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Within the context of Finite-Time Thermodynamics (FTT), we study the thermoeconomics of a simplified non-endoreversible thermal power
plant model (the so-called Novikov engine). In our study, we use different heat transfer laws: the so called Newton’s law of cooling, the
Stefan-Boltzmann radiation law, the Dulong-Petit’s law and another phenomenological heat transfer law. We use two FTT optimization
criteria: the maximum power regime (MP) and the so-named modified ecological criterion for performance analysis. This last criterion leads
the engine model towards a mode of performance that appreciably diminishes the engine’s wasted energy. It is shown that under ecological
conditions the plant dramatically reduces the amount of heat rejected to the environment, and a loss of profit is translated into a better usage
of fuel such that the heat rejected towards the environment is remarkably reduced compared to that of a maximum power regime. Besides,
we analyze the effect on the reduction of power output and the optimal efficiencies in terms of an internal irreversibility parameter that comes
from the Clausius inequality which characterizes the degree of internal irreversibility.

Keywords:Thermoeconomics; endoreversible cycles; optimization.

Dentro del contexto de la Termodinámica de Tiempos Finitos (TTF) estudiamos la termoeconomia de un modelo simplificado no endor-
reversible de planta de potencia. (modelo de Novikov). En nuestro estudio, usamos diferentes leyes de transferencia de calor: Ley de
enfriamiento de Newton, ley de radiación de Stefan-Boltzmann, ley de Dulong-Petit y una ley fenomenológica de transferencia de calor.
Usamos dos criterios de optimización: ŕegimen de operación de Ḿaxima Potencia y el ası́ llamado criterio de operación de ḿaxima Funcíon
Ecológica modificada. Estéultimo criterio proporciona un modo de operación que apreciablemente disminuye la energı́a disipada por la
máquina t́ermica. En este trabajo mostramos bajo condiciones de operación de ḿaxima Funcíon Ecoĺogica que la ṕerdida en beneficios se ve
compensada por un mejor uso en el combustible de modo que la planta de potencia reduce dramáticamente la cantidad de energı́a disipada al
medio ambiente con respecto a la cantidad de energı́a bajo un ŕegimen de operación de Ḿaxima Potencia. También analizamos el efecto sobre
la potencia de salida y la eficiencia del modelo de planta de potencia en términos de un parámetro de irreversibilidad interna que proviene de
la desigualdad de Clausius, el cual caracteriza el grado de irreversibilidad interna.

Descriptores:Termo-econoḿıa; ciclos t́ermicos endorreversibles; optimización.

PACS: 44.60.+K; 44.90.+C

1. Introduction

In 1995 [1], De Vos introduced a thermoeconomical analysis
of the Novikov plant [2] considering as an objective function
the power output(W ) per unit running cost of the plant ex-
ploitation(C). In his study De Vos assumed that the running
cost of the plant consists of two parts: a capital cost that is
proportional to the investment and, therefore, to the size of
the plant, and a fuel cost that is proportional to the fuel con-
sumption and, therefore, to the heat input rateQH . Assuming
thatQmax is an appropriate measure for the size of the plant,
the running cost of the plant exploitation is defined as [1]

C = aQmax + bQH , (1)

where the proportionality constantsa and b have units of
$/Joule andQmax is the maximum heat that can be extracted
from the heat reservoir without supplying work (see Fig. 1).
De Vos considered that the heat input rate is given by the
Newton heat transfer law, that is,

QH = g (TH − TW ) , (2)

Qmax = g (TH − TL) , (3)

whereTH andTL are the temperatures of the hot and cold
thermal reservoirs respectively,TW is the variable temper-
ature of the working fluid (see Fig. 1), andg is a thermal
conductance. Applying the first law of thermodynamics and
using Eqs. (1) - (3), the objective function can be expressed
as [1]

F =
W

C
=

1
a

(TW − TL) (TH − TW ) ,

TW (TH − TL) + β (TH − TW )
, (4)

whereβ = b/a, is the economical parameter. The optimiza-
tion of the objective functionF in Eq. (4) is obtained by

dF

dTW

∣∣∣∣
T∗W

= 0,

whereT ∗W is the optimal value for which the objective func-
tion F has its maximum. De Vos showed that the value of
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TABLE I. Relative cost for several kinds of fuels [1].

Fuel Fractional fuel cost (%)

Renewable 0

Uranium 25

Coal 35

Gas 50

FIGURE 1. Novikov’s model for a nuclear power plant.

