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In this work we present analytical expressions for the trajectories depicted in the complex plane by the evolution of the state of polarization
of totally polarized light, as it propagates through a homogeneous retarder. For any retarder and input state of polarization of the signal, the
polarization state evolves, depicting one circle on the complex plane. The radius and position of each circle depends on the orientation of the
fast birefringence axis of the sample, the polarization state of the input signal and the specific anisotropy of the medium.
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En este trabajo se presentan expresiones analı́ticas de las trayectorias descritas en el plano complejo, cuando el estado de polarización de una
sẽnal completamente polarizada evoluciona al propagarse por un retardador homogéneo. Para cada retardador y cada estado de polarización
de la sẽnal de entrada, el estado de polarización evoluciona describiendo un cı́rculo en el plano complejo. El radio y la posición de cada
ćırculo dependen de la orientación del eje ŕapido de la birrefringencia de la muestra, del estado de polarización de la sẽnal de entrada y de la
anisotroṕıa

Descriptores: Birrefringencia; matrices de Jones; polarización.

PACS: 02.60Dc; 42.81.Gs

1. Introduction

In practical applications homogeneous retarders are very im-
portant since the residual birefringence of a short length of
a non-spun single-mode fiber with negligible absorption as
well as the intrinsic birefringence of a nematic liquid crys-
tal can be described as media with homogeneous retardation.
Due to its anisotropy, the observable variations of the output
polarization state of a polarized signal propagated through
these media depend strongly upon experimental conditions
such as input polarization and sample length [1-3]. To an-
alyze the birefringence of a sample or to design a specific
device, the position, form, and sense of the ellipse described
by the light vector must be determined at each point of the
light trajectory. In order to simplify the analysis when the
medium birefringence is not known or to model it for design
purposes, graphic methods can be used [4-6].

Graphic methods are based on the use of the trajectories
depicted by the evolution of light polarization as it propagates
through media with a known anisotropy [4-6]. Such trajecto-
ries represent exact solutions of the coupled wave equations,
particularly relevant for the new anisotropic media used in
optoelectronics and guided optics.

Since its introduction, Jones-matrix theory has been a
powerful tool for dealing with polarization components and
systems, being the main formalism applied to describe the
polarization optics of guided light systems and devices. In
this work we apply Jones matrix theory and the polarization
complex-plane to model the polarization performance of ho-
mogeneous anisotropic media with a single propagation di-
rection, such as optical fibers or liquid crystal cells. In this
complex-plane the polarization state is represented using the
Ey to Ex ratio of the electric vector components [7-12]. The
real part of this quotient corresponds to thex axis and the
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imaginary part to they axis. This representation is equiva-
lent to the Poincaré sphere description, having the advantage
when working with Jones matrix formalism that it does not
require the use of a second formalism and that the graphical
analysis can be performed on a flat sheet of paper. This work
is organized as follows: Sec. 2 introduces the complex plane
representation; Secs. 3, 4 and 5 present the mathematical de-
scription of the trajectories described by the evolution of the
state of polarization along homogeneous retarders for linear,
circular and elliptical birefringence, respectively. For each
kind of homogeneous retarder two types of input or output
polarized signals are considered, linear and circular; Sec. 6
resumes the results; finally, Sec. 7 presents our conclusions.

2. Complex-plane mapping

The state of polarization of light can be represented on a
plane using graphic descriptions different from those used
in this work [13-16]. We utilize the stereographic projec-
tion [7-12] based on the ratio of thex andy components of
the electric field vector:

E = Axei(ωt−φx)i + Ayei(ωt−φy)j. (1)

Removing its temporal dependence,

E = Exi + Eyj = Axe−iφx i + Aye−iφy j (2)

and choosing the origin of the phases on the linear compo-
nent, parallel with the positive branch ofx-axis, the complex
ratio of they to x components is

Ey

Ex
=

(
Ay

Ax

)
ei∆, (3)

where∆ = φy - φx[7,12]. As we can see, this complex ratio
replaces absolute amplitudes and phases by relative quanti-
ties.

