
INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 55 (3) 185–191 JUNIO 2009

Reduced order ocean model using proper orthogonal decomposition
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The proper orthogonal decomposition (POD) is shown to be an efficient model reduction technique for simulating physical processes gov-
erned by partial differential equations. In this paper, a POD reduced model of a barotropic ocean circulation for coastal region domains was
made. The POD basis functions and the results from this POD model were constructed and compared with that of the original model. The
main findings were: 1) the variability of the barotropic circulation obtained by the original model is well captured by a low dimensional
system of order of 22, which is constructed using 15 snapshots and 7 leading POD basis functions; 2) the RMS errors for the POD model
is of order 10−4 and the correlations between the original results with that from the POD model of more than 0.99; 3) the CPU model time
solution is reduced is five times less than the original one; and 4) it is necessary to retain modes that capture more than 99% of the energy is
necessary in order to construct POD models yielding a high accuracy.
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La descomposición ortogonal propia (POD) es una técnica eficiente para la reducción de los modelos que describen procesos fı́sicos gob-
ernados por ecuaciones diferenciales parciales. En este trabajo, se hace una reducción de un modelo barotrópico de circulacíon costera del
océano mediante POD. Se construyen las funciones bases y los resultados de la aplicación de la reducción mediante POD se compara con
la solucíon original del modelo barotrópico. Los principales resultados son: 1) Se reproduce la variabilidad de la circulación barotŕopica
obtenida con el modelo original con un sistema de baja dimensión de orden 22, el cual se construye usando 15 aproximaciones y 7 funciones
básicas de POD, 2) El error (RMS) del modelo mediante POD es del orden de 10−4 y la correlacíon entre los resultados del modelo original
y los obtenidos mediante la aproximación POD es ḿas de 0.99, 3) El tiempo (CPU) de obtención de la solucíon mediante POD es cinco
veces menor que con el esquema original de solución y 4) Es necesario construir modelos POD que retengan más del 99% de la energı́a del
sistema para que estos sean aceptables.

Descriptores: POD; reduccíon del orden de modelos; PDE; métodos de Galerkin; EDP.

PACS: 90; 95.75.-z; 95.75.Pq; 92.10.-c; 92.10.Sx

1. Introduction

The proper orthogonal decomposition (POD) is an efficient
way to carry out reduced order modelling by identifying the
few most energetic modes in a sequence of snapshots from a
time-dependent system, and providing a means of obtaining a
low-dimensional description of the system’s dynamics. Since
its original introduction by Loeve in 1945 [1] and Karhunen
in 1946 [2], the method has been extensively used in research
in recent years and successfully applied to a variety of fields.
One of these important applications was the application to
spatially organized motions in fluid flows, such as cylinder
flows [3]. POD was also used for identification of coher-
ent structures, signal analysis and pattern recognition [4,5].
Many researchers have also applied the POD technique to
optimal control problems. For instance, this method has been
used for Burger’s equation [6-8], the Ginzburg-Landau equa-
tion and the B́enard convection [9], and in other fluid control
problems [10-15]. More recently POD has also been used in

inverse problems [16]. In addition, the method has also been
used for industrial applications such as supersonic jet mod-
elling [17], thermal processing of foods [15,18], and studies
of the dynamic wind pressures acting on buildings [19], to
name but a few.

For a comprehensive description of POD theory and state
of the art POD research, see Gunzburger [20]. Compared
with the above efforts, little attention was paid to application
of POD to geophysical fluid dynamics such as atmospheric or
oceanic systems. In general these dynamic systems are quite
complex and their discrete models are hard to solve due to
their large dimensions (typically 106- 108).

In this study, we make a POD reduced modelling of a
barotropic ocean circulation model for coastal region do-
mains. We construct the POD basis functions and the results
from this POD model are compared with that of the original
barotŕopic model.
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FIGURE 1. Geometry of the model.

2. Description of the barotropic ocean model

The numerical model used in this paper is the Salas-de-León
and Monreal-Ǵomez’s barotropic model [21] with variable-
depth and free surface layer, which is studying the tidal cur-
rents, wind forcing currents, and free surface dynamics in
coastal regions.

