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In this work we present analytical expressions for the trajectories depicted in the complex plane by the evolution of the state of polarization
of totally polarized light, as it propagates through a homogeneous retarder. For any retarder and input state of polarization of the signal, the
polarization state evolves, depicting one circle on the complex plane. The radius and position of each circle depends on the orientation of the
fast birefringence axis of the sample, the polarization state of the input signal and the specific anisotropy of the medium.
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En este trabajo se presentan expresionestaaal de las trayectorias descritas en el plano complejo, cuando el estado de péladeaana
sdial completamente polarizada evoluciona al propagarse por un retardadorémmnoBara cada retardador y cada estado de pol@nzaci
de la s@al de entrada, el estado de polaribacevoluciona describiendo ufirculo en el plano complejo. El radio y la posiai de cada
circulo dependen de la orientaai del eje apido de la birrefringencia de la muestra, del estado de polavizdei la sBal de entrada y de la
anisotrofia

Descriptores: Birrefringencia; matrices de Jones; polarizaci

PACS: 02.60Dc; 42.81.Gs

1. Introduction Graphic methods are based on the use of the trajectories
depicted by the evolution of light polarization as it propagates
rT,}_hrough media with a known anisotropy [4-6]. Such trajecto-

portant since the residual birefringence of a short length of'®s represent exact solutions of the coupled wave equations,

a non-spun single-mode fiber with negligible absorption a§articularly r_elevant fOT the new anisotropic media used in
well as the intrinsic birefringence of a nematic liquid crys- optoelectronics and guided optics.

tal can be described as media with homogeneous retardation. Since its introduction, Jones-matrix theory has been a
Due to its anisotropy, the observable variations of the outpupowerful tool for dealing with polarization components and
polarization state of a polarized signal propagated througkystems, being the main formalism applied to describe the
these media depend strongly upon experimental conditiongolarization optics of guided light systems and devices. In
such as input polarization and sample length [1-3]. To anthis work we apply Jones matrix theory and the polarization
alyze the birefringence of a sample or to design a specificomplex-plane to model the polarization performance of ho-
device, the position, form, and sense of the ellipse describeshogeneous anisotropic media with a single propagation di-
by the light vector must be determined at each point of theection, such as optical fibers or liquid crystal cells. In this
light trajectory. In order to simplify the analysis when the complex-plane the polarization state is represented using the
medium birefringence is not known or to model it for design E,, to E,, ratio of the electric vector components [7-12]. The
purposes, graphic methods can be used [4-6]. real part of this quotient corresponds to thexis and the

In practical applications homogeneous retarders are very i
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imaginary part to they axis. This representation is equiva- of polarization is not obvious. Therefore, to describe the bire-
lent to the Poincd sphere description, having the advantageringence of the medium we use a Jones matrix in which the
when working with Jones matrix formalism that it does notfast birefringence axis is not aligned with theaxis of the
require the use of a second formalism and that the graphicakference system. In this case, the birefringence matrix of a
analysis can be performed on a flat sheet of paper. This worlnear retarder is

is organized as follows: Sec. 2 introduces the complex plane
representation; Secs. 3, 4 and 5 present the mathematical ded/ =
scription of the trajectories described by the evolution of the

state of polarization along homogeneous retarders for lineavheres is the retardation angle between polarization eigen-
circular and elliptical birefringence, respectively. For eachmodes andx is the azimuth angle of the fast birefringence
kind of homogeneous retarder two types of input or outputaxis [6-8].

polarized signals are considered, linear and circular; Sec. 6

resumes the results; finally, Sec. 7 presents our conclusionCircular input polarization

cos g+i sin g cos2«a  1sin g sin 2« )
7sin % sin 2a cos %—i sin g cos2a|’

. We will describe a circularly polarized input signal as
2. Complex-plane mapping yP putsig

1
The state of polarization of light can be represented on a Ve = { e ] J (6)
plane using graphic descriptions different from those used - . _
in this work [13-16]. We utilize the stereographic projec- Where the positive sign corresponds to a left circular polar-

tion [7-12] based on the ratio of theandy components of ization and the negative sign corresponds to a right circular
the electric field vector: polarization. Using Jones formalism, the output state of po-

) . larization is
E = A, e'@=%)i 4 A, el@t=d)j, 1)