Transforming Eq. (3) in its trigonometric equivalent

Ey

Ex
=

(
Ay

Ax

)
cos∆ + i

(
Ay

Ax

)
sin∆ = u + iv, (4)

the state of polarization is mapped on a complex-plane de-
fined by the coordinate axesu andv [7-12]. This graphical
description has been used to represent those states that share
the same azimuth or ellipticity [17] and to outline the shape of
the trajectories describing the polarization evolution of light
along several anisotropic media [5]. In what follows we cal-
culate the analytical relations that describe the evolution of
polarized light along homogeneous retarders (linear, circular
and elliptical) and show how this information is related to the
birefringence of a sample and with the polarization state of
the input signal.

3. Linear birefringence

Our interest is focused on single-mode optical fibers. Due to
its dimensions and symmetry, the alignment of the birefrin-
gence axis with the reference frame used to measure the state

of polarization is not obvious. Therefore, to describe the bire-
fringence of the medium we use a Jones matrix in which the
fast birefringence axis is not aligned with thex axis of the
reference system. In this case, the birefringence matrix of a
linear retarder is

ML=
[
cos δ

2+i sin δ
2 cos 2α i sin δ

2 sin 2α
i sin δ

2 sin 2α cos δ
2−i sin δ

2 cos 2α

]
, (5)

whereδ is the retardation angle between polarization eigen-
modes andα is the azimuth angle of the fast birefringence
axis [6-8].

Circular input polarization

We will describe a circularly polarized input signal as

VC =
[

1
±i

]
, (6)

where the positive sign corresponds to a left circular polar-
ization and the negative sign corresponds to a right circular
polarization. Using Jones formalism, the output state of po-
larization is

Vout = MV in. (7)

From Eqs. (5), (6) and (7), the output polarization state for a
linear retarder illuminated with a circular signal is

VLC

=




cos
(

δ
2

)∓ sin 2α sin
(

δ
2

)
+ i sin

(
δ
2

)
cos 2α

± sin
(

δ
2

)
cos 2α + i

[
sin 2α sin

(
δ
2

)± cos
(

δ
2

)]


 . (8)

Using Eqs. (4) and (8), the complex plane coordinates of
the output signal are

uLC = ± sin δ cos 2α

1− sin δ sin 2α
,

vLC = ± cos δ

1− sin δ sin 2α
. (9)

Using these values [Eq. (9)] we calculated the trajectories
depicted by the evolution of the state of polarization when
the retardation angleδ, between the polarization eigenmodes,
varies from 0 to 360◦ (Fig. 1).

The radii of curvature of the resultant family of circles
satisfy

rLC =
1

cos 2α
, (10)

and every circle is centered on a point (h,k) located on theu
axis,

(h, k)LC = (tan 2α, 0). (11)

In this case the coordinates of the center of the circle
match the location of one of the polarization eigenmodes of
the sample.
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FIGURE 1. Linear retarder illuminated with a circularly polarized
input signal. For a sample with the fast birefringence axis angle
α < 45◦ the abscissas of the centers of the circular trajectories are
positive, while forα < 45◦ they are negative.

FIGURE 2. a) Sample with fast birefringence axis angleα = 0 ˚
and variable azimuth angle (ϕ) of the linear input signal. As
ϕ → 90 or 270◦, the radius tends to infinity. b) Sample with fast
birefringence axis angleα = 30◦ and variable orientation of the
linear input signal (azimuth angle 0< ϕ < 180◦).

In Fig. 1 each circle corresponds to a different value of
the azimuth angleα of the fast birefringence axis of the sam-

ple. Using Eqs. (9)-(11) we can verify that forα = 0, the
circular trajectory is centered at the origin and has a unitary
radius; by contrast, whenα approaches± 45◦ (vertical polar-
ization state), the value of the radius goes off to infinity. For a
circular input polarization, the radius and the position of the
circular trajectory on the complex plane are determined by
the azimuth angle of the fast birefringence axis.

