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Within the context of Finite-Time Thermodynamics (FTT), we study the thermoeconomics of a simplified non-endoreversible thermal power
plant model (the so-called Novikov engine). In our study, we use different heat transfer laws: the so called Newton's law of cooling, the
Stefan-Boltzmann radiation law, the Dulong-Petit’'s law and another phenomenological heat transfer law. We use two FTT optimization
criteria: the maximum power regime (MP) and the so-named modified ecological criterion for performance analysis. This last criterion leads
the engine model towards a mode of performance that appreciably diminishes the engine’s wasted energy. It is shown that under ecologica
conditions the plant dramatically reduces the amount of heat rejected to the environment, and a loss of profit is translated into a better usag:
of fuel such that the heat rejected towards the environment is remarkably reduced compared to that of a maximum power regime. Besides
we analyze the effect on the reduction of power output and the optimal efficiencies in terms of an internal irreversibility parameter that comes
from the Clausius inequality which characterizes the degree of internal irreversibility.

Keywords:Thermoeconomics; endoreversible cycles; optimization.

Dentro del contexto de la Termodimica de Tiempos Finitos (TTF) estudiamos la termoeconomia de un modelo simplificado no endor-
reversible de planta de potencia. (modelo de Novikov). En nuestro estudio, usamos diferentes leyes de transferencia de calor: Ley d¢
enfriamiento de Newton, ley de radiaoi de Stefan-Boltzmann, ley de Dulong-Petit y una ley fenondgich de transferencia de calor.
Usamos dos criterios de optimizani regimen de operaon de Maxima Potencia y el &lamado criterio de operatn de néxima Funadn

Ecologica modificada. Estéltimo criterio proporciona un modo de oper@tique apreciablemente disminuye la efedjsipada por la

maquina érmica. En este trabajo mostramos bajo condiciones de opemeindxima Funabn Ecobgica que la prdida en beneficios se ve
compensada por un mejor uso en el combustible de modo que la planta de potencia redatieasinemte la cantidad de enexglisipada al

medio ambiente con respecto a la cantidad de émbajo un égimen de operagh de Maxima Potencia. Taméh analizamos el efecto sobre

la potencia de salida y la eficiencia del modelo de planta de potendiareimbs de un pametro de irreversibilidad interna que proviene de

la desigualdad de Clausius, el cual caracteriza el grado de irreversibilidad interna.

Descriptores:Termo-econona; ciclos Ermicos endorreversibles; optimizani

PACS: 44.60.+K; 44.90.+C
1. Introduction Qu =9 Ty —Tw), )

In 1995 [1], De Vos introduced a thermoeconomical analysis Qunax =9 (Tt = T1) ®

of the Novikov plant [2] considering as an objective function whereT; and T}, are the temperatures of the hot and cold
the power outputi?’) per unit running cost of the plant ex- thermal reservoirs respectivelfyy is the variable temper-
ploitation (C). In his study De Vos assumed that the runningature of the working fluid (see Fig. 1), andis a thermal
cost of the plant consists of two parts: a capital cost that igonductance. Applying the first law of thermodynamics and
proportional to the investment and, therefore, to the size ofising Egs. (1) - (3), the objective function can be expressed
the plant, and a fuel cost that is proportional to the fuel conas [1]

sumption and, therefore, to the heat input @ig. Assuming w1 (Tw — T1) (Ti — T,

thatQ .« IS an appropriate measure for the size of the plant, F=_—== .
the running cost of the plant exploitation is defined as [1] ¢ aTw (Tu —Ti) + 5 (Tu — Tw)
where( = b/a, is the economical parameter. The optimiza-
C = aQmax + bQ1r, (1) tion of the objective functio” in Eq. (4) is obtained by
dF
where the proportionality constanésand b have units of AT =0,
w Ty,

$/Joule and@ . is the maximum heat that can be extracted
from the heat reservoir without supplying work (see Fig. 1).whereTy;, is the optimal value for which the objective func-
De Vos considered that the heat input rate is given by théion F' has its maximum. De Vos showed that the value of
Newton heat transfer law, that is,
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TABLE |. Relative cost for several kinds of fuels [1].

Fuel Fractional fuel cost (%)
Renewable 0
Uranium 25
Coal 35
Gas 50
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FIGURE 2. Comparison between optimum efficiencies under max-
imum power and under maximum ecological regimes (the former
E function and the modified EM) with = 1/2.