FIGURE 2. Comparison between optimum efficiencies under max-
imum power and under maximum ecological regimes (the former
E function and the modified EM) withτ = 1/2.

the temperature of the working fluid that maximizes Eq. (4)
is given by,

T ∗W =
√

THTL

√
1 + β (TH − TL)− β

√
THTL

TH − (1 + β)TL
, (5)

and the corresponding optimal efficiency is,

ηopt = 1− TL

T ∗W

= 1−
√

TL

TH

TH − (1 + β) TL√
1 + β (TH − TL)− β

√
THTL

. (6)

The expression for the optimal efficiency can be obtained
in terms of the fuel fractional cost,f , which is defined as the
ratio of the fuel cost and the total costs of the plant [1], that
is,

f =
bQH

aQmax + bQH
=

β (TH − TW )
(TH − TL) + β (TH − TW )

. (7)

The value off for several types of fuel is shown in Ta-
ble I. Therefore, the De Vos optimal efficiency in terms of the
fractional fuel cost is given by [1],

ηopt (τ, f) = 1− f

2
τ −

√
4(1− f)τ + f2τ2

2
, (8)

whereτ = TL/TH . De Vos showed how the optimal effi-
ciency smoothly increases from the MP-efficiency (Curzon-
Ahlborn efficiency,ηCA [3]) for f = 0, corresponding to
energy sources where the investment is the preponderant cost
up to the Carnot value forf = 1, that is, for energy sources
where the fuel is the predominant cost; thus,ηCA<ηopt<ηC ,
as we can observe in Fig. 2 [1]. Eq. (8) gives the optimal
efficiency for a Novikov power plant working at maximum
power regime in terms of the fractional fuel costf when the
heat fluxes in Fig. 1 are given by a Newtonian heat trans-
fer law. Recently [4,5], we have also studied a Novikov en-
gine following the thermoeconomical approach used by De
Vos, but by means of the so-called modified ecological op-
timization criterion [6,7], which consists in the maximiza-
tion of the ecological function defined byE = W − εTLσ,
W being the power output,σ the total entropy production
andε a parameter that contains the dependence on the par-
ticular heat transfer law used in the Novikov model [7]. In
general the maximization of the ecological function leads
to an engine performance with a power output around 75%
of the maximum power and an entropy production around
25% of the entropy produced under maximum power condi-
tions; this property of the ecological function is called the
corollary 75-25 [7,8]. Furthermore, the ecological criterion
has another important property: the efficiency at maximum
ecological conditions is approximately the semi-sum of the
efficiencies corresponding to the maximum power regime
(Curzon-Ahlborn efficiency), and the Carnot efficiency [7].
When the heat transfer in the Novikov model is of the New-
tonian type, we show that the optimal efficiency under maxi-
mum ecological conditions satisfies the following inequality
ηCA<ηopt<ηE

opt<ηC [5] (Fig. 2 shows the optimal ecolog-
ical efficiencyηE

opt). We found that the optimal efficiency
under the ecological regime, with a Newtonian heat transfer
law is given by [4,5],

ηE
opt (τ, f) = 1− f

2
τ −

√
4(1− f)τ3/2 + f2τ2

2
. (9)

Figure 2 also shows howηE
opt smoothly varies with

f from the maximum ecological function point with
f=0

(
ηE = 1− τ3/4

)
[7, 9] up to the Carnot point

(f = 1), in an analogous way to the De Vos-efficiency (see
Fig. 2). In a similar way to De Vos’ study, Sahin and Ko-
dal (SK) [10] made a thermoeconomic analysis of a Curzon-
Ahlborn engine. SK maximized a profit function defined by

FSK =
W

Ci + Cf
, (10)
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whereCi and Cf are the annual investment and fuel con-
sumption costs, respectively. Sahin and Kodal [10] assumed
that the plant’s size can be taken proportional to the total heat
transfer area, instead of the maximum heat input previously
considered by De Vos [1]. Thus, the yearly investment cost
of the system can be given as [10],

Ci = γi (AH + AL) , (11)

whereAH andAL are the heat transfer areas of the heat ex-
changers in both the hot and the cold reservoirs and the pro-
portionality coefficient for the investment costγi is equal to
the capital recovery factor times investment cost per unit heat
transfer area. The annual fuel consumption cost is propor-
tional to the heat rate input, that is [10],

Cf = γfQH , (12)

where the coefficientγf is equal to the annual operation hours
times the price per unit of heat input. SK also showed that
the variation of the optimal thermal efficiency with respect
to the fuel cost parameterf = γi/γi + γf , in the interval
0 ≤ f ≤ 1, satisfies the inequalityηMP < ηopt < ηC under
maximum power conditions; that is, the Carnot (ηC) and the
maximum power (ηMP ) efficiencies are the upper and lower
bounds of the optimum thermal efficiencies. On the other
hand, Antar and Zubair [11] performed a finite-time thermoe-
conomic analysis of a Curzon-Ahlborn engine model, consid-
ering the total cost per unit power output as an objective func-
tion. They expressed the total cost of conductance in terms of
unit cost parameters asΓ = ζH (UA)H + ζL (UA)L, where
ζH andζL are the unit conductance costs at hot and cold end
heat exchanger, respectively. Antar and Zubair [11], mini-
mized a function defined asF = Γ/(W/TH) with respect to
the temperature ratiosTW /TH andTC/TH and a parameter
G = ζH/ζL. Antar and Zubair [11], obtained the optimum
values of the absolute temperature values and they discussed
the influence ofG andTW /TH on the thermoeconomic per-
formance of the engine model.