The model is a non-linear transport model, consisting of
one layer above the maximum depth with the same constant
density in the layer (Fig. 1). The equations for the depth-
averaged transport are [21]:

∂~V

∂t
+∇

(
h−1~V ~V

)
+ k̂ × f ~V

= −h

ρ
∇p +

~τs − ~τb

ρ
+ υH∇2~V

∂h

∂t
+∇ · ~V = 0 (1)

∇p

ρ
= g∇η

where
~V Horizontal transport components

of the depth-averaged currents(
~V = Uî + V ĵ ; U = uh, V = vh

)

t Time

~τb Bottom friction force

~τs Wind stress force

p Pressure

h Total layer thickness

H Average depth

f Coriolis parameter(f = 2ω sin φ), ω
angular velocity of the earth andφ
latitude

FIGURE 2. The study region, left panel is the bathymetry (depths)
of the region in meters.

η Free surface anomaly (η = h – H)

ρ Density of water

υH Horizontal eddy viscosity
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FIGURE 3. Spatial and temporal schema used in the numerical ap-
proximation of the equation system (1).

∇ = î
∂

∂x
+ ĵ

∂

∂y

The wind stress is calculated by the aerodynamic bulk
formula [22]:

(τx, τy) = ρaCW |~vs| (us, vs) (2)

whereρa is the density of the air,CW the wind stress drag
coefficient that depends on the wind velocities [22],~vs the
wind speed vector, and (us, vs) the components of the wind
velocity.

The bottom friction coefficients(|~τb|) are approximated
by [23]:

|~τb| = Cb |~v| (ub, vb)
ρH2

(3)

whereρ is the water density,CB the bottom friction coeffi-
cient that depends on the water velocities that is of the order
of 10−3 [23], ~v the water velocity vector, and (ub, vb) the
components of the water velocity vector.

3. The study region

The barotropic model was successfully applied to a coastal
lagoon in the Mexican Caribbean in order to depict the cur-
rent pattern induced by tides and winds [24]. The coastal
lagoon is located in the Sian Ka’an biosphere reserve in the
Mexican Caribbean (Fig. 2), and has a north-south lenght of
approximately 88 km, and a maximum width of 3 km. The
maximum depth is 6 m, with an average depth of 1.5 m.

The system has two mouths or connections with the ad-
jacent sea, one to the south (Boca Grande) and the other to
the northwest (Boca Paila). Water exchanges between the
open sea and the lagoon are produced at both mouths, and
are forced by tides and the wind stress.

3.1. Numerical scheme

The dynamical model Eq. (1) are governed by long wave dy-
namics such as tides, via ocean co-oscillations. In addition,
the chosen model allows high frequencies waves to be excited
by the applied wind forcing [21].

System (1) was semi-implicit finite differences approxi-
mate in order to solve it numerically in a modified staggered
stencil of the Arakawa-C scheme [21] (Fig. 3).

The resulting approximation is:
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Second step:
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Conditions at the solid boundaries are no-normal flow and
no-slip conditions, and at the open boundaries the amplitude
and phase of the M2 tidal signal and in the free surface the
wind stress. The time integration uses a leapfrog scheme.

The spatial interval for the dynamical model was chosen
to be 20 m and the time step to be 745.2 s, which is1/60 of
the M2 tidal period (12.42 h). This temporal-spatial resolu-
tion will make it possible to resolve the M2 tidal wave char-
acteristic and make the model integration numerically stable.
It takes about 5 tidal cycles for the model to reach a periodic
constant cycle at that time. The model was calibrated using
current velocities measuredin situ with an acoustic Doopler
current profiler (ADCP). Numerically tidally-driven currents
during flood and ebb tides are shown in Fig. 4. Velocities
reach their highest values near the openings and along the
channels. Results of the model agree well with observed cur-
rents (more that 0.85 correlation) [24].