Linear input polarization

The trajectories depicted by the evolution of the state of po-
larization when the input signal is linearly polarized are cal-
culated as follows: the Jones vector of a linearly polarized
input signal with azimuth angleϕ is [7]:

VL =
[

cosϕ
sinϕ

]
. (12)

Applying Eq. (7), the output polarization state is given by

VLL=
[

cos (δ/2) cos ϕ+i sin(δ/2) cos(ϕ−2α)
cos(δ/2) sin ϕ−i sin(δ/2) sin(ϕ−2α)

]
; (13)

therefore, the complex-plane coordinates are in this case

uLL = sin2(δ/2) sin[2(2α−ϕ)]+cos2(δ/2) sin 2ϕ
2[cos2(δ/2) cos2 ϕ+sin2(δ/2) cos2(2α−ϕ)]

,

vLL = sin δ sin[2(α−ϕ)]
2[cos2(δ/2) cos2 ϕ+sin2(δ/2) cos2(2α−ϕ)]

.

(14)

Using the expressions in Eq. (14) to depict the evolution
of the state of polarization of the input linear signal, we ob-
tain again a family of circles (Figs. 2 and 3). In this case
their radii are related to the value of the azimuthα of the fast
birefringence axis of the material and the azimuth angleϕ of
the input linear polarization,

rLL =
sin [2 (α− ϕ)]

2 cos ϕ cos(2α− ϕ)
, (15)

and their centers of curvature are located in

(h, k)LL =
(

sin 2α

2 cos ϕ cos (2α− ϕ)
, 0

)
. (16)

Equation (16) indicates that the centers of these circles lie
on theu axis, the real axis. This axis corresponds to electric
vectors with linear polarization state and to the polarization
eigenmodes of the linear retarder, but in general Eq. (16)
does not correspond to the sample eigenmode.

To understand how the evolution of the state of polariza-
tion is modified for a linear retarder whose relative orienta-
tion with respect to the reference system remains fixed when
the azimuth angle of the input linear polarization varies, we
calculated the trajectories forα = 0◦. A set of results is shown
in Fig. 2a. Whenϕ = 0◦ (or 180◦), r = 0; i.e. the trajectory
would be represented by a point located at the origin of coor-
dinates, one of the eigenmodes of this anisotropic medium.

In this Fig. 2a the trajectories are circles centered at the
origin. The value of their radii depends on the value of the
azimuth angle of the linear input polarization state. Using
Eq. (15) it can be shown that in this caser = tanϕ; therefore,
asϕ approaches± 90◦, the radius tends to infinity.

Rev. Mex. F́ıs. 55 (3) (2009) 156–165



ANALYTICAL DESCRIPTION OF THE EVOLUTION OF POLARIZED LIGHT IN. . . 159

FIGURE 3. a) Linear retarder illuminated with a fixed linear in-
put polarization (ϕ = 0). Different orientations of the sample were
considered. Circles on the right side correspond toα < 45◦ and
those on the left side toα > 45◦. b) Linear retarder with variable
orientation of the fast birefringence axis, 0< α < 180◦. The input
signal has a fixed linear polarization (ϕ = 30◦).

When the birefringence fast axis is not aligned with the
x axis of the reference system, the center of the circle is not
located at the origin of coordinates [Eq. (16)]; an example is
shown in Fig. 2b forα = 30◦ and 0◦ < ϕ < 180◦.

A different practical condition corresponds to cases in
which the orientation of the linear retarder varies with respect
to the reference frame, and the azimuth angle of the linear po-
larization state at the sample input remains fixed. In Fig. 3a

we show a family of circles obtained forϕ = 0◦ and several
values ofα ranging from 0 to 90◦. As we can see, the dis-
tribution is symmetric. Trajectories on the right side (u > 0)
correspond toα < 45◦ and those on the left side toα > 45◦.
The symmetry is broken whenϕ 6= 0◦. In Fig. 3b we present
the trajectories calculated forϕ = 30◦ when 0◦ < α < 180◦.

Elliptical input polarization

The Poincaŕe sphere is a particularly useful tool to describe
the performance of the anisotropic non-absorbing media con-
sidered in this work. Using this representation, the evolution
of the state of polarization of light as it propagates through a
homogeneous retarder is very easily described using the sym-
metry properties of this sphere. The resultant circular path
represents, at each point of the light trajectory, the position,
the form and the direction of the ellipse described by the light
vector. The alternative complex plane representation we ap-
ply in this work is a stereographic projection of the Poincaré
sphere; in this model we map circles onto the sphere as cir-
cles in the complex plane [10]. Making use of this fact, for
any specific homogeneous linear retarder (specific orientation
with respect to the reference system) and input polarization
state, there is only one circular path that describes the evolu-
tion of the state of polarization of light. This circle includes
all the states of polarization through which the light signal
may evolve, and any of these states might be used as the in-
put or the output polarization state.

