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The transformation of the wave functions induced by a given canonical transformation in the classical phagg’spaces (Q*, P;), is
considered. In the examples presented here, the kernel of the integral transform turns out to be esseitiafjt), whereA (¢, Q%) is
defined byP;dQ* = p;dg* + dA. In the case of the time evolution, which is a canonical transformation, the kernel of the transform is the
propagator, and is obtained directly by making use of the solution to the classical equations of motion.
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Se considera la transformaai de las funciones de onda inducida por una transfognacarbnica dada en el espacio faseésito,
(¢*,p:) — (Q%, P)). En los ejemplos presentados agel nicleo de la transformada integral resulta ser esencialmapi@A /i), donde
Aq", @) esh definida potP;dQ’ = p;dq” 4+ dA. En el caso de la evolumi temporal, la cual es una transforntaccardnica, el fiicleo de
la transformada es el propagador, y se obtiene directamente haciendo uso de ¢m steldas ecuaciones de movimientasitas.

Descriptores: Funciones de onda; representacide coordenadas; transformacionescdcas; propagadores.

PACS: 03.65.Ca, 45.20.Jj

1. Introduction to relate two quantum-mechanical systems corresponding to
o . ) ___ the Hamiltonians (2) and (3). However, if we have the wave
In the Hamiltonian formulation of classical mechanics it is fynctions for the stationary states of the second Hamiltonian,
convenient to make use of the canonical transformationsye cannot simply replace the coordinates in the wave
which can mix the coordinates of the configuration spacqynctions according to Egs. (1), since the resulting expres-

with their conjugate momenta. A canonical transformationsjons would depend on the coordinateg and their conju-
preserves the form of the Hamilton equations and can simgate momenta. '

plify the form of the Hamiltonian. The relationship between wave functions is known from
For example, the transformation the elementary formalism of quantum mechanics, namely
+ = (pu — po)
r=u-rv, = —F75Pu —Pv)s n " n
'T B ¢(Q1,-~,Q):/<Q1,...,Q g™
1 _eB 1 ) 1
pm_§(pu+pv)a py_%(v—u), ( ) ><z/1(q ,-..,q")dq .._dqn7 (4)
wheree, B, andc are constants, is canonical [1] (see beIow)Where‘ql’ ...,¢") is a normalized common eigenket of the
and when applied to the Hamiltonian of a particle of mass  operatorsg!, ..., 3", with eigenvalues;, ..., ¢", respec-

and electric charge moving on thery-plane subjected to a tively, that is
magnetic fieldB, perpendicular to this plane,

ai|ql7“.,qn>:qi|q1’_“7qn>’ (izla"'an>7 (5)

1 eB \? eB \° )
= om ]%‘F%y + Py = 5.7 (@ and
yields the Hamiltonian (@ d™dt . qM=0(d" —q") - 0(¢™ = ¢"), (6)
I P’ N mw? ¥ 3) with a similar definition for|Q!,..., Q™). The eigenvalue
- 2m 2 equations (5) are equivalent to tpartial differential equa-
tions

if w = eB/mec, which corresponds to a one-dimensional har-

monic oscillator. One can convince oneself that these expres- _; /. h 0 1 ni 1 n

sions also make sense if the phase space coordinates are sub- ¢ (Q ’ i@Qﬂ') (@, Q% ,..,q")

stituted by operators in the framework of quantum mechan- i . N )

ics and, therefore, the transformation (1) can be employed ~ 4 @, Q"g "), (i=1...,n), (7)
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for the functions(@Q*, ..., Q"|q¢, ..., ¢"), assuming that The coordinate transformation in the phase space (12) gives
R rise to the relation between operat@s = p;, P, = —¢',
@Q'...,Q"Plq",....q"™ and, as is well known, in this case,
= Eag <Q17 . ,Qn|q1, . ’qn>, <Q1> e ainqlv e 7qn> = <p1a e 7pn‘q11 e 7qn>
1 o )
= (27rh)_”/2 exp(—ip;q*/h) (14)