Removing its temporal dependence, Vout = MVin. (7)

E=E,i+B,j= A167¢¢Ii+Ayefi¢yj @) I_:rom Egs. (5),_(6) gnd (7), the out_put polgrizatign state for a
linear retarder illuminated with a circular signal is
and choosing the origin of the phases on the linear compo-

nent, parallel with the positive branch efaxis, the complex Vie
ratio of they to x components is cos (%) + sin 2asin (g) 4isin (%) 0320,

B, (A, i - _ . (8)
E, A, ) +sin (g) cos2a +1 [Sin 2asin (g) =+ cos (g)]

whereA = ¢, - ¢,[7,12]. As we can see, this complexratio  ysing Eqgs. (4) and (8), the complex plane coordinates of
replaces absolute amplitudes and phases by relative quaniie output signal are

ties.

Transforming Eq. (3) in its trigonometric equivalent S sin 5 cos 2 ’

o A A 1 — sin  sin 2«

=== cosA+i<y>sinAu+iv, (4) cosd

E, <Aw) A, o=t ——————————. ©)

T 1 — sin é sin 2«

the state of polarization is mapped on a complex-plane de- _ _ _
fined by the coordinate axesandv [7-12]. This graphical Using these values [Eq. (9)] we calculated the trajectories

description has been used to represent those states that shé@®icted by the evolution of the state of polarization when
the same azimuth or ellipticity [17] and to outline the shape ofthe retardation angl& between the polarization eigenmodes,
the trajectories describing the polarization evolution of lightvaries from 0 to 360 (Fig. 1).

along several anisotropic media [5]. In what follows we cal- .The radii of curvature of the resultant family of circles

culate the analytical relations that describe the evolution ofatisfy

polarized light along homogeneous retarders (linear, circular 1

and elliptical) and show how this information is related to the "LC = so0 (10)

birefringence of a sample and with the polarization state of . ] .

the input signal. an_d every circle is centered on a poihtK) located on the:
axis,

3. Linear birefringence (h,k)rc = (tan 2, 0). (12)

Our interest is focused on single-mode optical fibers. Due to In this case the coordinates of the center of the circle
its dimensions and symmetry, the alignment of the birefrin-match the location of one of the polarization eigenmodes of
gence axis with the reference frame used to measure the state sample.
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ple. Using Egs. (9)-(11) we can verify that far= 0, the
circular trajectory is centered at the origin and has a unitary
radius; by contrast, whemapproaches: 45° (vertical polar-
ization state), the value of the radius goes off to infinity. For a
circular input polarization, the radius and the position of the
circular trajectory on the complex plane are determined by
the azimuth angle of the fast birefringence axis.

Linear input polarization

] o _ . ) The trajectories depicted by the evolution of the state of po-
FIGURE 1. Linear retarder illuminated with a circularly polarized larization when the input signal is linearly polarized are cal-

Input s:)gnal. For_a sample with the fast b're.f”ngencef aX'S.angleculated as follows: the Jones vector of a linearly polarized
a < 45° the abscissas of the centers of the circular trajectories are

positive, while fora: < 45° they are negative. input signal with azimuth angle is [7]:

L:{COW]. (12)

sin ¢
Applying Eq. (7), the output polarization state is given by

cos (6/2) cos p+isin(d/2) cos(p—2a) |
cos(8/2) sin p—isin(§/2) sin(¢—2a) }, (13)

therefore, the complex-plane coordinates are in this case

Vir=

_ sin?(8/2) sin[2(2a—¢)]+cos?(§/2) sin 2
uLL = 2[cos2(§/2) cos? <p+s;pn?(5/2) cosQ(Qa—apgo)] ’

(14)
_ sin d sin[2(a—¢)]
VLL = 2[cos2(8/2) cos? @+sin2(6/€) cos2(2a—yp)] "

Using the expressions in Eq. (14) to depict the evolution
of the state of polarization of the input linear signal, we ob-
tain again a family of circles (Figs. 2 and 3). In this case
their radii are related to the value of the azimutbf the fast
birefringence axis of the material and the azimuth aggt#
the input linear polarization,

sin [2 (o — ¢)]
2 cos ¢ cos(2a — )’ (15)

rLp =
and their centers of curvature are located in

sin 2«
- _ . 16
( ’ )LL <2COS§0COS (201_80)70) ( )

Equation (16) indicates that the centers of these circles lie
on theu axis, the real axis. This axis corresponds to electric
vectors with linear polarization state and to the polarization
eigenmodes of the linear retarder, but in general Eq. (16)
does not correspond to the sample eigenmode.