The value off for several types of fuel is shown in Ta-
ble I. Therefore, the De Vos optimal efficiency in terms of the
fractional fuel cost is given by [1],

— T 272
e (r.9) = 1= 2o LIS

wherer = Ty, /Ty. De Vos showed how the optimal effi-
ciency smoothly increases from the MP-efficiency (Curzon-
Ahlborn efficiency,nc4 [3]) for f = 0, corresponding to
energy sources where the investment is the preponderant cost
up to the Carnot value fof = 1, that is, for energy sources
where the fuel is the predominant cost; thixs 4 <nop: <nc,

as we can observe in Fig. 2 [1]. Eq. (8) gives the optimal
efficiency for a Novikov power plant working at maximum
power regime in terms of the fractional fuel cgstvhen the
heat fluxes in Fig. 1 are given by a Newtonian heat trans-
fer law. Recently [4,5], we have also studied a Novikov en-
gine following the thermoeconomical approach used by De
Vos, but by means of the so-called modified ecological op-
timization criterion [6,7], which consists in the maximiza-
tion of the ecological function defined by = W — 710,

W being the power outputzy the total entropy production
ande a parameter that contains the dependence on the par-
ticular heat transfer law used in the Novikov model [7]. In
general the maximization of the ecological function leads
to an engine performance with a power output around 75%
of the maximum power and an entropy production around
25% of the entropy produced under maximum power condi-
tions; this property of the ecological function is called the
corollary 75-25 [7,8]. Furthermore, the ecological criterion
has another important property: the efficiency at maximum
ecological conditions is approximately the semi-sum of the
efficiencies corresponding to the maximum power regime
(Curzon-Ahlborn efficiency), and the Carnot efficiency [7].
When the heat transfer in the Novikov model is of the New-
tonian type, we show that the optimal efficiency under maxi-
mum ecological conditions satisfies the following inequality

the temperature of the working fluid that maximizes Eq. (4)1ca<fopt<n4,:<nc [5] (Fig. 2 shows the optimal ecolog-

is given by,
VI+ 3Ty —Tp) — BVTuTyL
Ty = VTuT , 5
w L T —(1+06)Ty ®)
and the corresponding optimal efficiency is,
17
770pt =1- T‘jv
1 Ty, Ty — (1+8)Ty, ©)

N Ty VT8 (Ty—T1) — BVTuTr
The expression for the optimal efficiency can be obtaine
in terms of the fuel fractional cosf, which is defined as the

ratio of the fuel cost and the total costs of the plant [1], that

IS,

f bQu B(Ta —Tw)

- aQmax + 0QH - (Ty —Tp)+ 8Ty —Tw) 0
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ical efficiencyn{;i,t). We found that the optimal efficiency
under the ecological regime, with a Newtonian heat transfer
law is given by [4,5],

f =P

Moy (rf) = 1= 27 . ©)

Figure 2 also shows how;OEpt smoothly varies with
f from the maximum ecological function point with
f=0 (nF=1-7%4%) [7, 9] up to the Carnot point
f=1), in an analogous way to the De Vos-efficiency (see
ig. 2). In a similar way to De Vos’ study, Sahin and Ko-
dal (SK) [10] made a thermoeconomic analysis of a Curzon-
Ahlborn engine. SK maximized a profit function defined by

w

= — 10
Ci-i-Cf’ (10)

Fsk
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whereC; and C; are the annual investment and fuel con- plant model considering different heat transfer laws and con-
sumption costs, respectively. Sahin and Kodal [10] assumesidering two criteria of performance: the maximum power
that the plant’s size can be taken proportional to the total heatutput criterion and the so-called ecological function crite-
transfer area, instead of the maximum heat input previouslyion. In Sec. 3, we analyze the effect of the internal irre-
considered by De Vos [1]. Thus, the yearly investment cosversibilities of the model on the environmental impact, the
of the system can be given as [10], entropy production and the power output of the engine model.
Finally, in Sec. 4 we present our conclusions.
Ciz’yi (AH—FAL), (11)

whereAy; and A;, are the heat transfer areas of the heat ex2. 1 h€rmoeconomic optimization
changers in both the hot and the cold reservoirs and the pr
portionality coefficient for the investment cosgtis equal to
the capital recovery factor times investment cost per unit he
transfer area. The annual fuel consumption cost is propor-
tional to the heat rate input, that is [10],