The aim of this paper is to extend the thermoeconomical
analysis of the Novikov plant model by considering different
heat transfer laws as well as to analyze the effects of inter-
nal irreversibilities on the optimal performance. The paper is
organized as follows: In Sec. 2, following the De Vos’ proce-
dure we present a thermoeconomical analysis of the Novikov

FIGURE 3. Profit function versus the parameter of internal irre-
versibility and the reduced temperatureθ for the Newtonian heat
transfer law, withτ = 1/2. a) Maximum power regime and b)
Maximum ecological function regime.

plant model considering different heat transfer laws and con-
sidering two criteria of performance: the maximum power
output criterion and the so-called ecological function crite-
rion. In Sec. 3, we analyze the effect of the internal irre-
versibilities of the model on the environmental impact, the
entropy production and the power output of the engine model.
Finally, in Sec. 4 we present our conclusions.

2. Thermoeconomic optimization

From the first law of thermodynamics, the power output for
the engine shown in Fig. 1 is given by

W = QH −QL, (13)

whereQH andQL are the heat transfer supplied by the hot
source to the working fluid and the heat transfer from the
working fluid to cold source, respectively. On the other hand,
the internal efficiency of the engine is given by

η =
W

QH
= 1− 1

R

TL

TW
= 1− τ

R

1
θ
, (14)

whereθ = TW /TH (see Fig. 1) andR = ∆S1w/|∆S2w| is
the non-endoreversibility parameter [12-14] (which charac-
terizes the degree of internal irreversibility that comes from
the Clausius inequality)∆S1w being the change in the inter-
nal entropy along the hot isothermal branch and∆S2w the
entropy change corresponding to the cold isothermal com-
pression. This parameter, which in principle is within the
interval0 < R ≤ 1 (R = 1 for the endoreversible limit), can
be seen as a measure of the departure from the endoreversible
regime [12-14]. If we consider that the heat transferred be-
tween the hot source and the working fluid follows a gener-
alized law of the typeQ ∝ ∆Tn, wheren is a heat transfer
exponent such that when the heat transfer obeys a Newtons’s
law (N) n = 1, and for a Dulong-Petit heat transfer law (DP)
n = 5/4, then

QH = gTn
H (1− θ)n

. (15)

Combining Eqs. (1), (13), (14) and (15), and using the
definition by De Vos for the profit function(F = W/C), the
dimensionless objective functions both at maximum power
and at maximum modified ecological function conditions are,
respectively,

FN−DP
MP =

1
a

(
1− τ

R
1
θ

)
(1− θ)n

(1− τ)n + β (1− θ)n , (16)

and

FN−DP
ME =

1
a

[
(1+ε)

(
1− τ

R
1
θ

)−ε(1−τ)
]
(1−θ)n

(1−τ)n +β (1−θ)n , (17)

whereε = 1/
√

τ for the case of a Newton heat transfer law
(n = 1) and

ε =
8 + τ −

√
τ (τ + 80)√

τ (τ + 80)− 9τ
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for the case of a Dulong-Petit heat transfer law
(n = 5/4) [7,14]. In previous equations, we also have con-
sidered thatQmax is the maximum heat that can be extracted
from the heat reservoir without performing work, in the same
way as previously considered by De Vos [1], which in this
case givesQmax = gTn

H (1− τ)n. In Figs. 3a and 3b we
show the behavior ofFN−DP

MP andFN−DP
ME for the Newto-

nian law case(n = 1) versus the reduced temperatureθ and
versus the parameterR. As can be seen from Figs. 3a and 3b,
there exists an optimal efficiency value which depends on the
parameterR and the optimum value ofθ. We can also ob-
serve in Figs. 3a and 3b how the benefit diminishes as the
internal irreversibilities (parameterR) increase. Moreover,
the benefits under maximum ecological function conditions
are lower than those obtained under maximum power condi-
tions. The maximization of the objective functions given by
Eq. (16) and Eq. (17) by

d
(
FN−DP

)

dθ

∣∣∣∣∣
θ∗

= 0

gives the corresponding optimal efficiencies. Therefore, tak-
ing the derivatives ofFN−DP

MP andFN−DP
ME with respect toθ

and setting them equal to zero we obtain the following equa-
tions for both conditions: maximum power output and maxi-
mum ecological function, respectively