To exemplify the previous reasoning let us consider the
trajectory in Fig. 2a, with unitary radius, that includes right
and left circular polarizations. In this figure the fast birefrin-
gence axis of the linear retarder is aligned with thex−axis
of the reference system (α = 0◦) and the azimuth angle of the

FIGURE 4. Elliptical retarders aligned with the laboratory refer-
ence frame (α = 0◦). Each one has a different ellipticity angle
(0 < ε < 90◦).The input signal is circularly polarized to the left.

Rev. Mex. F́ıs. 55 (3) (2009) 156–165



160 C. AYALA D ÍAZ, D. TENTORI SANTA CRUZ, AND M. AVENDAÑO ALEJO

FIGURE 5. a) Elliptical retarder with ellipticity angleε = 22.5◦.
The input signal has a left circular polarization. These trajectories
were calculated varying the azimuth angleα of the sample from
0 to 180◦. b) It is an amplification of Fig. 5a, it helps to visualize
the evolute (dashed line) and the envelope (real axis) of this family
of circles. The evolute is a parabola whose focus coincides with the
input state of polarization.

input linear state of polarization isϕ = ±45◦. We can notice
that this circular trajectory is also illustrated in Fig. 1, corre-
sponds to a linear retarder with zero azimuth angle and in this
case, input circular polarization. This input polarization state
evolves, becoming a linear polarization state with azimuth
angleϕ = ±45◦. This geometric property, widely used with
the Poincaŕe sphere representation, can also be applied to the
present stereographic projection to include any initial ellipti-
cal polarization located in this circular trajectory. For any of
the elliptical polarization states matching this circular path,
this circle describes its evolution along the linear retarder for
this specific orientation of the sample with respect to the ref-
erence system. Figure 2a reveals that varying the radius of
the circular path any elliptical polarization can be considered
as input polarization state.

When the azimuth angle of the linear retarder is not
aligned with the horizontal axis of the reference system
(α 6= 0◦), the same property can be applied. Using rela-
tions (15) and (16) and the sample orientation (azimuth an-
gle α), the circular path that includes the specific elliptical
polarization state in which we are interested, can be selected

by varying the value ofϕ. In particular, for the case previ-
ously discussed, using Eqs. (15) and (16) it can be shown
that Eqs. (10) and (11) give rise to the same circular trajecto-
ries whenϕ = α± 45◦.

The use of circular paths obtained for a circular input po-
larization does not allow any elliptical state of polarization to
be considered. For a specific orientation of the sample there
is only one circular trajectory including right and left circular
states of polarization.

4. Circular birefringence

The birefringence matrix of a circular rotator is:

MC =
[

cos δ
2 ∓ sin δ

2

± sin δ
2 cos δ

2

]
, (17)

where δ is the retardation angle between the polarization
eigenmodes. The upper sign corresponds to a left rotator and
the lower sign to a right rotator [6,8].

4.1. Circular input polarization

The output polarization state is obtained from Eqs. (6), (7)
and (17)

VCC =
[

cos δ
2 − i sin δ

2

± sin δ
2 ± i cos δ

2

]
(18)

and, using Eq. (18), it can be shown that, as in agreement
with polarization optics,

uCC = 0,

vCC = ±1,
(19)

since right and left circular polarizations are the polarization
eigenmodes of a circular rotator. Equation (19) states that the
polarization eigenmodes propagate along the sample main-
taining the same polarization state.