and the solution to these equations yields the required kernel o . _
of the transform (4). (In the Hamiltonians (2) and (3),y, ~ [see Eq. (7)]. Substitution of Eq. (14) into Eq. (4) yields the
u, andv are considered as Cartesian coordinates.) In the cagiell-known relation between the wave function in the config-
where the{j‘l depend 0n|y on th@g)2 (e_g_’ when theqi are uration space and that in the momentum space
Cartesian coordinates and th¥ are spherical coordinates) /2 o
Egs. (7) are not differential equations and their solutions are o(p1s- -+, pn) = (27h) ™" /GXP(—lpiql/h)
proportional to products of Dirac delta functions. (See the ) .
examples below.) x (g ,....q")dg ---dg".

As we shall show below, in some cases, the kernel 9%\3 pointed out in Ref. 6, taking into account Eq. (13), the
the transform (4) can be expressed in terms of the generath% .

. . o , nction (14) can be expressed as

function of the canonical transformatiég’, p;) — (Q°, P;).

We recall that a coordinate transformation @Q',...,Q"q",...,q") = Nexp(iA/h), (15)
Q' =Q (", ....¢",p1,- - pn)s whereN is a normalization factor (in this case, a normaliza-
L . tion constant).
Pi=PFi(g,...,q",p1,--,Pn); (8) The aim of this paper is to show that Eq. (15) applies for

many other canonical transformations, including all the lin-
ear transformations [see Eqs. (1) and (12)], even if the Jaco-
bian (10) is equal to zero, in which case the right-hand side of
Eq. (15) must include Dirac delta functions, corresponding to
the relations between the variablgs. .., ¢", Q',..., Q™.

(with summation over repeated indices) and we shall as-. If Ql(t)’.PZ’(t) are the solutpns; of the (cIa;ssmaI) equa-
sume thatA is expressed as a function @f and Q' tions of motion, the transformatid@’, p;) — (Q*, Fi), with

A = A(q%, Q). (Note thatA can be equal to zero as in the _qi = Q'(0), p; = P;(0), is canonical and the kernel of the

/ i o integral transform (4)(Q%, ..., Q"|q¢', ..., q"), is the prop-
;as_e ]Sf §Q87g;it;ansformat|ong = Qg "), with agator (seee.g, Refs. 7 and 8). Therefore, in those cases
T — 4] .

If the set {¢',...,q",Q',...,Q"} is independent, where Eq. (15) holds, one readily obtains the corresponding
which amounts to the condition that the Jacobian determinarﬁmpagator' Lo :
The approach followed in this paper differs from that fol-
QY ....,Q") lowed in Ref. 6 in several ways; in Ref. 6 only systems
’M with one degree of freedom are considered, looking for the
relation between eigenfunctions of Hamiltonians related by
be different from zero, then has a unique expression as a a canonical transformation, instead of considering the more

is canonical if and only if there exists (at least locally) a func-
tion A such that [2-5]

PdQ" = pidg’ + dA 9

(10)

function of¢',...,¢",Q",...,Q", and Eq. (9) is equivalent basic problem of relating the eigenfunctions of the coordi-
to nate operators. In fact, in our treatment, a Hamiltonian need
A A not be specified. Furthermore, the possibility that the vari-

p; (11) ablesg,...,q", Q. ..., Q" are notindependent is not even

- Ytk pi=— i
oQ 9q considered in Ref. 6, assuming that Eqgs. (11) are always ap-

On the other hand, when the determinant (10) is equal to zer®/icable.