(1−θ)n+1
τβ− [

(θ (1−n)−1) τ+nRθ2
]
(1−τ)n=0, (18)

(1−θ)n+1
β−

[
(θ (1−n)−1)+

nR√
τ

θ2

]
(1−τ)n=0. (19)

We can solve the above equations to obtain the opti-
mal efficiency in terms of the parameterβ (see Eqs. (A.4)
and (A.11) in the Appendix, for the case of Newton heat
transfer law). However, by using Eq. (7), which in the present
case is written as

β =
f

1− f

(1− τ)n

(1− θ)n ,

we can calculate the optimum working fluid temperature
(θ∗ = T ∗W /TH) that maximizes both Eqs. (16) and (17), and
the optimal efficiencies can be obtained in terms of the frac-
tional fuel cost. Therefore, the optimal efficiencies at max-
imum power output and ecological function conditions are
respectively given by (see Appendix),

FIGURE 4. Comparison between the optimal efficiencies at maxi-
mum power and maximum ecological conditions versus fractional
fuel cost and the parameterR with τ = 1/2, for a) Newton heat
transfer law and for b) Dulong-Petit heat transfer law.

FIGURE 5. Profit function versus the parameterR and the re-
duced temperature for a phenomenological heat transfer law, with
τ = 1/2. a) Maximum power regime and b) Maximum ecological
function regime.

ηN
MP (f, τ, R) = 1− 2 (f − 1) τ

fτ +
√

4(1− f)Rτ + f2τ2
, (20)

ηDP
MP (f, τ, R)

=1− 10 (f−1) τ

(5f−1) τ+
√

80(1−f)Rτ+(1−5f)2 τ2

, (21)

ηN
ME (f, τ, R)=1− 2 (f−1) τ

f
√

τ−
√

4(1−f)R
√

τ+f2τ
, (22)

ηDP
ME (f, τ, R)

=1− 100 (1−f) τ

(1−5f) Λ+
√

800Λ(1−f)R+ [(1−5f) Λ]2
. (23)

In Eq. (23), we have definedΛ = τ +
√

(80 + τ) τ to
simplify the expression for the optimal efficiency under max-
imum ecological conditions. In Figs. 4a and 4b, we show
both optimal efficiencies at maximum power and at maxi-
mum ecological conditions for the Newton (see Fig. 4a) and
the Dulong-Petit (see Fig. 4b) cases. We can see in Figs. 4a
and 4b, how the optimal efficiencies smoothly increase from
the maximum point-efficiency,f = 0, corresponding to en-
ergy sources where the investment is the preponderant cost
up to the Carnot value forf = 1, that is, for energy sources
where the fuel is the predominant cost [1]. Besides, Figs. 4a
and 4b, show that the engine with internal irreversibilities has
a lower efficiency when is compared to the endoreversible
Carnot case (R = 1) [4,5].

Analogously, if we consider in the Novikov model that
the heat transfer is a Stefan-Boltzmann radiation law (Muser
engine [15]) and another phenomenological heat transfer
law [16], then the heat inputQH andQmax are given by,

QH = gTn
H (1− θn) Sign(n), (24)

Qmax = gTn
H (1− τn) Sign(n), (25)

whereSign(n) is the sign function, such thatSign(n)=1 if
n > 0 andSign(n) = −1 if n < 0. Therefore, in this case,
both objective functions at maximum power and at maximum
ecological function conditions respectively are,

FSB−Ph
MP =

1
a

(
1− τ

R
1
θ

)
(1− θn)

(1− τn) + β (1− θn)
, (26)
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and

FSB−Ph
ME =

1
a

[
2

(
1− τ

R
1
θ

)− (1− τ)
]
(1− θn)

(1− τn) + β (1− θn)
, (27)

In Figs. 5a and 5b we show the behavior ofFSB−Ph
MP and

FSB−Ph
ME for the phenomenological heat transfer law case

(n = −1) versus the reduced temperatureθ and the param-
eterR. As we can see in Figs. 5a and 5b, the profit func-
tions have a behavior similar to the Newton and the Dulong-
Petit cases, that is, there exists an optimal efficiency which
depends on the parameterR and the optimum value ofθ.
We can also observe in Figs. 5a and 5b how the benefit
diminishes as the internal irreversibilities (parameterR) in-
crease. In a similar way to the Newton and the Dulong-Petit
cases (see Appendix), we can obtain the optimal efficiencies
in terms of the parameterβ. After taking the derivative of
Eq. (26) with respect toθ and setting it equal to zero, for the
case of the phenomenological heat transfer law(n = −1),
we get,

[
(1−R) τ + R− (1 + β)τ2

]
θ2

− 2τ [1− (1 + β)τ ] θ − τ2β = 0 (28)