(?from the first law of thermodynamics, the power output for
atpe engine shown in Fig. 1 is given by

W=Qu—-Qr,

where@Q g and@, are the heat transfer supplied by the hot
source to the working fluid and the heat transfer from the
working fluid to cold source, respectively. On the other hand,

where the coefficient; is equal to the annual operation hours the internal efficiency of the engine is given by
times the price per unit of heat input. SK also showed that
W L (14)

the variation of the optimal thermal efficiency with respect n= on =l-pr-=1-725
H w

to the fuel cost parametef = v, /v; + ¢, in the interval
0 < f < 1, satisfies the inequalityrsp < nopt < nc under — whered = Ty /Ty (see Fig. 1) and? = ASy,,/|ASy,| is
the non-endoreversibility parameter [12-14] (which charac-

(13)

Cy =7¢Qn, 12)

71

maximum power conditions; that is, the Carngt { and the

maximum power{y, ) efficiencies are the upper and lower terizes the degree of internal irreversibility that comes from
bounds of the optimum thermal efficiencies. On the othetthe Clausius inequality)\S;,, being the change in the inter-
hand, Antar and Zubair [11] performed a finite-time thermoe-na| entropy along the hot isothermal branch akfl,, the
conomic analysis of a Curzon-Ahlborn engine model, considentropy change corresponding to the cold isothermal com-
ering the total cost per unit power output as an objective funcpression. This parameter, which in principle is within the
tion. They expressed the total cost of conductance in terms Gfterval0 < R < 1 (R = 1 for the endoreversible limit), can

unit cost parameters as= (g (UA)y + (L (UA), where  pe seen as a measure of the departure from the endoreversible
Cr and(y, are the unit conductance costs at hot and cold engegime [12-14]. If we consider that the heat transferred be-
heat exchanger, respectively. Antar and Zubair [11], minitween the hot source and the working fluid follows a gener-
mized a function defined & = I'/(W/Ty) with respectto  alized law of the typ&) o« AT™, wheren is a heat transfer

the temperature ratidsy /Ty andTc /Ty and a parameter exponent such that when the heat transfer obeys a Newtons'’s
G = (u /(. Antar and Zubair [11], obtained the optimum |aw (N) n = 1, and for a Dulong-Petit heat transfer law (DP)
values of the absolute temperature values and they discussgd— 5/4, then
the influence ofz andTy, /1w on the thermoeconomic per-

formance of the engine model.

The aim of this paper is to extend the thermoeconomical Combining Egs. (1), (13), (14) and (15), and using the

analysis of the Novikov plant model by considering d'ﬁerentdefinition by De Vos for the profit fanctiof — 1W/C), the

hea_t transft_ar_ I_a_ws as well as o analyze the effects of Int(?rdimensionless objective functions both at maximum power
nal irreversibilities on the optimal performance. The paper is

. . and at maximum modified ecological function conditions are,
organized as follows: In Sec. 2, following the De Vos’ proce- 9

. . .~ respectively,
dure we present a thermoeconomical analysis of the Novikov P Y

Qu=gTy (1-0)". (15)

1 (L-F5)0-0)"

FNZPP =2 K ) 16
MP T a1+ B(1-6) (16)
and
71 n
pN-pp_1 [(1+e) 1-F35) _5(1_7)’] (1-9) (17)
ME a (1-7)"+8(1-0)" ’
wheree = 1/,/7 for the case of a Newton heat transfer law
FIGURE 3. Profit function versus the parameter of internal irre- (n=1)and
versibility and the reduced temperatutdor the Newtonian heat 8+7— /7 (r+280)
transfer law, withr = 1/2. a) Maximum power regime and b) €=

Maximum ecological function regime.