the expression oA as a function of/*, ..., ¢", Q!,...,Q" In Sec. 2 we give some explicit examples for which
is not uniqueand the relations (11) do not hold (nor make the ansatz (15) gives the right expression and in Sec. 3 we
sense). (See the examples below.) prove that in the case of any linear canonical transformation
The coordinate transformation Eq. (15) gives the kernel of (4).
Q" = pi, P=-¢ (12) 2. Examp|es
is canonical. In factP;dQ’ = pidg’ + d(—pi¢'); thatis, |n this section we consider several examples of
comparing with Eq. (9), canonical transformations for which the kernel
s QY ...,Q"q,...,q") can be readily obtained starting
A=—¢'Q". (13)  from Eq. (15).
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2.1. A canonical transformation for systems with one (Note that we are treating heteandv as parameters, inde-

degree of freedom pendent ofr andy.) By combining these equations we find
We begin by considering the simple example (x —u —v){z,ylu,v) =0,
Q=-p, P=q+ap’ (16)

which implies that (z,y|u,v) must be proportional to
whereaq is a constant. This transformation is canonical since)(z — u — v). Hence, taking into account Egs. (15) and (19),
PdQ = pdg+d(—pq—ap®/3) [cf.Eq. (9)] and the variables we propose

q, Q are independent. In this example= ¢Q + aQ?/3 and
from Eq. (15) we assume that ieB

QE,Cy(v - u):| ) (21)

(x,y|u,v) = No(x —u — v) exp {

i a
=Nexp |+ +-Q? } . 17
(Qla) P [h (qQ 3Q ) an whereN is a normalization factor. The presence of the delta

Equations (16) can be translated into relations between thginction in Eq. (21) implies that all the expressions/ofn
corresponding operators (that@,= —p, P = G+ ap?) and  terms ofz, y, u, v, give an equivalent result. Taking

one can readily verify that (17) is an eigenfunctiorjpfvith 12

eigenvalueg [see Eq. (5)], and that the complex conjugate N = ( eB )

of (17) is an eigenfunction ap, with eigenvalug), if N is a 4mhe ’

constant, which can be chosen(ash)~'/2. o iy _ - .
Note that, as pointed out above, it is not necessary t(ghe.r_mrmahzatlon condlt_lon (6) is sgus_ﬁed. It can be readily
specify a Hamiltonian. verified that the expression (21) satisfies Egs. (20).

As pointed out above, under the canonical transforma-

2.2. Two degrees of freedom tion (18), the Hamiltonian
A second example is provided by the canonical transforma- o pu® | mw?
. , . . H="" 4 u (22)
tion already mentioned in the Introduction, from 2m 2
(¢, 4% p1,p2) = (U, v, pu, o) is transformed into
to 1 eB \? eB \?
| o = o (z+2y) ‘|‘<py—2=’5> ;o (23
(Q aQ 7P1aP2)E(xayap$7py)a m ¢ ¢

given by [1] if w = eB/me. Hence, the function (21) allows us to relate

c—utv _ i( — ) the eigenfunctions of the Hamiltonian of a one-dimensional

’ Y= eg\bu o) harmonic oscillator (22) with those of the Hamiltonian of a

1 eB particle in a uniform magnetic field (23). In fact, a direct,
pe=5Putpe),  py=-_(v—u)  (18)  |engthy, computation shows that the expression

wheree, B, andc are constants. We have

T ieB
pedr+pydy=p,du + p,dv +d [%(v —u)(py — pv)] , d(z,y)=N / Y(u, r — u)exp [Wy(x - 2“)] du,
that is, -
1 eB obtained by substituting Eq. (21) into Eq. (4), is an eigenfunc-

A=gw=uwpu—ps) =5 ylw—u). (19  tion of the Hamiltonian (23) with eigenvalué, if ¢ (u, v) is

From the first equation in (18) we see that the " eigenfunction with eigenvalug of the Hamiltonian (22).

coordinates ¢',¢%,Q', Q> are not independent and _
therefore the function (19) can be expressed in in2-3- A one-parameter group of transformations

finitely many different ways in terms of theme.p, _ _ )
A=(eB/2¢)y(v—u)=(eB/2¢)y(2v—)=(eB/2¢)y(z—2u)]. In the foregoing gxamples, the canomcgl transformations
Assuming that relations identical to Eq. (18) hold for the h_ave been essentially discrete transformations. Now we con-

corresponding operators (in this case there are no orderin?ider an example of a one-parameter group of canonical trans-

ambiguities), Egs. (7) take the explicit forms ormations. o
. e 8 The coordinate transformations in the phase space
(35— 222 ) teaphuseh = ufeualuso),