To understand how the evolution of the state of polariza-
tion is modified for a linear retarder whose relative orienta-
tion with respect to the reference system remains fixed when
(b) ) the azimuth angle of the input linear polarization varies, we

calculated the trajectories far= 0°. A set of results is shown
in Fig. 2a. Whenp = 0° (or 180), » = 0; i.e. the trajectory
and variable azimuth angley) of the linear input signal. As would be represented by a point located at the origin of coor-
© — 90 or 270, the radius tends to infinity. b) Sample with fast dinates, one of the eigenmodes of this anisotropic medium.
birefringence axis angle = 30° and variable orientation of the In this Fig. 2a the trajectories are circles centered at the
linear input signal (azimuth angle<d ¢ < 18¢°). origin. The value of their radii depends on the value of the
azimuth angle of the linear input polarization state. Using

In Fig. 1 each circle corresponds to a different value ofEq. (15) it can be shown that in this case tany; therefore,

the azimuth angle: of the fast birefringence axis of the sam- asy approaches- 90°, the radius tends to infinity.

FIGURE 2. a) Sample with fast birefringence axis angle= 0°

Rev. Mex. . 55(3) (2009) 156-165



ANALYTICAL DESCRIPTION OF THE EVOLUTION OF POLARIZED LIGHT IN... 159

Y we show a family of circles obtained fgr = 0° and several
values ofa ranging from 0 to 90. As we can see, the dis-
tribution is symmetric. Trajectories on the right sidex 0)
correspond tax < 45° and those on the left side to> 45°.
The symmetry is broken whepn= 0°. In Fig. 3b we present
the trajectories calculated far= 30° when 0 < « < 180°.

Elliptical input polarization

The Poincak sphere is a particularly useful tool to describe
the performance of the anisotropic non-absorbing media con-
sidered in this work. Using this representation, the evolution
of the state of polarization of light as it propagates through a
homogeneous retarder is very easily described using the sym-
metry properties of this sphere. The resultant circular path
represents, at each point of the light trajectory, the position,
the form and the direction of the ellipse described by the light
vector. The alternative complex plane representation we ap-
ply in this work is a stereographic projection of the Poiigcar
sphere; in this model we map circles onto the sphere as cir-
cles in the complex plane [10]. Making use of this fact, for
any specific homogeneous linear retarder (specific orientation
with respect to the reference system) and input polarization
state, there is only one circular path that describes the evolu-
tion of the state of polarization of light. This circle includes
all the states of polarization through which the light signal
may evolve, and any of these states might be used as the in-
put or the output polarization state.

To exemplify the previous reasoning let us consider the
trajectory in Fig. 2a, with unitary radius, that includes right
and left circular polarizations. In this figure the fast birefrin-
gence axis of the linear retarder is aligned with theaxis
of the reference system & 0°) and the azimuth angle of the

(b)

FIGURE 3. a) Linear retarder illuminated with a fixed linear in-
put polarization ¢ = 0). Different orientations of the sample were
considered. Circles on the right side correspond te: 45° and
those on the left side ta > 45°. b) Linear retarder with variable
orientation of the fast birefringence axiscOa < 180¢°. The input
signal has a fixed linear polarizatiop £ 30°).

4

When the birefringence fast axis is not aligned with the
x axis of the reference system, the center of the circle is not
located at the origin of coordinates [Eq. (16)]; an example is
shown in Fig. 2b forxy =30° and 0 < ¢ < 18C°.

A different practical condition corresponds to cases in
which the orientation of the linear rEIarderVarieS With. respeckicure 4. Elliptical retarders aligned with the laboratory refer-
to the reference frame, and the azimuth angle of the linear pasnce frame ¢ = 0°). Each one has a different ellipticity angle
larization state at the sample input remains fixed. In Fig. 340 < € < 90°).The input signal is circularly polarized to the left.