V7 (T+80) — 97
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for the case of a Dulong-Petit heat transfer law
(n =5/4) [7,14]. In previous equations, we also have con-
sidered that) .. is the maximum heat that can be extracted
from the heat reservoir without performing work, in the same 0%
way as previously considered by De Vos [1], which in this ~ *%
case give)ax = gT%(l —7)". In Figs. 3a and 3b we 7
show the behavior of ;Y 2% and F}} ;P for the Newto-

nian law casén = 1) versus the reduced temperatérand FIGURE 5. Profit function versus the parametBr and the re- '
versus the paramet@. As can be seen from Figs. 3a and 3b, duced temperatgre for a phenomenologlcal heaF transfer Iaw: with
there exists an optimal efficiency value which depends on th% = 1/2. a) Maximum power regime and b) Maximum ecological
parameterR and the optimum value af. We can also ob- unction regime.
serve in Figs. 3a and 3b how the benefit diminishes as the

internal irreversibilities (parametd®) increase. Moreover,

2(f-1)r

the benefits under maximum ecological function conditions 7%, (f,7,R) =1 — , (20)
are lower than those obtained under maximum power condi- fr+AQ — f)Rr + f2r2
tions. The maximization of the objective functions given by nPP (.7, R)
Eqg. (16) and Eq. (17) by
10(f-1)7
d (FN—DP) =1- (=D — (21)
S =0 (5/—1) 74+/80(1— ) Rr+ (1-5£)% 2
6*
. . . . . N . 2(f-1)T
gives the corresponding optimal efficiencies. Therefore, tak- 7y (f, 7, R) =1— =, (22)
ing the derivatives of"y; ,”F and F;y ,”* with respect t@ INT=VAA=RVT+ [T
and setting them equal to zero we obtain the following equa- oL (f,7,R)
tions for both conditions: maximum power output and maxi-
mum ecological function, respectively —1_ 100(1-f)7 . (29)
2
(1-0)" 76— [(0 (1—n) —1) 7+nR62] (1—7)"=0, (18) (1-5£) A/ S00A (L= )R+ [(1-5/) A
1 nR , In Eq. (23), we have definedl = 7+ /(80 + 7) 7 to
(1-0)""" = 1(0(1-n)—-1) +\ﬁ9 (1-7)"=0. (19)  simplify the expression for the optimal efficiency under max-

imum ecological conditions. In Figs. 4a and 4b, we show

We can solve the above equations to obtain the optipoth optimal efficiencies at maximum power and at maxi-

mal efficiency in terms of the parametgr(see Egs. (A.4) mum ecological conditions for the Newton (see Fig. 4a) and
and (A.11) in the Appendix, for the case of Newton heatthe Dulong-Petit (see Fig. 4b) cases. We can see in Figs. 4a

transfer law). However, by using Eq. (7), which in the presentand 4b, how the optimal efficiencies smoothly increase from

case is written as the maximum point-efficiencyf = 0, corresponding to en-
f Q=" ergy sources where the investment is the preponderant cost
f= T—fa1—e" up to the Carnot value fof = 1, that is, for energy sources

where the fuel is the predominant cost [1]. Besides, Figs. 4a
we can calculate the optimum working fluid temperatureand 4b, show that the engine with internal irreversibilities has
(0" =Ty, /Ty ) that maximizes both Egs. (16) and (17), anda lower efficiency when is compared to the endoreversible
the optimal efficiencies can be obtained in terms of the fracCarnot caseR = 1) [4,5].
tional fuel cost. Therefore, the optimal efficiencies at max-  Analogously, if we consider in the Novikov model that
imum power output and ecological function conditions arethe heat transfer is a Stefan-Boltzmann radiation law (Muser
respectively given by (see Appendix), engine [15]) and another phenomenological heat transfer

law [16], then the heat inpu ; andQm,.x are given by,

Qu = 9Ty (1 -6") Sign(n), (24)
Qmax = 915 (1 = 7") Sign(n), (25)

whereSign(n) is the sign function, such th&tign(n)=1 if
n > 0 andSign(n) = —1if n < 0. Therefore, in this case,
both objective functions at maximum power and at maximum
FIGURE 4. Comparison between the optimal efficiencies at maxi- ecological function conditions respectively are,
mum power and maximum ecological conditions versus fractional 1 ( _ 11) (167
fuel cost and the paramet& with - = 1/2, for a) Newton heat FoB-Ph _ RO (26)
- MP a(l—7m)+3(1—06m)’
transfer law and for b) Dulong-Petit heat transfer law.