2 ieB 0y Q'=q" cos 9+22 sin 6, Q*=q> cos +-LL sin 9,
) e o mw mw
(236 + 1636‘y> (2, ylu,v) = v(z,ylu, v). (20)  Pi=p; cos—mwq’sinf, Pr=p, cos f—mwq" sinf, (24)
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wherem andw are nonzero constants, form a one-parametewith the functionA being given by
group of canonical transformations (parameterized)ylt

can be readily verified that Eq. (9) is satisfied by A= @(Q - q)%
2t
A= ﬂ [(Q1Q2 +q¢'¢*) cosb — Q' ¢* — Qqu]. (25)
sin ¢ Substituting this expression into Eq. (15), from the normal-

Then, a straightforward computation shows that ization condition (6) one finds that

imw
Q' Q%lq", ¢ =Ne><p{ - _(m 32

= (o)™

x [(Q'Q%+¢'¢*) cos — Q'¢* — Q%¢'] } (26)  As in the preceding example, we impose the condition

satisfies Eq. (7), withV independent of)’ andg’, assuming lim(Q|q) = 6(Q — q).
that Eqgs. (24) hold for the operatays p;, Q°, P;. In order to =0

satisfy the normalization condition (6), up to a phase faCtor’l'hen the final expression with the appropriate phase factor
the normalization constarY appearing in the last equation is ' P pprop b
must be

m \3/2 im
mw — i —_q)?
N = b (27) (Qla) (27riht) P {2ht(Q a) ]
By contrast with the examples of the preceding subsectiongef. Refs. 7 and 8).
where a constant phase in the normalization fadtaran be
chosen in an arbitrary way, in the present case it is natural to
impose the condition 2.4.2. One-dimensional harmonic oscillator
: 1 20,1 2\ __ 1 1 2 2
;E}%<Q aQ ‘q ,q >_ 5(Q —4q )5(Q —4q ) The expressions
and one finds that this condition is satisfied wikhgiven by D
Eq. (27). Q = qcoswt + oo sinwt,
The canonical transformations (24) leave invariant the )
Hamiltonian of a two-dimensional isotropic harmonic oscil- P =pcoswt — mwgsinwt, (30)
lator
1 9 are the solution to the equations of motion of a one-
H=—p2+p2)+ 2 [(¢")?+(¢*)?. (28) dimensional harmonic oscillator with initial conditiots p),

2m 2 and represent a canonical transformation satisfying Eq. (9)
Hence, the integral transform (4) with the kernel (26) mapsyith

an eigenfunction of the Hamiltonian (28) into another eigen-

function of H with the same eigenvalue. _ 2, 2 _
A= [(QF 4¢P coswt —2Qq) . (3D)

2.4. Propagators L
consideringt as a parametecf. Ref. 8, Eq. (6.37)]. Thus,

As pointed out above, the time evolution is a canonical transfrom Eq. (15) we obtain
formation and, therefore, making use of Eq. (15) we have a

straightforward procedure to find the corresponding propaga- i
9 P P g propag (Ql¢)=Nexpq ———— [(Q2+q2) cos wt—QQq] (32)
tors. 2h sin wt
2.4.1. Free particle and one readily verifies that Egs. (6) and (7) are satisfied with
As a first example we consider the simple case of a free parti- mw 1/2
cle with (¢!, ¢2, ¢®) being Cartesian coordinates. (§’, P,) |N| = (m) :
denote the values of th¢ and their conjugate momenta a
timet later, we have The final expression with the appropriate phase factor is then
Q=q+ %t, P—p. (29) —
For a fixed value of, this transformation is indeed canonical (@l = 2rmihsin wt
since .
2 1mw 2 2 N
P.aQ-p-da+d(Lr). oxp{ g [(@° ) ot —2u] .
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2.4.3. Particle subjected to a constant force 3. Discussion