Solving Eq. (28) forθ yields

θ=
τ [1−(1+β)τ ]−τ

√
(τ−1)(τ−1)+(τ−R)β

(τ−1)(τ+R)−τ2β
. (29)

Combining Eqs. (14) and (29) we obtain the optimal effi-
ciency,

ηPh
MP (β, τ, R) = 1

− (1− τ)(R + τ)− βτ2

Rτ [1− (1 + β)τ ] + R(1− τ)
√

1 + β(τ−R)
(τ−1)

. (30)

Instead of expressing the result in terms of the param-
eter β, a number that is difficult to obtain from the litera-
ture [1], we can also express it in terms of the fractional fuel

cost [1]. From Eq. (7), in this casen = −1, we obtain the
following relation betweenθ and the parameterβ,

θ =
(1− f)βτ

f(1− τ) + (1− f)βτ
. (31)

After substituting Eq. (31) into Eq. (29) we obtain,

β =
f(2− f)
(1− f)2

(1− τ)
(R− τ)

. (32)

Therefore, after substituting Eq. (32) into Eq. (30), the
optimal efficiency in terms of the fractional fuel cost under
maximum power conditions is given by

ηPh
MP (f, τ, R) =

R− τ

R (2− f)
. (33)

From Eq. (33) it can be observed that forR = 1 (endore-
versible case), the result previously obtained by Chenet al. is
recovered [16]. In Fig. 6a, we show the optimal efficiency at
maximum power conditions for the phenomenological heat
transfer law case, and it can be seen how the optimal effi-
ciency increases from the maximum point-efficiency,f = 0,
corresponding to energy sources where the investment is the
preponderant cost up to the Carnot value forf = 1.

In a similar way to the maximum power regime, from
Eq. (27), taking the derivative ofFPh

ME with respect toθ and
setting it equal to zero

(
dFPh

ME

dθ
= 0

)

yields,

[
(2−Rτ) τ + R− 2(1 + β)τ2

]
θ2

− 4τ [1− (1 + β)τ ] θ − 2τ2β = 0. (34)

Solving Eq. (34) forθ yields

θ =
2τ [1− (1 + β)τ ]− τ

√
2R(1− τ2)β + 4(1− τ) [1− (1 + β)τ ]

R(1− τ2) + 2τ [1− (1 + β)τ ]
. (35)

In a similar way to the maximum power regime, we can
obtain a relation between the parameterβ and the fractional
fuel cost(f) by using Eqs. (31) and (35), and therefore we
can obtain the optimal efficiency in terms of the fractional
fuel cost under maximum ecological conditions, which is
given by

ηPh
ME (f, τ, R) =

R [(f − 3)− (f − 1)τ ] + 2τ

2R (f − 2)
. (36)

In Eq. (36) it can be observed that forR = 1 (endore-
versible case), the result previously obtained by Barranco-
Jiménez and Angulo-Brown is recovered [5]. In Fig. 6a,

we also show the optimal efficiency under maximum ecolog-
ical function conditions for the phenomenological heat trans-
fer law case. On the other hand, when in the Novikov en-
gine model we consider the Stefan-Boltzmann radiation law,
from Eqs. (26) and (27) (forn = 4) we obtain the following
equations for the maximum power and maximum ecological
regimes, respectively

Rev. Mex. F́ıs. 55 (3) (2009) 211–220
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FIGURE 6. Comparison between the optimal efficiencies at maxi-
mum power and maximum ecological conditions versus fractional
fuel cost and the parameterR with τ = 1/2, for: a) Phenomeno-
logical heat transfer law and for b) Stefan-Boltzmann radiation law.

FIGURE 7. a) Ecological rejected heat and maximum power re-
jected heat versus fractional fuel cost and the parameterR, and
b) Quotient between ecological rejected heat and maximum power
rejected heat for a Newton heat transfer law

FIGURE 8. a) Ecological rejected heat and maximum power re-
jected heat versus fractional fuel cost and the parameterR, and b)
Quotient between ecological rejected heat and maximum power re-
jected heat for a DP heat transfer law.

dFSB
MP

dθ
=τβθ8−4R

(
1−τ4

)
θ5+

[
3τ

(
1−τ4

)−2βτ
]
θ4

+τ
[
(1+β)−τ4

]
=0, (37)

dFSB
ME

dθ
=τβθ8−2R

[(
1−τ4

)
+

(
τ−τ5

)]
θ5

+
[
3τ

(
1−τ4

)−2βτ
]
θ4+τ

[
(1+β)−τ4

]
=0. (38)

The previous equations can be solved numerically for dif-
ferent values ofβ; however, using the expression for the frac-
tional fuel cost given by

β =
f

1− f

(
1− τ4

)

(1− θ4)
,

we get

4R (1− f) θ5 + [(4f − 3) τ ] θ4 − τ = 0, (39)

2R [(1− f) (1 + τ)] θ5 + [(4f − 3) τ ] θ4 − τ = 0. (40)

FIGURE 9. a) Ecological rejected heat and maximum power re-
jected heat versus fractional fuel cost and the parameterR, and b)
Quotient between ecological rejected heat and maximum power re-
jected heat for a phenomenological heat transfer law.

