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In contrast to conventional ideal Bose and Fermi degenerate gases, atoms in experimental ultracold gases interact among themselves and are
trapped by an external potential. In this work, we consider two particles of massm trapped by a3D harmonic potential of frequencyω, and
interacting through an isotropic short range potential of intensityV0 and rangeb/2, with b/2 ¿

√
~/mω. Eigenfunctions and eigenenergies

are obtained and compared with those resulting (a) from an effective contact interaction and (b) in the absence of the trapping potential.
Concepts like zero-resonance and binding energy, usually introduced for problems that allow a continuum spectra, are discussed for trapped
particles.

Keywords:Two body interactions; trapped systems; finite range potential effects.

En contraste con los gases degenerados de Fermi y Bose ideales convencionales, experimentalmente los gases atómicos ultrafŕıos interact́uan
entre śı adeḿas de estar confinados por medio de un potencial externo. En este trabajo, estudiamos dos partı́culas de masam, las cuales están
atrapadas por medio de un potencial armónico tridimensional con frecuenciaω, e interact́uan a trav́es de un potencial de corto alcance con
intensidadV0 y rangob/2, siendob/2 ¿

√
~/mω. Se obtienen las eigenfunciones y eigenenergı́as, y se comparan con aquellas obtenidas:

(a) a partir de una interacción de contacto; (b) en ausencia del potencial de confinamiento. Conceptos como resonancia-cero y energı́a de
ligadura, que usualmente se introducen en problemas que pueden tener un espectro continuo, se discuten en el caso de partı́culas atrapadas.

Descriptores:Interacciones de dos cuerpos; sistemas atrapados; interactuantes; efectos de potenciales de rango finito.

PACS: 03.65.Ge; 03.65-w; 32.80.Lg

1. Introduction

In recent years, it has been possible to tune the interactions
between atoms in dilute ultracold gases via Feshbach res-
onances. This is achieved by inducing slight variations on
open and closed channel energies using magnetic fields [1].
For broad resonances, the binary interaction may be mod-
eled by a single channel potential. Experiments are always
performed with trapped atomic gases. The relevance of the
system makes necessary to understand clearly the trapping
effects on the behavior of the interacting particles.

Some general remarks must be done when comparing
a collision process between interacting but otherwise free
atoms, and interacting atoms trapped by an external potential.
In the former case, in a single channel scenario, the scattering
is usually described in terms of phase shifts. In the limit of
low energies, the process is determined by thes-wave scatter-
ing lengtha0 disregarding the detailed form of the interaction
potential. For positive (negative) values ofa0 the particles
experience an repulsive (attractive) effective contact interac-
tion. In the case|a0| → ∞, a zero energy resonance occurs.
This critical value of|a0| corresponds to an infinite scatter-
ing cross-section due to the presence of a virtual state of zero
energy; the potential is nearly strong enough to support an
s-wave bound state.

In the case of interacting trapped atoms, the atomic two-
body wave functions correspond always to bound states both
for the relative and center of mass degrees of freedom. As a
consequence, the scatteringin andout states cannot be de-
fined and the concept of phase shift loses meaning. However,

if the interaction potential has a range much smaller than the
trapping natural length scale, it is still expected (and experi-
mentally confirmed) that the scattering length defined in the
absence of a trapping potential determines essential proper-
ties of the system at low temperatures.

Buschet al. [2] studied this problem in the case of a reg-
ularized contact interaction

Vcontact(~ri, ~rj) =
4π~2a0

m
δ(3)
reg(~ri − ~rj) (1)

=
√

2π~2a0

m
δ(3)(~ri − ~rj)

∂

∂r
r (2)

and a spherical trapping potential of frequencyω. For thes-
states, they found an implicit equation for the energy eigen-
valuesE,

√
2
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and the explicit expression for the corresponding eigenfunc-
tions
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The normalization constantA satisfies
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andU is the hypergeometric function in standard notation.
The expression forA can be found using similar proce-
dures to those outlined in Ref. 3 and taking into account
Eq. (3). Notice that at|a0| → ∞, the ground state energy
is E0 = ~ω/2.