In the case of a particle in one dimension under the action of, most of the examples given above, the relation between the
a constant forcé”, the solution to the equations of motion

o o e old and the new coordinates is of the form
with initial conditions(q, p) is given by

t  F I =al Q"+ P+, 38
Q=q+—p+—, P=p+ Ft. (33) 7 W@ ¥ (38)
m 2m ‘
These formulas represent a canonical transformation with Wwhere the coefficients;, 5'*, and ¢/ are independent of
the phase space coordinates [see Egs. (18), (24), (29), (30),

m(Q —q)%+ ﬂ(@ +q)— §F2t3 (34) and (33)]. Since no ordering ambiguities arise, we can as-
2

2t 8 m sume that an identical relation to Eq. (38) holds for the cor-
[cf. Ref. 8, Eq. (6.40)]. As in the preceding examples, ong'esponding operators. Then, in those cases where the Jaco-
finds that Eq. (15) holds, wittV being independent aj. bian (10) is different from zero, making use of Egs. (11), one
readily finds that Eq. (15) satisfies Eqgs. (7). In fact, assuming
2.5. Anonlinear transformation that NV does not depend on tl@g# we have
As a final example we shall consider the nonlinear canonical ) ) )
transformation [9] ¢’ N exp(iA/h)= (aiQkﬂLb]kianJrC]) N exp(iA/h)
2=+ 22l Pz =Da ik o ik j -
mZg’ : — (a}Q" + Y Py + &) Nexp(ir/n)
2 .
w=1y+ 279%7 P = Py (35) =¢’ N exp(iA/h). (39)
meg
wherem andg are nonzero constants. Under the coordinate  \When the Jacobian (10) is equal to zero, that is, when the
transformation (35), the Hamiltonian set{¢',...,¢",Q",...,Q"} is functionally dependent, it is
P2 possible to expresd of the Q* as functions of they and
H= 2l + mgw, (36)  the remaining: — N Q" only (at least locally), as in the first
m equation in (18), sa®)! = Fi(q',...,q¢" QN T, ...,Q"),
corresponding to a particle in one dimension in a uniformsgr ; — 1,...,N. Then,(Q',...,Q"|¢",...,¢") must be
gravitational field, is transformed into proportional tod(Q! — F1)§(Q* — F2)-..§(QN — FN),
2 2 and we have
SRR - (37)
2m
. o : . o (@QY,Q g d)
which corresponds to a particle in two dimensions in a uni-
form gravitational field. Since =N§(Q'—F"5(Q*—F?)---5(QN —FN) exp(iA/h),
2
pedz + pydy = p.dz + p,dw +d (—p” 2py) ) with NV being independent of th@!. (It can even happen
g that N is equal ton, for instance, when one is replacing
the transformation is indeed canonical. Taking Cartesian coordinates by spherical coordinates, in which case
Lo _ QY ...,Q"q",...,q") is just a product of. delta func-
(¢, 4%, p1,p2) = (2,0, 2, Pu) tions.)
and It may be remarked that in the procedure followed above
to find the propagators we have not started from the path
(@', Q% P1, P2) = (2,4, 0, y); integral formalism, although the functiods obtained from

Eqg. (9) are equivalent to the time integral of the Lagrangian
along the classical trajectory (seeg, Ref. [4]), only that
A = (x — 2)/2m2g(w — y). the approach employed here is much simpler and, as we have

shown, it is also applicable in the case of discrete canonical
Substituting into Egs. (7), assuming that relations identical tqransformations.

Egs. (35) hold for the corresponding operators, one finds that
in this caseV is not independent of the coordinat@s, but

we look for a kernel of the form (15), with

In the case of nonlinear canonical transformations, the

normalization factorV appearing in Eq. (15) may depend on

—1/2 the coordinates (see Sec. 2.1 and 2.5), but the ansatz (15) can
still be used as a starting point to find the exact expression

and the foregoing results allow us to relate the eigenfunctionsf the kernel of Eq. (4), consideriny as a function to be

of these Hamiltonians, reproducing the results of Ref. 9.  determined, as in Sec. 2.5.

N = const.(w —y)
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