4.2. Linear input polarization

In this case, using Eqs. (7), (12) and (17) we obtain for the
output polarization state

VCL =
[

cos ϕ cos δ
2 ∓ sin ϕ sin δ

2

± cosϕ sin δ
2 + sin ϕ cos δ

2

]
, (20)

and from relations 4 and 20

uCL = tan
(
ϕ± δ

2

)
,

vCL = 0.
(21)

In this case the trajectories follow the real axis for any
value of the azimuth angle of the linear input polarization.
And, since their position along theu axis is given by Eq. (21),
for a fixed increment of the azimuth angle of the input linear
polarization, the location on the real axis of the output polar-
ization state does not present a uniform displacement [9].
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Elliptical input polarization

The Cartesian equations and loci of invariant-ellipticity states have already been reported for this complex plane representation
by Azzam and Bashara [16]. These trajectories do not correspond to those discussed here since they do not include linear or
circular polarization states.

5. Elliptical birefringence

The birefringence matrix of an elliptical retarder is:

ME =
[

cos
(

δ
2

)
+ i sin

(
δ
2

)
cos 2ε cos 2α

− sin
(

δ
2

)
(sin 2ε− i cos 2ε sin 2α)

sin
(

δ
2

)
(sin 2ε + i cos 2ε sin 2α)

cos
(

δ
2

)− i sin
(

δ
2

)
cos 2ε cos 2α

]
, (22)

whereδ is the retardation angle between the polarization eigenmodes,ε is the birefringence ellipticity angle andα is the
azimuth angle of the fast birefringence axis [3,10,11].

Circular input polarization

The output polarization state obtained using Eqs. (6), (7) and (22) is

V EC =




cos
(

δ
2

)
+ i sin

(
δ
2

)
cos 2ε cos 2α∓ i sin

(
δ
2

)
(sin 2ε + i cos 2ε sin 2α)

− sin
(

δ
2

)
(sin 2ε− i cos 2ε sin 2α)∓ i

[
cos

(
δ
2

)− i sin
(

δ
2

)
cos 2ε cos 2α

]


 . (23)

In this case the values determined foru andv are

uEC = ∓ 2 cos 2ε sin
(

δ
2

) (
cos 2α cos

(
δ
2

)
+ sin 2α sin 2ε sin

(
δ
2

))

1± 2 cos 2ε sin
(

δ
2

) [
sin 2α cos

(
δ
2

)− cos 2α sin 2ε sin
(

δ
2

)] ,

vEC = ∓ 1− 2 cos2 2ε sin2
(

δ
2

)

1± 2 cos 2ε sin
(

δ
2

) [
sin 2α cos

(
δ
2

)− cos 2α sin 2ε sin
(

δ
2

)] . (24)

FIGURE 6. Elliptical retarders aligned with the laboratory refer-
ence frame illuminated with a signal with a horizontal linear input
polarization (α = ϕ = 0◦). The retarder ellipticity angle varies from
0 to 90◦.

FIGURE 7. Elliptical retarder with ellipticity angleε = 22.5◦

aligned with the laboratory reference frame and illuminated with
a linearly polarized input signal. The azimuthϕ of the input linear
polarization varies from 0 to 90◦.
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To observe how the trajectory is modified when the az-
imuth angle of fast birefringence axisα (sample orientation)
or when the ellipticity angleε associated with the sample
birefringence has a different value, we considered that only
one of these parameters is modified. The results are presented
in Figs. 4 and 5.

The radii of curvature and the centers of this family of
circles satisfy

rEC =
1

tan 2ε− cos 2α
(25)

and

(h, k)EC

=
(

sin 2α cos 2ε

cos 2α cos 2ε− sin 2ε
,

sin 2ε

cos 2α cos 2ε− sin 2ε

)
. (26)

We can notice from Eq. (25) that for a circular input sig-
nal the denominator is null when the fast birefringence axis
of the sample is aligned with the reference frame (α = 0◦)
and the ellipticity angle of the sample isε = 22.5◦. In this
case the radius of the circular path is infinite,i.e it includes
the vertical state of polarization. Fig. 4 shows the trajecto-
ries obtained for an elliptical retarder with 0◦ < ε < 90◦; we
can observe that the centers of these circumferences lie on
the imaginary axis.