004 00
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and cost [1]. From Eg. (7), in this case = —1, we obtain the
sp_pn 1 [2 (1 _ %%) —(1- T)] (1—06m) following relation betweerd and the parametet,
Fyop '=- - — , (27
a 1-—m)+pB(1-06") 1-f)B
, , , = (1= f)Br . (31)

In Figs. 5a and 5b we show the behaviorjf " and fA=7)+ (1= f)pT
F3B=F" for the phenomenological heat transfer law case - : :
(n = —1) versus the reduced temperatérand the param- After substituting Eq. (31) into Eq. (29) we obtain,
eter R. As we can see in Figs. 5a and 5b, the profit func- fe—f Q-1
tions have a behavior similar to the Newton and the Dulong- B = 1 2 (R—7) (32)
Petit cases, that is, there exists an optimal efficiency which -1
depends on the parametérand the optimum value of. Therefore, after substituting Eq. (32) into Eq. (30), the

We can also observe in Figs. 5a and 5b how the beneffiyimga) efficiency in terms of the fractional fuel cost under
diminishes as the internal irreversibilities (parameRgrin- maximum power conditions is given by
crease. In a similar way to the Newton and the Dulong-Petit

cases (see Appendix), we can obtain the optimal efficiencies Ph R—T
in terms of the parametet. After taking the derivative of map (£,7. R) = R(2-f) (33)
Eq. (26) with respect t6 and setting it equal to zero, for the
case of the phenomenological heat transfer faw= —1), From Eqg. (33) it can be observed that fér= 1 (endore-
we get, versible case), the result previously obtained by Giteal. is
- recovered [16]. In Fig. 6a, we show the optimal efficiency at
[(1 —R)T+R—-(1+0)7 } 0 maximum power conditions for the phenomenological heat
—or[1— (1+8)7]6 - 23 =0 (28) transfer law case, and it can be seen how the optimal effi-
ciency increases from the maximum point-efficientys- 0,
Solving Eq. (28) for yields corresponding to energy sources where the investment is the
B B — — — preponderant cost up to the Carnot valueffee 1.
g=" [1=(1+5)r] T\/(T D—1)+(r=R)8 (29) In a similar way to the maximum power regime, from

—_ 2
(r=1)(r+R)-7%5 Eq. (27), taking the derivative df{;", with respect to and
Combining Egs. (14) and (29) we obtain the optimal effi- setting it equal to zero

ciency, -
F
nth (3,7, R) =1 ( dAgE = O)

(1-7)(R+T)—pB72

Rr[l— (14 8)r]+ R(1—7)y/1+ Z2=2

(30) vyields,

_ _ 2 2
Instead of expressing the result in terms of the param- [(2 Rr)r+ R—2(1+8)r ] 0

eter 3, a number that is difficult to obtain from the litera- — 41— (1 +B3)71]0—27°3 =0. (34)
ture [1], we can also express it in terms of the fractional fuel
| Solving Eqg. (34) fod yields

_ 211 (14 B)7] -~ 7V2RA - 72)B+ 401 — 1) [1 - (1 + B)7] '

0 R(1—-72)+27[1— (14 /)7]

(35)

In a similar way to the maximum power regime, we can
obtain a relation between the parameteand the fractional
fuel cost(f) by using Egs. (31) and (35), and therefore we
can obtain the optimal efficiency in terms of the fractional
fuel cost under maximum ecological conditions, which is

given by we also show the optimal efficiency under maximum ecolog-
RI(f=3)=(f—1)7|+2r ical function conditions for the phenomenological heat trans-
e (f,7 R) = / ;R(}f 2)) ] . (36)  fer law case. On the other hand, when in the Novikov en-

gine model we consider the Stefan-Boltzmann radiation law,
In Eg. (36) it can be observed that f& = 1 (endore- from Egs. (26) and (27) (for = 4) we obtain the following
versible case), the result previously obtained by Barrancoequations for the maximum power and maximum ecological
Jiménez and Angulo-Brown is recovered [5]. In Fig. 6a, regimes, respectively

Rev. Mex. . 55(3) (2009) 211220
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FIGURE 6. Comparison between the optimal efficiencies at maxi-
mum power and maximum ecological conditions versus fractional
fuel cost and the paramet& with - = 1/2, for: a) Phenomeno-

logical heat transfer law and for b) Stefan-Boltzmann radiation law.

FIGURE 9. a) Ecological rejected heat and maximum power re-
jected heat versus fractional fuel cost and the paranfetand b)
Quotient between ecological rejected heat and maximum power re-
jected heat for a phenomenological heat transfer law.