Rev. Mex. . 55(3) (2009) 156-165
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by varying the value ofp. In particular, for the case previ-
ously discussed, using Egs. (15) and (16) it can be shown
that Egs. (10) and (11) give rise to the same circular trajecto-
ries wheny = a+ 45°,

The use of circular paths obtained for a circular input po-
larization does not allow any elliptical state of polarization to
be considered. For a specific orientation of the sample there
is only one circular trajectory including right and left circular
states of polarization.

4. Circular birefringence
The birefringence matrix of a circular rotator is:

0 in 9
CoS 5 Fsin 3

5 5 ) (17)

+ sin 5 cosg

Mc =

where § is the retardation angle between the polarization
eigenmodes. The upper sign corresponds to a left rotator and
the lower sign to a right rotator [6,8].

4.1. Circular input polarization

- The output polarization state is obtained from Eqgs. (6), (7)
s . and (17)

8 _ igin 8
_ COS 5 7 S11 bl
24 Veo = +sin g + icos % (18)
(b) and, using Eq. (18), it can be shown that, as in agreement
o . o with polarization optics,
FIGURE 5. a) Elliptical retarder with ellipticity angle = 22.5.
The input signal has a left circular polarization. These trajectories uce =0,
were calculated varying the azimuth angleof the sample from (19)

0 to 180. b) It is an amplification of Fig. 5a, it helps to visualize
the evolute (dashed line) and the envelope (real axis) of this family
of circles. The evolute is a parabola whose focus coincides with thesince right and left circular polarizations are the polarization
input state of polarization. eigenmodes of a circular rotator. Equation (19) states that the
polarization eigenmodes propagate along the sample main-
taining the same polarization state.

voe = *£1,

input linear state of polarization is = +£45°. We can notice
that this circular trajectory is also illustrated in Fig. 1, corre-
sponds to a linear retarder with zero azimuth angle and inthig 5 | inear input polarization

case, input circular polarization. This input polarization state

evolves, becoming a linear polarization state with azimuthin this case, using Egs. (7), (12) and (17) we obtain for the
anglep = +£45°. This geometric property, widely used with output polarization state

the Poincag sphere representation, can also be applied to the 5 s

present stereographic projection to include any initial ellipti- Ve = | 05982 ;F S @SIL 5 s | (20)

cal polarization located in this circular trajectory. For any of F cospsin § + sinpcos 5

thg e!liptical poI.arizgtion statgs matching this circular path,and from relations 4 and 20

this circle describes its evolution along the linear retarder for

this specific orientation of the sample with respect to the ref- ucr, = tan (o £ 3), 21)
erence system. Figure 2a reveals that varying the radius of vor = 0.

the circular path any elliptical polarization can be considered . . . .
In this case the trajectories follow the real axis for any

as input polarization state. . ) i .
When the azimuth angle of the linear retarder is rmtvalue of the azimuth angle of the linear input polarization.

aligned with the horizontal axis of the reference systenf nd: Since their position along theaxis is given by Eq. (21),
(o # 0°), the same property can be applied. Using relgfor a fixed increment of the azimuth angle of the input linear

tions (15) and (16) and the sample orientation (azimuth anpolgrization, the location on the rea}l axis Qf the output polar-
gle «), the circular path that includes the specific elliptical ization state does not present a uniform displacement [9].

polarization state in which we are interested, can be selected
Rev. Mex. 5. 55 (3) (2009) 156—165
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Elliptical input polarization

The Cartesian equations and loci of invariant-ellipticity states have already been reported for this complex plane representatior
by Azzam and Bashara [16]. These trajectories do not correspond to those discussed here since they do not include linear c
circular polarization states.

5. Elliptical birefringence

The birefringence matrix of an elliptical retarder is:

cos (%) +isin (3) cos 2e cos 2ax sin (%) (sin 2e + i cos 2¢ sin 2a) 22)
—sin (2) (sin2e — i cos 2¢ sin 2a) cos (§) —isin () cos2ecos2a |’

Mg =

whered is the retardation angle between the polarization eigenmadissthe birefringence ellipticity angle and is the
azimuth angle of the fast birefringence axis [3,10,11].