4. Proper orthogonal decomposition

4.1. Fundamentals of the proper orthogonal decomposi-
tion

For simplicity the proper orthogonal decomposition in the
context of scalar fields was introduced: A complex-valued
functions defined on an intervalΩ of the real line. The in-
terval might be the width of the flow, or the computational
domain. We restrict ourselves to the space of functions that
are square integral, or, in physical terms, fields with finite
kinetic energy on this interval so we need an inner product
given by [25]:

(f, g) =
∫

Ω

f (x)g · (x) dx (7)

and a norm:

‖f‖ = (f, f)
1
2 (8)

That is, we find the member that maximizes the
normalized inner product with the fieldv, which is
most nearly parallel in function space. This is a
classical problem in the calculus of variations where
a necessary condition is thatφ be an eigenfunc-
tion of the two-point correlation tensor given by [25]:

∫
〈u (x)u · (x′)〉φ (x′) dx′ =λφ (x) (9)

The integral is from 1 to infinity. Almost every member,
in a measure sense, of the ensemble may be reproduced by a
modal decomposition in the eigenfunctions [10]:

u (x) =
∑

k

akφk (x) (10)

Equation (10) is the proper orthogonal decomposition.

4.2. Approximation based on n-th order truncation

Spectral Decomposition is based on Fourier expansion [2]:

U (p, t) =
∝∑

j=1

auj (t)ϕuj (p);

and the approximation based on n-th order truncation is:
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FIGURE 4. Classical barotropic ocean circulation numerical model
results.

ak (t) =
N∑

j=1

ϕk (j)A (j, t) ;

A ∈ {U (p, t) , V (p, t) , Z (p, t)}
(11)

4.3. Snapshot creation

To find an optimal compressed description first we proceed
to a series of expansion in terms of a set of basis functions.
Intuitively, the basis functions should represent the members

of the ensemble in some sense. Such a coordinate system is
provided by the Karhunen-Loève expansion. Actually here
the basis functionsΦ is a mixture of the snapshots so we take
snapshots at appropriate points in time:

T (snapu)

=




U (p1, t1) U (p1, t2) · · · U (p1, tf )
U (p2, t1) U (p2, t2) · · · U (p2, tf )
...

...
...

U (pn, t1) U (pn, t2) · · · U (pn, tm)


 (12)

We denote byU(pn, tm), the set of observations (also
called snapshots) of some physical process taken at appro-
priate points in time at positionsi= 1, 2, k. In this section, we
consider the discrete Karhunen-Loève expansion to find an
optimal representation of the ensemble of snapshots. In gen-
eral, each sample of snapshotsU(pn, tm) which is defined on
a set ofn×m node, whereU(pn, tm) represent components
of a vector.

4.4. Missing point estimation

The method to calculate time-variant matrices faster is
based on pre-known spatial information in the orthogonal
bases [26]. Actually here the basis functionΦ is a mixture
of the snapshots. Thus, with the POD mode computed, one
must solve anm ×m eigenvalue problem. For a discretiza-
tion of an ocean region, the dimension often exceeds, so it
is often not feasible for the direct solution of this eigenvalue
problem. The eigenvalue problem can be transformed into an
m = 104, m×m that is ann×n eigenvalue problem [9]. The
n × n eigenvalue problem can be solved with the method of
snapshots.

At this moment we must calculate error for every point.
We select thek out ofn points with the greatest error as [26]:

e (X0) =
∥∥∥Φ̃T Φ̃− I

∥∥∥

5. Results and discussion

In this section, we report the results of the numerical com-
putations related to the approaches presented in the previous
paragraphs. The POD method is applied to the above tidal
and wind stress model for a coastal tropical lagoon in the
Mexican Caribbean. This method can provide a systematic
way of creating a reduced basis space with the state of the
system at different time instances and different space loca-
tions. As in general reduced order basis methods, one can
derive the states from full order numerical computations and
should be sufficiently large so that the snapshots may con-
tain all the salient features of the dynamics being considered.
Therefore, through a nonlinear Galerkin procedure the POD
basis functions with the original dynamics offer the possibil-
ity of achieving a high fidelity model (albeit) with a possible
large dimension.
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To achieve model reduction, we carry out a nonlinear
Galerkin procedure with the set of elements. How to choose
the values of the nonlinear Galerkin transformation is a cru-
cial question. The associated POD eigenvalues should define
a relative information content to choose a low-dimensional
basis by neglecting modes corresponding to the small eigen-
values in order to capture most of the energy of the snapshot
basis. Here for our case, if the POD is constructed for 5 and
a reduced order model with 3 it yields a ratio of about 0.98;
and if is constructed with 15 it yields a ratio of above 0.99 for
the percentage of kinetic energy retained (Fig. 5 and 6).