In agreement with Eq. (25), when the sample is
aligned with the reference frame the singularity obtained for
ε = 22.5◦ shifts to a different position (see Fig. 5). In this
case, forα = 90◦ the diameter of the circle is unitary and its
center is located on thev axis. Asα increases from 0 to 90◦,
the radius decreases, while from 90 to 180◦ it grows with α.
The centers of symmetry of these circumferences have nega-
tive u coordinates for 0< α < 90◦ and they become positive
for 90◦ < α < 180◦. For this family of circles the evolute is
located out of the coordinate axes, not as a straight line but as
a parabola with the input polarization state (0,-1) located at
its focus (shown as a dashed line in Figs. 5a and 5b) Another
interesting characteristic of this family of circles is that for
anyα 6= 0◦, the real axis behaves as an envelope that is also
the directrix of the parabola associated with the evolute. All
these circles are located below the real axis and each of them
is tangent to the real axis (Figs. 5a and 5b). The states of po-
larization above the real axis are included in the trajectories
having a right circular polarization as input polarization state.
It is important to notice that each of these circles corresponds
to a different retarder (different ellipticity angleε).

Linear input polarization

Applying Eqs. (7), (12) and (22) to an elliptical retarder and
a linear input polarization, we obtain the following output
polarization:

VEL =




[
cos

(
δ
2

)
+ i sin

(
δ
2

)
cos 2ε cos 2α

]
cos ϕ + sin

(
δ
2

)
(sin 2ε + i cos 2ε sin 2α) sin ϕ

− sin
(

δ
2

)
(sin 2ε− i cos 2ε sin 2α) cos ϕ +

[
cos

(
δ
2

)− i sin
(

δ
2

)
cos 2ε cos 2α

]
sin ϕ


 . (27)

When a linear input signal is used we have an additional parameter, the azimuth angle of the linear input polarizationϕ.
From Eq. (27) and relation 4 it can be shown that

uEL =
cos2

(
δ
2

) [
1
2 sin 2ϕ cos

(
δ
2

)− cos 2ϕ sin 2ε sin
(

δ
2

)]
+ 1

2 sin2
(

δ
2

) [
cos2 2ε sin [2 (α− ϕ)]− sin 2ϕ sin2 2ε

]

cos2(2α− ϕ) cos2 2ε sin2( δ
2 ) + [cosϕ cos( δ

2 ) + sin ϕ sin 2ε sin( δ
2 )]2

,

vEL =
cos 2ε

{
sin [2 (α− ϕ)] cos

(
δ
2

)
+ cos [2 (α− ϕ)] sin 2ε sin

(
δ
2

)}
sin

(
δ
2

)

cos2(2α− ϕ) cos2 2ε sin2( δ
2 ) + [cos ϕ cos( δ

2 ) + sin ϕ sin 2ε sin( δ
2 )]2

. (28)

The radii of curvature and the centers of this family of circles are given by:

rEL =

√
1− {cos 2ε cos [2 (α− ϕ)]}2
2 cos ϕ cos 2ε cos (2α− ϕ)

(29)

(h, k)EL =
1

2 cos ϕ cos (2α− ϕ)
(sin 2α, tan 2ε) (30)

To show the role of the various parameters, we have simulated the trajectories described by the evolution of the polarization
state of a linear input signal modifying one parameter at a time as follows:

i) When the fast birefringence axis of the sample is aligned with the reference system and the input linear polarization is
horizontal, the trajectories depicted by the evolution of the signal’s polarization state are circles centered on the imaginary
axis (Fig. 6). Using Eq. (29) it can be shown that in this case the circle radius depends only on the value of the sample
ellipticity angle,r = 1/2 tan 2ε. Therefore, the trajectory radius is equal to zero whenε = 0◦ (linear birefringence); for
0≤ ε ≤ 45◦ it grows withε and goes off to infinity whenε = 45◦ (circular birefringence).
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FIGURE 8. a) Elliptical retarder with ellipticity angleε = 22.5◦

illuminated with a linear input polarization andα = 30◦. The az-
imuthϕ of the input linearly polarized signal varies from 0 to 90◦.
b) Elliptical retarder with ellipticity angleε = 22.5◦ illuminated
with a linear input polarization andα = 120◦. The azimuthφ of the
linear input signal varies from 0 to 90◦.