Circular input polarization
The output polarization state obtained using Egs. (6), (7) and (22) is

cos () + isin () cos 2 cos 2 F i sin (£) (sin 2e + 4 cos 2 sin 2a)

Vec= N . (23)
—sin (%) (sin2e — i cos 2e sin 2) F i [cos () — isin (2) cos 2e cos 20

In this case the values determined foandv are

2 cos 2¢ sin (%) (cos 2c cos g) + sin 2« sin 2¢ sin (g)

Ure = :Fl =+ 2 cos 2e sin (%) [Sin 2accos (%) — cos 2asin 2e sin (

N[ [~

)]’
1 — 2 cos? 2¢ sin® (%)

. 24
1 4+ 2cos2esin (g) [sin 2 cos (g) — cos 2asin 2e sin (g)] (24)

VECc = F

v Vv

5
i 145, 35°
1507, 30°
45°
;) : 5 H
50°
557

FIGURE 6. Elliptical retarders aligned with the laboratory refer- FIGURE 7. Elliptical retarder with ellipticity angles = 22.5
ence frame illuminated with a signal with a horizontal linear input aligned with the laboratory reference frame and illuminated with
polarization & = ¢ = 0°). The retarder ellipticity angle varies from a linearly polarized input signal. The azimuthof the input linear
0o 9C. polarization varies from 0 to 90

Rev. Mex. . 55(3) (2009) 156-165
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To observe how the trajectory is modified when the az- In agreement with Eg. (25), when the sample is
imuth angle of fast birefringence axis(sample orientation) aligned with the reference frame the singularity obtained for
or when the ellipticity angle associated with the sample ¢ = 22.5 shifts to a different position (see Fig. 5). In this
birefringence has a different value, we considered that onlgase, for = 90° the diameter of the circle is unitary and its
one of these parameters is modified. The results are presenteenter is located on theaxis. Asa increases from 0 to 90

in Figs. 4 and 5. the radius decreases, while from 90 to 18@rows with a.
The radii of curvature and the centers of this family of The centers of symmetry of these circumferences have nega-
circles satisfy tive v coordinates for 8< o < 90° and they become positive

for 90° < a < 180C°. For this family of circles the evolute is
(25) located out of the coordinate axes, not as a straight line but as
a parabola with the input polarization state (0,-1) located at
and its focus (shown as a dashed line in Figs. 5a and 5b) Another
interesting characteristic of this family of circles is that for
(h,k) pe anya # 0°, the real axis behaves as an envelope that is also
Sin 20 cos 2e sin 2¢ the direptrix of the parabola associated wiFh the evolute. All
= (COS v cos Je—sin 22" cos 20 cos 2e— sin 25) - (26) fthese circles are Iocateq bel'ow the real axis and each of them
is tangent to the real axis (Figs. 5a and 5b). The states of po-
We can notice from Eq. (25) that for a circular input sig- larization above the real axis are included in the trajectories
nal the denominator is null when the fast birefringence axishaving a right circular polarization as input polarization state.
of the sample is aligned with the reference frame=0°) Itis important to notice that each of these circles corresponds
and the ellipticity angle of the sampleds= 22.5°. In this  to a different retarder (different ellipticity angig.
case the radius of the circular path is infinite, it includes
the vertical state of polarization. Fig. 4 shows the trajecto-_ inear input polarization
ries obtained for an elliptical retarder with & ¢ < 90°; we
can observe that the centers of these circumferences lie dkpplying Eqgs. (7), (12) and (22) to an elliptical retarder and
the imaginary axis. a linear input polarization, we obtain the following output
| polarization:

1

tan 2e — cos 2«

[Cos (g) +isin (g) cos 2¢ cos 20[} cos ¢ + sin (g) (sin 2e + i cos 2¢ sin 2av) sin ¢
Ver = : (27)
—sin (%) (sin2e — i cos 2e sin 2a) cos  + [cos (2) — isin () cos 2 cos 2a] sin g

When a linear input signal is used we have an additional parameter, the azimuth angle of the linear input polarization
From Eq. (27) and relation 4 it can be shown that

cos? (§) [4sin2pcos () — cos2psin2esin (§)] + 3 sin® (£) [cos? 2esin [2 (a — )] — sin 2 sin® 2¢]
ugL = )
Br cos2(2a — ) cos? 2e sin*(3) + [cos ¢ cos(3) + sin ¢ sin 2 sin(§))2
cos 2¢ {sin[2 (o — ¢)] cos (§) + cos [2 (a — )] sin 2e sin (§) } sin (3) (28)
VgL = :
Br cos2(2a — ) cos? 2 sin?($) + [cos p cos($) + sin ¢ sin 2¢ sin($)]?
The radii of curvature and the centers of this family of circles are given by:
\/1 — {cos2ecos [2 (a — )]}
rEL = (29)
2 cos ¢ cos 2e cos (2a — )
1
(h, k), = (sin 2¢, tan 2¢) (30)