FIGURE 7. a) Ecological rejected heat and maximum power re- FIGURE 10. a) Quotient between power output at maximum eco-

jected heat versus fractional fuel cost and the parameteand logical function and at maximum power conditions versus frac-
b) Quotient between ecological rejected heat and maximum powetional fuel cost and the parametey with T = 1/2. b) Quotient
rejected heat for a Newton heat transfer law between total entropy production at maximum ecological function

and at maximum power conditions versus fractional fuel cost and
the parameteR, with = 1/2.

Therefore, the optimal efficiencies for the Stefan-
Boltzmann radiation law {B) in both regimes;.e maxi-
mum power output and maximum ecological function, can be
found by solving numerically Egs. (39) and (40). In Fig. 6b,
we show these optimal efficiencies for several values of the
parameterg and R. These optimal efficiencies have a simi-
FIGURE 8. a) Ecological rejected heat and maximum power re- |gr behavior to Egs. (20)-(23), that is, they smoothly increase
jecteq heat versus fractiqnal fugl cost and the parar_’détand b) from the maximum point-efficiency; = 0, corresponding to
Quotlent between ecological rejected heat and maximum power re-energy sources where the investment is the preponderant cost
jected heat for a DP heat transfer law. up to the Carnot value fof = 1, that is, for energy sources
where the fuel is the predominant cost [1].

SB
dFyip =730%—4R (1—7’4) 6>+ [37’ (1—7’4) —2,37'] 6* o .
de 3. Effect on the dissipation, power output and
+7 [(148)—7*] =0, (37) environmental impact
SB
dFdf‘gE =7805—2R [(1-7") + (r—7°)] 6° In the previous section, we considered the fractional fuel

costs for several kinds of fuels, which range from coal to nat-
+ [37 (1—7") —2B7] 0*+7 [(1+8)—7"] =0. (38)  ural gas (see Table I). We have also shown that the optimal

Th . i be solved ically for dif economical point under maximum ecological function condi-
€ previous equations can be solved numericaly for dif5;, provides a higher reduction on the profits than those ob-
ferent values off; however, using the expression for the frac-

) . tained under maximum power conditions (see Figs. 3 and 5).
tional fuel cost given by However, this reduction of profit is concomitant with a better
f (1 — 74) efficiency for a given value of the parametethat provides
p= ﬁm’ a decrease of the energy rejected to the environment by the

power plant (see Figs. 4 and 6) [4,5]. Therefore, the ecologi-
cal criterion seems to be a suitable procedure for the search of

4R(1— f)0° +[(4f —3)7]0* —7 =0, (39) insights into an engine’s performance with a less aggressive

interaction with the environment. In this context, the follow-

ing simplified analysis is proposed.

we get

2R[(1—f)(1+7)]6°+[(4f —3)7]6* =7 =10. (40)

Rev. Mex. . 55 (3) (2009) 211220
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Applying the first law of thermodynamics to the engine 4. Conclusions
shown in Fig. 1 we get

QrL=Qu—W=(1-n)Qu, (41)  Inarecent paper, Fischer and Hoffmann [17] showed that a
simple endoreversible model (the so-called Novikov engine)

; can reproduce the complex behavior of a quantitative dynam-
power plant. When the power plant works at maximum b P q y

power regime for both the Newton and Dulong-Petit Casesical simulation of an Otto engine including, but no limited
. . . i to, effects from losses due to heat conduction, exhaust losses
Q1. is obtained by using Egs. (14), (15) and (41): " uct xhad

and frictional losses. Also Curto-Risst al. [18] have ana-

where Q1 is the heat rejected to the environment by the

% _ o | T 1 g \n lyzed a FTT-model for an irreversible Otto cycle suitable for
Qu (B 7. 00p) = 9T4 | RO%,p | (1=0hp)”. (42) reproducing performance results of a real spark ignition heat
In a similar way, when the power plant works under max-€ngine. In these articles the spirit of FTT is illustrated by
imum eco|ogica| function conditions, we get emphasizing the virtues and limitations of this methodology.
o1 However, the usefulness of the FTT models is shown beyond
Qr (R, 7,0%5) = 9TH o (1-03)". (43) anydoubt. In fact, we can assert that the FTT spirit is con-
L MEFE |