FIGURE 10. a) Quotient between power output at maximum eco-
logical function and at maximum power conditions versus frac-
tional fuel cost and the parameterR, with τ = 1/2. b) Quotient
between total entropy production at maximum ecological function
and at maximum power conditions versus fractional fuel cost and
the parameterR, with τ = 1/2.

Therefore, the optimal efficiencies for the Stefan-
Boltzmann radiation law (SB) in both regimes,i.e maxi-
mum power output and maximum ecological function, can be
found by solving numerically Eqs. (39) and (40). In Fig. 6b,
we show these optimal efficiencies for several values of the
parametersf andR. These optimal efficiencies have a simi-
lar behavior to Eqs. (20)-(23), that is, they smoothly increase
from the maximum point-efficiency,f = 0, corresponding to
energy sources where the investment is the preponderant cost
up to the Carnot value forf = 1, that is, for energy sources
where the fuel is the predominant cost [1].

3. Effect on the dissipation, power output and
environmental impact

In the previous section, we considered the fractional fuel
costs for several kinds of fuels, which range from coal to nat-
ural gas (see Table I). We have also shown that the optimal
economical point under maximum ecological function condi-
tions provides a higher reduction on the profits than those ob-
tained under maximum power conditions (see Figs. 3 and 5).
However, this reduction of profit is concomitant with a better
efficiency for a given value of the parameterf that provides
a decrease of the energy rejected to the environment by the
power plant (see Figs. 4 and 6) [4,5]. Therefore, the ecologi-
cal criterion seems to be a suitable procedure for the search of
insights into an engine’s performance with a less aggressive
interaction with the environment. In this context, the follow-
ing simplified analysis is proposed.
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Applying the first law of thermodynamics to the engine
shown in Fig. 1 we get

QL = QH −W = (1− η)QH , (41)

where QL is the heat rejected to the environment by the
power plant. When the power plant works at maximum
power regime for both the Newton and Dulong-Petit cases,
QL is obtained by using Eqs. (14), (15) and (41):

QL (R, τ, θ∗MP ) = gTn
H

[
τ

R

1
θ∗MP

]
(1− θ∗MP )n

. (42)

In a similar way, when the power plant works under max-
imum ecological function conditions, we get

QL (R, τ, θ∗ME) = gTn
H

[
τ

R

1
θ∗ME

]
(1− θ∗ME)n

. (43)

From Eqs. (42) and (43), we can calculate the heat re-
jected to the environment for each value off and under dif-
ferent ways of operation of the power plant. In Fig. 7a, it can
be seen how the heat rejected to the environment under eco-
logical conditions is lower than the heat rejected under max-
imum power conditions for the Newton law case. In Fig. 7b
we show the ratio between the amounts of rejected heat for
each regime: the ecological function and maximum power.
In a similar manner, in Figs. 8 and 9, we show both amounts
of rejected heat for each regime: maximum power and maxi-
mum ecological function, and the ratio between the amounts
of rejected heats for the Dulong-Petit heat transfer law and
the phenomenological heat transfer law. In addition, we can
calculate the total entropy production for the Novikov model
for both regimes: ecological function and maximum power.
Applying the second law of thermodynamics to the engine
model of Fig. 1, the entropy production is given by

σ =
QL

TL
− QH

TH
=

QH −W

TL
− QH

TH
, (44)

which, by using Eqs. (14) and (15) for the Newton and
Dulong-Petit cases, becomes

σ (R, τ, θ) =gTn
H

[
(1−τ)−

(
1− τ

R

1
θ

)]
(1−θ)n. (45)

As for Eqs. (42) and (43), by using Eq. (45) we can
calculate the quotient of the total entropy production for the
Novikov model under both maximum ecological function and
maximum power conditions and for different heat transfer
laws used in the Novikov model, that is,

σ (R, τ, θ∗ME)
σ (R, τ, θ∗MP )

.

In a similar way, using Eqs. (13), (14) and (15), for the
Newton and Dulong-Petit cases, we can calculate the quo-
tient between the power output of the plant for both ecologi-
cal function and maximum power conditions, that is,

W (R, τ, θ∗ME)
W (R, τ, θ∗MP )

.

We can observe in Figs. 10a and 10b, that only in the endore-
versible limit, the corollary 75 - 25 [7] is maintained for each
of the different heat transfer laws used in the Novikov model.

