions(q, p),
and represent a canonical transformation satisfying Eq. (9)
with

Λ =
mω

2 sinωt

[
(Q2 + q2) cos ωt− 2Qq

]
, (31)

consideringt as a parameter [cf. Ref. 8, Eq. (6.37)]. Thus,
from Eq. (15) we obtain

〈Q|q〉=N exp
{

imω

2~ sin ωt

[
(Q2+q2) cos ωt−2Qq

]}
(32)

and one readily verifies that Eqs. (6) and (7) are satisfied with

|N | =
( mω

2π~ sin ωt

)1/2

.

The final expression with the appropriate phase factor is then

〈Q|q〉 =
√

mω

2πi~ sin ωt

× exp
{

imω

2~ sin ωt

[
(Q2 + q2) cos ωt− 2Qq

]}
.
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2.4.3. Particle subjected to a constant force

In the case of a particle in one dimension under the action of
a constant forceF , the solution to the equations of motion
with initial conditions(q, p) is given by

Q = q +
t

m
p +

Ft2

2m
, P = p + Ft. (33)

These formulas represent a canonical transformation with

Λ =
m

2t
(Q− q)2 +

Ft

2
(Q + q)− 3

8
F 2t3

m
(34)

[cf. Ref. 8, Eq. (6.40)]. As in the preceding examples, one
finds that Eq. (15) holds, withN being independent ofQ.

2.5. A nonlinear transformation

As a final example we shall consider the nonlinear canonical
transformation [9]

z = x +
pxpy

m2g
, pz = px,

w = y +
px

2

2m2g
, pw = py, (35)

wherem andg are nonzero constants. Under the coordinate
transformation (35), the Hamiltonian

H =
p2

w

2m
+ mgw, (36)

corresponding to a particle in one dimension in a uniform
gravitational field, is transformed into

H =
p2

x + p2
y

2m
+ mgy, (37)

which corresponds to a particle in two dimensions in a uni-
form gravitational field. Since

pxdx + pydy = pzdz + pwdw + d
(
−px

2py

m2g

)
,

the transformation is indeed canonical. Taking

(q1, q2, p1, p2) ≡ (z, w, pz, pw)

and

(Q1, Q2, P1, P2) ≡ (x, y, px, py),

we look for a kernel of the form (15), with

Λ = (x− z)
√

2m2g(w − y).

Substituting into Eqs. (7), assuming that relations identical to
Eqs. (35) hold for the corresponding operators, one finds that
in this caseN is not independent of the coordinatesQi, but

N = const.(w − y)−1/2

and the foregoing results allow us to relate the eigenfunctions
of these Hamiltonians, reproducing the results of Ref. 9.

3. Discussion

In most of the examples given above, the relation between the
old and the new coordinates is of the form

qj = aj
kQk + bjkPk + cj , (38)

where the coefficientsaj
k, bjk, and cj are independent of

the phase space coordinates [see Eqs. (18), (24), (29), (30),
and (33)]. Since no ordering ambiguities arise, we can as-
sume that an identical relation to Eq. (38) holds for the cor-
responding operators. Then, in those cases where the Jaco-
bian (10) is different from zero, making use of Eqs. (11), one
readily finds that Eq. (15) satisfies Eqs. (7). In fact, assuming
thatN does not depend on theQi we have

q̂jN exp(iΛ/~)=
(

aj
kQk+bjk ~

i
∂

∂Qk
+cj

)
N exp(iΛ/~)

=
(
aj

kQk + bjkPk + cj
)

N exp(iΛ/~)

=qjN exp(iΛ/~). (39)

When the Jacobian (10) is equal to zero, that is, when the
set{q1, . . . , qn, Q1, . . . , Qn} is functionally dependent, it is
possible to expressN of the Qi as functions of theqj and
the remainingn−N Qk only (at least locally), as in the first
equation in (18), sayQi = F i(q1, . . . , qn, QN+1, . . . , Qn),
for i = 1, . . . , N . Then,〈Q1, . . . , Qn|q1, . . . , qn〉 must be
proportional toδ(Q1 − F 1)δ(Q2 − F 2) · · · δ(QN − FN ),
and we have

〈Q1, . . . , Qn|q1, . . . , qn〉
=Nδ(Q1−F 1)δ(Q2−F 2) · · · δ(QN−FN ) exp(iΛ/~),

with N being independent of theQi. (It can even happen
that N is equal ton, for instance, when one is replacing
Cartesian coordinates by spherical coordinates, in which case
〈Q1, . . . , Qn|q1, . . . , qn〉 is just a product ofn delta func-
tions.)

It may be remarked that in the procedure followed above
to find the propagators we have not started from the path
integral formalism, although the functionsΛ obtained from
Eq. (9) are equivalent to the time integral of the Lagrangian
along the classical trajectory (see,e.g., Ref. [4]), only that
the approach employed here is much simpler and, as we have
shown, it is also applicable in the case of discrete canonical
transformations.

In the case of nonlinear canonical transformations, the
normalization factorN appearing in Eq. (15) may depend on
the coordinates (see Sec. 2.1 and 2.5), but the ansatz (15) can
still be used as a starting point to find the exact expression
of the kernel of Eq. (4), consideringN as a function to be
determined, as in Sec. 2.5.
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