ii) If we keep the sample aligned with the reference sys-
tem (α = 0◦) but allow the azimuth angle of the input
linear polarization to change, the centers of symme-

try of the resultant trajectories remain on the imaginary
axis but, since the input polarization state is displaced
along the real axis, the distribution of these trajectories
is different (Fig. 7). When the orientation of the in-
put signal (ϕ) changes, the circles’ radii grow with this
angle and forϕ = 90◦ (vertical polarization) the value
of the radius goes off to infinity. Since we are using
linear input polarization to calculate the circular path,
depending on the ellipticity angle of the elliptical re-
tarder (ε), there is a circle surrounding the polarization
eigenmode of the sample of polarization states. It will
not form part of any trajectory.

iii) If the birefringence axes of the sample are no longer
aligned with the reference system, the centers of cur-
vature are located on a straight line passing through
the origin.

As we can see in Fig. 8, whenε = 22.5◦ andα = 30◦,
the loci of the centers of the family of circles (evolute)
obtained for 0< ϕ < 90◦ (dashed line in Fig. 8a)
form a straight line with a 45◦ slope (equal to tan 2ε).
Comparing these results with those obtained for
α = 120◦ (Fig. 8b) it becomes evident that the slope of
the evolute is modified when the azimuth angle of the
fast birefringence axis is greater than 90◦. In this case
the entire diagram presents a 90◦ rotation in a clock-
wise direction. We should also notice that under these
conditions, the value of the radius goes off to infinity
for ϕ = 90◦.

iv) For a specific retarder, the ellipticity angle remains
fixed if we keep the azimuth angle of the linear input
polarization constant, and vary the orientation of the
sample (α); the evolute of the new family of circles is
a hyperbola asymptotic to two straight lines crossing
the origin (Figs. 9a and 9b). The absolute value of the
slope of these straight lines is equal to —tan 2ε—. In
Fig. 9a,ε = 22.5◦, ϕ = 0 and 0< α < 180◦. Under
these experimental settings, the envelope of this family
of circles is a Lemniscate of Bernoulli. An amplifica-
tion of this envelope (Fig. 9b) shows its axis is aligned
with the imaginary axis.

The states of polarization inside Bernoulli’s Lemniscate
are again elliptical polarization states located close to the po-
larization eigenmodes of this sample that cannot be reached
when the trajectory includes a linear state of polarization.

6. Summary

We derived analytical expressions for the trajectories de-
picted by the evolution of the polarization of light in the
complex plane of polarization, when it travels along a ho-
mogeneous retarder (linear, circular or elliptical). The result-
ing complex plane is the stereographic projection of the 3D
Poincaŕe sphere [7,10-12]; therefore these circular trajecto-
ries validate the analytical expressions presented here.
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FIGURE 9. a) Elliptical retarder with an ellipticity angleε = 22.5◦

illuminated with a linearly polarized input signal with azimuth an-
gleϕ = 0◦. These trajectories correspond to different values of the
azimuth angle (α) of the fast birefringence axis of the sample (0
to 90◦). The centers of the circular trajectories are located along a
curve asymptotic to a straight line whose slope is equal to tan2ε. b)
It is a magnification of Fig. 9a, it shows with a better detail that the
evolute of this family of circles corresponds to the two branches of
a hyperbola aligned with the imaginary axis. It can also be noticed
that its envelope is a Lemniscate of Bernoulli

We have ascertained that the use of these relations im-
proves the utility of this planar chart method. Our results
can be used 1) to identify from experimental data the type of

anisotropy of the homogeneous retarder or 2) to model the
evolution of light polarization when the input or the output
polarization states are either linear or circular (typical input
and/or output polarization states).

To identify the type of anisotropy, in this study we show
that for a linear retarder the circular trajectories depicted by
the evolution of the input polarization state (linear or circular)
are always centered on a point located on the real axis. We
calculated the equations relating the value of the radius and
the locus of the center of curvature to the sample orientation
and the input polarization state of the signal. For a circularly
polarized input signal, the value of the radius and its locus on
the real axis depend on the sample orientation with respect to
the reference frame used to measure the state of polarization.
When the input signal is linearly polarized, the radii of the re-
sulting family of circles and its evolute depend on the sample
orientation and on the azimuth angle of the input signal.