2 cos pcos (2a — @)

To show the role of the various parameters, we have simulated the trajectories described by the evolution of the polarization
state of a linear input signal modifying one parameter at a time as follows:

i) When the fast birefringence axis of the sample is aligned with the reference system and the input linear polarization is
horizontal, the trajectories depicted by the evolution of the signal’s polarization state are circles centered on the imaginary
axis (Fig. 6). Using Eq. (29) it can be shown that in this case the circle radius depends only on the value of the sample
ellipticity angle,r = 1/2 tan 2e. Therefore, the trajectory radius is equal to zero wherD® (linear birefringence); for
0 < e < 45° it grows withe and goes off to infinity when = 45° (circular birefringence).

Rev. Mex. . 55(3) (2009) 156-165
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FIGURE 8. a) Elliptical retarder with ellipticity angle = 22.5
illuminated with a linear input polarization and= 30°. The az-

imuth o of the input linearly polarized signal varies from 0 t0°90

b) Elliptical retarder with ellipticity angle = 22.5 illuminated
with a linear input polarization and = 120°. The azimuthp of the
linear input signal varies from 0 to 90

ii)
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try of the resultant trajectories remain on the imaginary
axis but, since the input polarization state is displaced
along the real axis, the distribution of these trajectories
is different (Fig. 7). When the orientation of the in-
put signal (o) changes, the circles’ radii grow with this
angle and fokp = 9C° (vertical polarization) the value
of the radius goes off to infinity. Since we are using
linear input polarization to calculate the circular path,
depending on the ellipticity angle of the elliptical re-
tarder €), there is a circle surrounding the polarization
eigenmode of the sample of polarization states. It will
not form part of any trajectory.

If the birefringence axes of the sample are no longer
aligned with the reference system, the centers of cur-
vature are located on a straight line passing through
the origin.

As we can see in Fig. 8, when=22.5 anda = 30°,

the loci of the centers of the family of circles (evolute)
obtained for 0< ¢ < 90° (dashed line in Fig. 8a)
form a straight line with a 45slope (equal to tan<l.
Comparing these results with those obtained for
a =120 (Fig. 8b) it becomes evident that the slope of
the evolute is modified when the azimuth angle of the
fast birefringence axis is greater thar?9(n this case
the entire diagram presents a°9@tation in a clock-
wise direction. We should also notice that under these
conditions, the value of the radius goes off to infinity
for o = 90r.

For a specific retarder, the ellipticity angle remains
fixed if we keep the azimuth angle of the linear input
polarization constant, and vary the orientation of the
sample {); the evolute of the new family of circles is

a hyperbola asymptotic to two straight lines crossing
the origin (Figs. 9a and 9b). The absolute value of the
slope of these straight lines is equal to —tar-=2 In

Fig. 9a,e =22.8, p =0 and 0< a < 18C°. Under
these experimental settings, the envelope of this family
of circles is a Lemniscate of Bernoulli. An amplifica-
tion of this envelope (Fig. 9b) shows its axis is aligned
with the imaginary axis.

The states of polarization inside Bernoulli's Lemniscate
are again elliptical polarization states located close to the po-
larization eigenmodes of this sample that cannot be reached
when the trajectory includes a linear state of polarization.

6. Summary

We derived analytical expressions for the trajectories de-
picted by the evolution of the polarization of light in the
complex plane of polarization, when it travels along a ho-
mogeneous retarder (linear, circular or elliptical). The result-
ii) If we keep the sample aligned with the reference sysing complex plane is the stereographic projection of the 3D
tem (@ = 0°) but allow the azimuth angle of the input Poincaé sphere [7,10-12]; therefore these circular trajecto-
linear polarization to change, the centers of symmeries validate the analytical expressions presented here.