4. Conclusions

In a recent paper, Fischer and Hoffmann [17] showed that a
simple endoreversible model (the so-called Novikov engine)
can reproduce the complex behavior of a quantitative dynam-
ical simulation of an Otto engine including, but no limited
to, effects from losses due to heat conduction, exhaust losses
and frictional losses. Also Curto-Rissoet al. [18] have ana-
lyzed a FTT-model for an irreversible Otto cycle suitable for
reproducing performance results of a real spark ignition heat
engine. In these articles the spirit of FTT is illustrated by
emphasizing the virtues and limitations of this methodology.
However, the usefulness of the FTT models is shown beyond
any doubt. In fact, we can assert that the FTT spirit is con-
comitant with the spirit of Carnotian thermodynamics in the
sense of the search for a certain kind of limit for thermody-
namics variables and functionals. In this work, we study the
thermoeconomics of a non-endoreversible heat engine model
(the so-called Novikov engine). In our study we have used
different heat transfer laws: the Newton’s law of cooling,
the Stefan-Boltzmann radiation law, the Dulong-Petit’s law
of cooling and a phenomenological heat transfer law. We cal-
culate the thermoeconomical optimal efficiencies under two
regimes of performance, namely, the maximum power regime
and the so-called ecological regime. We found that when the
Novikov model maximizes the ecological function, it reduces
the rejected heat to the environment up to about 55% of the
rejected heat in the case of a power plant model working un-
der maximum power conditions. In the final part of our paper,
we also analyzed the effect of the internal irreversibilities on
corollary 75-25 for different relative costs of fuel for several
energy sources.
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A Optimal efficiencies under both maximum
power and maximum ecological conditions:
Newton and Dulong-Petit cases.

From Eq. (16) the profit function under maximum power
regime in the case of a Newton heat transfer law(n = 1)
is given by

FN
MP =

1
a

(
1− τ

R
1
θ

)
(1− θ)

(1− τ) + β (1− θ)
. (A.1)
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The derivative ofFN
MP with respect toθ is

dqN
MP

dθ
= −

τ2 + Rθ2 − τ
[
1 + β (θ − 1)2 + Rθ2

]

R
[
β (θ − 1)2 + τ − 1

]2

θ2

. (A.2)

Now, solving Eq. (A.2) forθ yields

θ∗MP (β, τ, R)

=
τβ −

√
(1− τ)τ

√
R(1 + β − τ)− τβ

R(τ − 1) + τβ
. (A.3)

After substituting Eq. (A.3) in the expression for effi-
ciency, we get

ηN
MP (β, τ, R) = 1− τ

R

1
θ∗MP (β, τ,R)

= 1−
√

τ

R

R(1− τ)− τβ

(1− τ)R
√

1 + β(R−τ)
(1−τ)R −√Rτβ

. (A.4)

We can observe in Eq. (A.4) that forR = 1 the result ob-
tained previously by De Vos [1] is recovered. Besides, when
β = 0, we obtain

ηopt = 1−
√

τ/R

which was previously obtained by Wu and Kiang [11], and
Arias-Herńandezet al. [14]. Instead of expressing the re-
sult in terms of the parameterβ, a number that is difficult to
obtain in the literature [1], we can also express it in terms
of the fractional fuel cost [1]. In a similar way to the case
of a phenomenological heat transfer law, we can express the
parameterβ as

β =
f

1− f

1− τ

1− θ
,

by using the relation between the parameterβ and the frac-
tional fuel cost, for the casen = 1 (see Eq. (7)). Therefore,
the resultant quadratic equation to be solved forθ is found to
be

(1− f)Rθ2 + fτθ − τ = 0, (A.5)

with the solution

θ∗
N
MP =

fτ +
√

4(1− f)Rτ + f2τ2

2R(f − 1)
, (A.6)

By substitutingθ∗
N
MP in the expression for the efficiency,

we get

ηN
MP (f, τ, R) = 1− τ

R

1
θ∗N

MP

= 1− 2 (f − 1) τ

fτ +
√

4(1− f)R + f2τ2
. (A.7)

From Eq. (17), the profit function under maximum eco-
logical function regime is given by

FN
ME =

1
a

(
1− τ

R
1
θ

) [(
1 + 1√

τ

)
+
√

τ
(
1− 1

τ

)]

(1− τ) + β (1− θ)
. (A.8)

In the above equation, we have substitutedε = 1/
√

τ for
the case of a Newton heat transfer law(n = 1) [7]. If we cal-
culate the derivative ofFN

ME with respect toθ we obtain in
this case,

dqN
ME

dθ
=

(1+
√

τ)
[√

τ
(
1+β (θ−1)2

)
+R(1− τ)θ2−τ3/2

]

R [(θ−1)β+τ−1]2 θ2
. (A.9)

Solving Eq. (A.9) forθ yields

θ∗ME (β, τ, R)=
√

τβ−τ1/4
√

1−τ
√

R (1+β−τ)−√τβ

R(τ−1)+
√

τβ
. (A.10)