We are now returning to the barotropic tidal and wind
stress model for a costal lagoon in the Mexican Caribbean to
apply the POD technique. Therefore, we solve Eqs. (4) - (6)
after 5 tidal cycles of the M2 harmonic. Results using clas-
sical model are depicted graphically in Figure 4. The results
of the model using POD are graphically almost the same and
will not be shown.

FIGURE 5. Orthogonal base and order evolution of the approxima-
tions.

FIGURE 6. Computed error withn = 15 basis functions. a) Abso-
lute value of the currents, continuous lineu, and dotted linev com-
ponents of the velocity vector~v, and b) absolute error of the current
compared with the classical barotropic ocean circulation numerical
model results.

To quantify the performance of the reduced basis method,
we use two metrics namely the root mean square error
(RMSE) and correlation of the difference between the full
order and the reduced order simulation. This is obtained by
first taking the five tidal cycles full order results and the cor-
responding five tidal cycles reduced order results and com-
puting the error, for example, for the variableu andv com-
ponents of the velocity vector (~v); the errors are shown in
Figs. 6 and 7. Here, ifn = 10 basis function, the first four
PODs modes (Fig. 6), capture nearly 100%, while forn = 15
basis function, the first seven POD (Fig. 6) capture nearly
100% with an error ranging from 10−4 to 10−7. Modes cap-
ture about 99% of the energy. Thus, different POD modes
may be used to reconstruct fields respectively. For differ-
ent numbers of snapshots but for the same energy percentage
captured, the RMSE decrease stops at 15 snapshots. The cor-
relation taking the five tidal cycles full order results and the
corresponding five tidal cycles reduced order clearly, when
increasing the POD mode, the correlation increases also for
the same snapshots. This increase stops at 5 snapshots and
the reported best approximation obtained with 15 snapshots
produced a correlation at the same level as the approximation
20 snapshots.

However, one must also note that a simple linear inde-
pendence is not a sufficient criterion for choosing the POD
mode. It only provides one with some reference. The error
between the full order and the reduced order is displayed in
Fig. 7 for a retained energy percentage of 99%. There is a lit-
tle improvement between either 10 snapshots or 15 snapshots
and 5 snapshots, but there is almost no difference between 15
snapshots and 30 snapshots.

Order approximation may be sufficiently close to the full
order approximation. Other experiments have also been car-
ried out, with either more or fewer snapshots taken and for
different percentages of energy captured, not shown here.
From the computational cost and memory storage aspects, 15
snapshots and the energy captured at 99% level yielded the
best results.

FIGURE 7. Computed absolute error in|~v| with n= 15 base func-
tions andK= 60 at time 140 for all positions in the numerical spa-
tial grid.
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6. Conclusions

We studied problems related to POD reduced modelling of
a coastal ocean circulation model in the Mexican Caribbean
area. The large-scale variability of the wind stress and M2

tidal component is first simulated using a barotropic verti-
cally integrated numerical model with spatial resolution of
∆x = ∆y= 20 m and a time step of∆t= 745.2 s. Then we
constructed different POD models with different choices of
snapshots and different numbers of POD basis functions. The
results from these different POD models are compared with
those of the original model. The main conclusions are: 1) the
large-scale variability of the wind stress and M2 tidal compo-
nent obtained by the original model can be captured well by a
low-dimensional system of order 22 that is constructed by 15
snapshots and 7 leading POD basis functions; 2) by analysis
of RMS errors and correlations, we found that the modes that

capture 99% of the energy are necessary to construct POD
models, 3) RMS errors for the velocity components of the
POD model of order 22 is less than 10−4 order compared
with the original model that is less than 1% of (u,v) in the
original model; correlations of the original model from the
POD model are around 0.99; and 4) compared with the orig-
inal model, the velocity fields from the POD model are less
accurate than the free surface oscillation results (not shown
because the agreement was more than 99% between the origi-
nal model and the POD). This remains a problem to be further
explored in forthcoming research. Our preliminary investiga-
tions on the use of POD tidal and wind stress ocean circula-
tion simulation yield encouraging results and show that POD
can be a powerful tool for various applications such as four-
dimensional variational data assimilation. These results will
be described in a follow-up paper.
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