comitant with the spirit of Carnotian thermodynamics in the
From Egs. (42) and (43), we can calculate the heat regense of the search for a certain kind of limit for thermody-
jected to the environment for each valuefoénd under dif-  namics variables and functionals. In this work, we study the
ferent ways of operation of the power plant. In Fig. 7a, it canthermoeconomics of a non-endoreversible heat engine model
be seen how the heat rejected to the environment under ecthe so-called Novikov engine). In our study we have used
logical conditions is lower than the heat rejected under maxgifierent heat transfer laws: the Newton's law of cooling,
imum power conditions for the Newton law case. In Fig. 7bthe Stefan-Boltzmann radiation law, the Dulong-Petit's law
we show the ratio between the amounts of rejected heat fait cooling and a phenomenological heat transfer law. We cal-
each regime: the ecological function and maximum powercy|ate the thermoeconomical optimal efficiencies under two
In a similar manner, in Figs. 8 and 9, we show both amountsegimes of performance, namely, the maximum power regime
of rejected heat for each regime: maximum power and maxiand the so-called ecological regime. We found that when the
mum ecological function, and the ratio between the amount§jovikov model maximizes the ecological function, it reduces
of rejected heats for the Dulong-Petit heat transfer law anghe rejected heat to the environment up to about 55% of the
the phenomenological heat transfer law. In addition, we CaRejected heat in the case of a power plant model working un-
calculate the total entropy production for the Novikov modelder maximum power conditions. In the final part of our paper,
for both regimes: ecological function and maximum power.ye also analyzed the effect of the internal irreversibilities on
Applying the second law of thermodynamics to the enginecorollary 75-25 for different relative costs of fuel for several

model of Fig. 1, the entropy production is given by energy sources.
g QL Qu _Qu-W _ CQu
T, Ty 17 Ty

which, by using Egs. (14) and (15) for the Newton andAcknowledgements
Dulong-Petit cases, becomes
n T1 n The author wishes to thank Professor F. Angulo-Brown
o (R, 7,0)=9gTg {(17) (139)} (1-0)".  (45) for many useful discussions, Dr. R. Hamdez-Rrez for
As for Eqs. (42) and (43), by using Eq. (45) we can manuscript revision and also wishes to thank the anonymous

calculate the quotient of the total entropy production for the'€feree for critical comments on the manuscript. This work
Novikov model under both maximum ecological function andW&s supported in part by CONACYT, COFAA and EDI-IPN-

maximum power conditions and for different heat transfer&Xico-
laws used in the Novikov model, that is,
o (R, 7,04 5)
o(R,7,0%p)
In a similar way, using Eqgs. (13), (14) and (15), for the
Newton and Dulong-Petit cases, we can calculate the quo-
tient between the power output of the plant for both ecologi-

A Optimal efficiencies under both maximum
power and maximum ecological conditions:
Newton and Dulong-Petit cases.

cal function and maximum power conditions, that is, From Eq. (16) the profit function under maximum power
W (R, 7,0%5) _regilme in the case of a Newton heat transfer [aw= 1)
W. is given by

We can observe in Figs. 10a and 10b, that only in the endore- L T1y(1_g

versible limit, the corollary 75 - 25 [7] is maintained for each FN, = 1 (L-%p) (1-0) _ (A.1)

of the different heat transfer laws used in the Novikov model. a(l-—7)+p3(1-0)
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The derivative ofF'y , with respect td is by using the relation between the parameteand the frac-
5 5 9 5 tional fuel cost, for the case = 1 (see Eq. (7)). Therefore,
dqz\l\//[p . O+ ROT -7 [1 +4(0-1)"+ RO } (A2) the resultant quadratic equation to be solvedfa found to
= 5 . (A
d R[8(6-1)%+7-1] 62 be
Now, solving Eq. (A.2) ford yields (1— f)RO*+ fr60 — 7 =0, (A.5)
97\4]3 (ﬁ7 T, R)
ith the soluti
8- AT /RAT G775 "9 with the solution

R(r—1)+75 o~ 4 AL BT+ T
_ After substituting Eq. (A.3) in the expression for effi- g e = 2R(f - 1) ) (A.6)
ciency, we get

UMP (ﬂﬂ' R) =1-

1

R W By substituting?*lhvw in the expression for the efficiency,

we get

1 Rl—-71)—70 (A4)
= 1/ = . . 1
1—TR\/1+[(31(RT)R)3 VRTf e (fTR) =1— ~——

R G*MP
We can observe in Eq. (A.4) that féF = 1 the result ob- 2(f—1)r
tained previously by De Vos [1] is recovered. Besides, when =1- . (A7)
3 = 0, we obtain fr+ /A0 = /)R + f?72

opt = 1 —/T/R ) , :
Mlopt 7/ From Eq. (17), the profit function under maximum eco-
which was preViOUSIy obtained by Wu and Kiang [11], and|ogica| function regime is given by