After substituting Eq. (A.10) in the expression for efficiency, we get

ηN
ME (β, τ,R) = 1− τ

R

1
θ∗ME (β, τ,R)

= 1− τ3/4 [R(1− τ)−√τβ]

R
[√

1− τ
√

(R(1− τ) + β)−√τβ − τ1/4β
] . (A.11)

In Eq. (A.11), when we calculate

lim
β→0

[
ηN

ME (β, τ, R)
]
,

we obtain

ηME (τ, R) = 1−
√

1− τ√
R−Rτ

τ3/4,
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and it can be observed that forβ = 0 (endoreversible case) we obtainηopt = 1 − τ3/4, which was previously obtained by
Velascoet al. [9] and also by Angulo Brown and Arias-Hernández [7].

In a similar way to the maximum power conditions, we can calculate the derivative ofFN
ME with respect toθ and by the

appropriate substitution of the parameterβ in terms of the fractional fuel cost; in this case, the resultant quadratic equation to
be solved forθ is found to be

(1− f) Rθ2 + f
√

τθ −√τ = 0, (A.12)

with solution

θ∗
N
ME =

f
√

τ −
√

4(1− f)R
√

τ + f2τ

2R(f − 1)
. (A.13)

After substitutingθ∗
N
ME in the expression for the efficiency, we get

ηN
ME (f, τ, R) = 1− τ

R

1
θ∗N

ME

= 1− 2 (f − 1) τ

f
√

τ −
√

4(1− f)R
√

τ + f2τ
, (A.14)

From Eq. (16) the profit function under maximum power regime for the Dulon-Petit heat transfer law(n = 5/4) is given
by

FDP
MP =

1
a

(
1− τ

R
1
θ

)
(1− θ)5/4

(1− τ)5/4 + β (1− θ)5/4
. (A.15)

Similarly to the Newton heat transfer law, we can calculate the derivative ofFDP
MP with respect toθ and by the appropriate

substitution of the parameter

β =
f

1− f

(1− τ)5/4

(1− θ)5/4
;

in this case, the resultant equation to be solved forθ is found to be,

dqDP
MP

dθ
= − (f − 1) (1− θ)1/4

[
5(f − 1)Rθ2 + τ(4 + θ − 5fθ)

]

4R (1− τ)5/4 θ2
= 0, (A.16)

with solution

θ∗MP DP =
(5f − 1)τ +

√−τ
√

80(f − 1)R− (1− 5f)2τ
10R(f − 1)

, (A.17)

By substitutingθ∗
MP DP in the expression for the efficiency we get

ηDP
MP (f, τ, R) = 1− τ

R

1
θ∗

MP DP

= 1− 10R(f − 1)
(5f − 1)τ +

√−τ
√

80(f − 1)R− (1− 5f)2τ
, (A.18)

From Eq. (17) the profit function under maximum ecological regime for the Dulong-Petit heat transfer law(n = 5/4) is
given by,

FDP
ME =

1
a

[(
1 + 8+τ−

√
τ(τ+80)√

τ(τ+80)−9τ

) (
1− τ

R
1
θ

)− 8+τ−
√

τ(τ+80)√
τ(τ+80)−9τ

(1− τ)
]

(1− θ)5/4

(1− τ)5/4 + β (1− θ)5/4
. (A.19)

Likewise, we can calculate the derivative ofFDP
ME with respect toθ and by the appropriate substitution of the parameter

β =
f

1− f

(1− τ)5/4

(1− θ)5/4
;

in this case, the resultant equation to be solved forθ is found to be,

dqDP
ME

dθ
=

[
5R (1− f)

√
τ(80 + τ) + 5R(f − 1)τ

]
θ2 + τ(40f − 8)θ − 32τ = 0, (A.20)
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with solution,

θ∗MEDP =
(1− 5f)Λ +

√
800(1− f)RΛ + (1− 5f)2Λ2

100(1− f)R
, (A.20)

with Λ = τ +
√

(80 + τ) τ . Finally, after substitutingθ∗
MEDP in the expression for efficiency we get

ηDP
ME (f, τ, R) = 1− τ

R

1
θ∗

MEDP

= 1− 100 (1− f) τ

(1− 5f) Λ +
√

800Λ(1− f)R + [(1− 5f) Λ]2
. (A.20)
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Herńandez,J. Phys. D, 33D (2000) 355.

10. B. Sahin and A. Kodal,Energy. Convers. Management45
(2004) 1941.

11. M.A. Antar and S.M. Zubair,Energy. Convers. Management42
(2001) 1169.

12. C. Wu and R.L. Kiang,Energy1 (1992) 1173.

13. J Chen,J. Phys. D: Appl. Phys.27 (1994) 1144.
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