For a circular retarder the result is quite different. Since
right and left circular polarizations correspond to the polar-
ization eigenmodes, for a circularly polarized input signal the
polarization state remains unchanged; the trajectory depicted
on the complex plane is just a point located at (0,±1). For a
linearly polarized signal the trajectory is a straight line along
the real axis.

For a sample with an elliptical birefringence, the evolu-
tion of the polarization state of a linearly or circularly polar-
ized input signal depict also a circular trajectory, but in this
case the evolute of this family of circles is located outside of
the real axis. For a circularly polarized input signal the radius
and center of curvature of each circle depend on the sample
ellipticity and orientation, and for a linearly polarized signal
they depend as well on the azimuth angle of the input signal.
When the sample is aligned with the reference system and
the input signal is circularly or linearly polarized, the center
of the circular trajectory described as its polarization evolves,
lying on the imaginary axis. When the fast birefringence axis
of the sample has a non-zero azimuth angle, the center of the
trajectory has non-zerou andv coordinates for a circular or a
linear input polarization. For a circularly polarized input sig-
nal, the evolute of the resultant family of circles is a parabola
whose focus is located at the point associated with the input
state of polarization. If the input signal is linearly polarized,
varying the azimuth angle of the linear input polarization, the
evolute is a straight line crossing the origin of the complex
plane with slope equal to the absolute value of tan 2ε (ε being
the ellipticity angle of the sample). If the input linear signal
is kept fixed and the orientation of the sample with respect
to the reference system is varied, the evolute of the resultant
family of circles is a hyperbola aligned with the imaginary
axis.

A disadvantage to this graphic method is that for any ho-
mogeneous retarder we have found practical conditions for
which the state of polarization will not be defined (it goes
off to infinity). However, this condition can be modified by
changing the sample orientation or the input state of polar-
ization. The main advantage to this planar graphic repre-
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sentation is that it can be applied to coherent systems (de-
vices) since it makes use of the Jones matrix formalism. It
should also be mentioned that this representation keeps the
symmetry properties of other graphical representations [4]
and, since it is based on polarization states, eludes the prac-
tical limitations introduced by non-ideal coupling presented
by polarimetric methods based on intensity measurements,
wherea priori knowledge of the sample birefringence is re-
quired [18].

7. Conclusions

In this work we calculated the trajectories depicted by the
evolution of the polarization state for homogeneous retarders,
using the Jones formalism and a complex plane representa-

tion. For any homogeneous retarder these trajectories are
families of circles whose radius and evolutes have been re-
lated with the birefringence and orientation of the sample,
and the state of polarization of the input signal. The analyti-
cal models presented here allow, the behavior of the state of
polarization of light as it propagates along the sample (fiber,
nematic liquid crystal) to be visualizing on a flat plane. They
can be used for design purposes or for the identification of
the sample anisotropy when it behaves as a homogeneous re-
tarder.
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Mendieta-Jiḿenez,Opt. Express13 (2005) 2556.

7. H.G. Jerrard,J. Opt. Soc. Am.44 (1954) 634.

8. R.M.A. Azzam and N.M. Bashara,J. Opt. Soc. Am.62 (1971)
222.

9. R.M.A. Azzam and N.M. Bashara,Appl. Phys.2 (1973) 59.

10. D.S. Kliger, J.W. Lewis, and C.E. Randall,Polarized light in
optics and spectroscopy(Academic Press, 1990).

11. E. Collett Polarized light.Fundamentals and applications
(Marcel Dekker, 1993).

12. S. Huard,Polarization of Light(John Wiley& Sons, 1997).

13. T. Okoshi,J. Lightwave Technol.4 (1986) 1367.

14. K.K. Tedjojuwono, W.W. Hunter Jr., and S.L. Ocheltree,Appl.
Opt.28 (1989) 2614.

15. H.G. Venkatesh and G.G. Sarkar,J. Phys. A9 (1976) 1015.

16. M.A. Kashan,Opt. Acta31 (1984) 1345.

17. R.M.A. Azzam and N.M. Bashara,Appl. Opt.12 (1973) 62.

18. K. Kikuchi and T. Okoshi,Opt. Lett.8 (1983) 122.

Rev. Mex. F́ıs. 55 (3) (2009) 156–165