Arias-Herrandezet al. [14]. Instead of expressing the re-
sult in terms of the parametgr, a number that is difficult to
obtain in the literature [1], we can also express it in terms . n
of the fractional fuel cost [1]. In a similar way to the case ~ M —
of a phenomenological heat transfer law, we can express the
parametep as

(=73 [(1+ &) +via-2

)
(EEYIE) - (A8)

1
a

In the above equation, we have substitwted 1/./7 for

8= A s the case of a Newton heat transfer law= 1) [7]. If we cal-
—f1-0¢ culate the derivative of'Jy ,, with respect tof we obtain in
|  this case,
dgly;  (HHVT) V7 (148 (0-1)%) +R(1L - 7)6>—7%2 ~s)
do R[(0—1)+7—1)% 2
Solving Eq. (A.9) ford yields
VBT I—TR(148-7) — /70
Ore (8,7, R)= ROt/ : (A.10)
After substituting Eq. (A.10) in the expression for efficiency, we get
1 /4TR(1 —
77ME BT, R)=1~- Rﬁ =1- LA )V . (A.11)
e (BT R) [,/177_\/ RA-7)+0) — ﬁﬂfﬂ/%}

In Eq. (A.11), when we calculate
. N
}311% [UME (677_7 R)] )

we obtain

\/1—7— 7_3/4

1 7R:1_7 9
77ME(T ) m
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and it can be observed that fér= 0 (endoreversible case) we obtajg,; = 1 — 73/, which was previously obtained by
Velascoet al. [9] and also by Angulo Brown and Arias-Heéxndez [7].

In a similar way to the maximum power conditions, we can calculate the derivati¥g;afwith respect t&? and by the
appropriate substitution of the parametein terms of the fractional fuel cost; in this case, the resultant quadratic equation to
be solved fo# is found to be

(1—f)RO? + f/70 — /7 =0, (A.12)
with solution
N _ _ 2,
ZRU )
After substituting9*§’w in the expression for the efficiency, we get
1 2(f—-1r

RQ*ME ff— \/4 1— Rf+ f2
From Eqg. (16) the profit function under maximum power regime for the Dulon-Petit heat transfet tavis/4) is given
by

1— 21y (1—9)>>*
Fﬁfg:l( i) ( ) . (A.15)

a1t 51— 0"

Similarly to the Newton heat transfer law, we can calculate the derivativ& gt with respect ta@ and by the appropriate
substitution of the parameter

foa-n"
T ase T

in this case, the resultant equation to be solvedfisrfound to be,

dabfy  (F=1)(1=0)""[5(f = D)RE* + (440 —50)]

- AR (1 — )% g2 -0 (A16)
with solution
. (5f = V)7 +v=7y/80(f — )R — (1 —5/)°T
Mpor = 0R(f —1) ! (A-17)
By substitutingd;, . » in the expression for the efficiency we get
niip (f;mR)=1- = Loo- 10R(/ — 1) , (A.18)

ROLPDP (5f —1)7++/=7/80(f — )R — (1 —5f)27

From Eq. (17) the profit function under maximum ecological regime for the Dulong-Petit heat transfer aw/4) is
given by,

(T4+80)—97 R0 (74+80)—9
\/7(7+80) (7+80) (A.19)

[(1 N s+r\/m> (1-21)— st /80 ] g gy
FDP 1

a (1-7)" s -0
Likewise, we can calculate the derivativef) %, with respect t@ and by the appropriate substitution of the parameter

foa-n
L—f (11—

in this case, the resultant equation to be solvedfisrfound to be,

8=

dqPr
Db — [5R(1 - 1) /(80 +7) + 5R(f — 1)7] 0* + r(40f — 8)0 - 327 =0, (A.20)
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with solution,
. (1—5/)A+/800(1 — f/)RA + (1 —5f)2A2 (A.20)
MEPP = 100(1 — /)R ’ .
with A = 7+ /(80 + ) 7. Finally, after substituting” . » in the expression for efficiency we get
T 1 100(1—-f)r
e (fr R =1 T =1 L ' (.20
MEDPP (1-5f)A+ \/SOOA(l—f)R+[(1—5f) AP
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