Rev. Mex. . 55(3) (2009) 156-165
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1% anisotropy of the homogeneous retarder or 2) to model the
evolution of light polarization when the input or the output
polarization states are either linear or circular (typical input
and/or output polarization states).

To identify the type of anisotropy, in this study we show
that for a linear retarder the circular trajectories depicted by
the evolution of the input polarization state (linear or circular)
are always centered on a point located on the real axis. We
calculated the equations relating the value of the radius and
the locus of the center of curvature to the sample orientation
and the input polarization state of the signal. For a circularly
polarized input signal, the value of the radius and its locus on
the real axis depend on the sample orientation with respect to
the reference frame used to measure the state of polarization.
When the input signal is linearly polarized, the radii of the re-
sulting family of circles and its evolute depend on the sample
orientation and on the azimuth angle of the input signal.

For a circular retarder the result is quite different. Since
right and left circular polarizations correspond to the polar-
ization eigenmodes, for a circularly polarized input signal the
polarization state remains unchanged; the trajectory depicted
on the complex plane is just a point located at{{D). For a
linearly polarized signal the trajectory is a straight line along
the real axis.

For a sample with an elliptical birefringence, the evolu-
tion of the polarization state of a linearly or circularly polar-
ized input signal depict also a circular trajectory, but in this
case the evolute of this family of circles is located outside of
the real axis. For a circularly polarized input signal the radius
and center of curvature of each circle depend on the sample
ellipticity and orientation, and for a linearly polarized signal
they depend as well on the azimuth angle of the input signal.
When the sample is aligned with the reference system and
the input signal is circularly or linearly polarized, the center
of the circular trajectory described as its polarization evolves,
lying on the imaginary axis. When the fast birefringence axis
of the sample has a non-zero azimuth angle, the center of the
trajectory has non-zemandv coordinates for a circular or a
linear input polarization. For a circularly polarized input sig-
nal, the evolute of the resultant family of circles is a parabola
whose focus is located at the point associated with the input
state of polarization. If the input signal is linearly polarized,
varying the azimuth angle of the linear input polarization, the
FIGURE 9. a) Elliptical retarder with an ellipticity angle= 22.5°  gyoJute is a straight line crossing the origin of the complex
|Ilum|rlat(3d with a Ilnt_aarly polarlzed input S|gn_al with azimuth an- plane with slope equal to the absolute value of tafebeing
glzeiriu_thoa{nyl]ee;;s ;rfa:ﬁgt(f);setsb?gfrr?:gg:get(;siTeorfetnhtevz:;Splzf Egethe ellipticity angle of the sample). If the input linear signal

is kept fixed and the orientation of the sample with respect

to 90°). The centers of the circular trajectories are located along a ) )
curve asymptotic to a straight line whose slope is equal tostain to the reference system is varied, the evolute of the resultant

It is a magnification of Fig. 9a, it shows with a better detail that the family of circles is a hyperbola aligned with the imaginary
evolute of this family of circles corresponds to the two branches of axIS.
a hyperbola aligned with the imaginary axis. It can also be noticed A disadvantage to this graphic method is that for any ho-
that its envelope is a Lemniscate of Bernoulli mogeneous retarder we have found practical conditions for
which the state of polarization will not be defined (it goes
We have ascertained that the use of these relations ineff to infinity). However, this condition can be modified by
proves the utility of this planar chart method. Our resultschanging the sample orientation or the input state of polar-
can be used 1) to identify from experimental data the type ofzation. The main advantage to this planar graphic repre-
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sentation is that it can be applied to coherent systems (ddion. For any homogeneous retarder these trajectories are
vices) since it makes use of the Jones matrix formalism. Ifamilies of circles whose radius and evolutes have been re-
should also be mentioned that this representation keeps thated with the birefringence and orientation of the sample,
symmetry properties of other graphical representations [4and the state of polarization of the input signal. The analyti-
and, since it is based on polarization states, eludes the pracal models presented here allow, the behavior of the state of
tical limitations introduced by non-ideal coupling presentedpolarization of light as it propagates along the sample (fiber,
by polarimetric methods based on intensity measurementsiematic liquid crystal) to be visualizing on a flat plane. They
wherea priori knowledge of the sample birefringence is re- can be used for design purposes or for the identification of
quired [18]. the sample anisotropy when it behaves as a homogeneous re-
tarder.

7. Conclusions
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