The purpose of this paper is to study the energy eigenval-
ues and eigenfunctions of two particles of massm trapped in
a harmonic potential of frequencyω and interacting through
an isotropic potential of finite rangeb/2 ¿

√
~/mω. The

potential is chosen so that, in otherwise free space, it would
admit a finite number of bound states as its intensity is varied.
We compare the results for trapped and unconfined particles,
and analyze the role of the scattering length defined for a bi-
nary collision in free space. Comparison is also made with
the regularized contact interaction results given above. Thus,
our study complements the work by Buschet al. wherea0

is directly introduced into the effective interaction. Besides,
our results provide a two-body correlated basis which can
be used, for example, in many-body quantum Monte Carlo
simulations of atomic degenerate gases [4]. In Monte Carlo
calculations, for numerical reasons and because of concep-
tual problems in the|a0| → ∞ limit, the contact interaction
Vcontact cannot be implemented directly [4,5].

2. Two-body potential

Consider a two-body interaction potential of rangeb/2 given
by

V (r) = −V0e
−2r/b, V0 > 0 (6)

wherer denotes the relative distance between the particles.
The Schr̈odinger equation[

p̂2

2m
+ V

]
φ = Eφ (7)

has analyticals-wave solutions [6]φ(r) = v(r)/r both in the
continuum

v(y) = c1Jib
√

Em/~(y) + c2J−ib
√

Em/~(y) (8)

and in the bound states region

v(y) = c+J
b
√
|E|m/~(y). (9)

Here y = (b
√

V0m/~)e−r/b and Jν represents the Bessel
function of the first kind of orderν. By imposing the bound-
ary condition at the origin,

c1Jib
√

Em/~(b
√

V0m/~)

+c2J−ib
√

Em/~(b
√

V0m/~) = 0, (10)

and the boundary condition atr → ∞, v → sin(kr + δ0),
and considering the limitE → 0+, the following expression
is found for thes-wave scattering length:

a0 = −b
[π

2
N0(b

√
V0m/~)

J0(b
√

V0m/~)
−log

(
b
√

V0m/2~
)−C

]
(11)

with N0 the Bessel function of the second kind and order
zero, andC the Euler constant. Depending on the values

of the range parameterb and the intensityV0, Eq. (11) il-
lustrates the well known fact that the scattering length can
be positive or negative although the two-body potential is
always attractive. The scattering length diverges whenever
J0(b

√
V0m/~) = 0. If zt, t = 0, 1, 2, ... are the zeros of this

Bessel function in increasing order, the potentialV (r) only
admitst-bound states forzt < b

√
V0m/~ < zt+1. The dis-

crete eigenvalues are determined by the boundary condition
at r = 0, J

b
√
|E|m/~(b

√
V0m/~) = 0.

When the two-body collision process takes place in the
presence of a spherical harmonic potential of frequencyω,
the two-body Schr̈odinger equation can be separated in a cen-
ter of mass equation

[
P̂2

2M
+

1
2
Mω2R2

]
Φ(R)=ECMΦ(R), M=2m, (12)

and a relative coordinate equation
[
p̂2

2µ
+

1
2
µω2r2−V0e

−2r/b

]
ϕ(r)=Eϕ(r), µ=

m

2
. (13)

The former is the well known harmonic oscillator equation,
and the latter can be numerically solved for givenb andV0.

In Table I, the ground energy,E0, and thes-wave lowest
eigenvaluesEi of Eq. (13) are illustrated for a given value
of the potential rangeb/2 and several potential depthsV0.
We first considerV0 values between zero and a maximum
Vmax so that at most one bound state is admitted by the po-
tential. The inverse of the scattering length covers the interval
(−∞,∞) once. We observe that for interaction strengths

V0 < z2
0~2/(mb2) = ṽ0

the system in the absence of the trapping potential, Eq. (7),
has no bound states. Meanwhile, the energies for trapped
particles are lower than the noninteracting value3/2~ω. At
V0 ' ṽ0 the scattering length diverges and, for such aV0, the
confined system ground state has an energy eigenvalue near
1/2~ω and thes-wave excited states of ordern have energies
∼ (2n+1/2)~ω, as expected from Buschet al. calculations.
As V0 increases the difference between the ground state en-
ergy for the particles in the presence and in the absence of
the trapping potential tends to zero. Besides, the first excited
state energy approaches3/2~ω asa0 → 0+. In that limit the
contact interaction in free space would admit a bound state
with divergent binding energy. Here the finite value ofV0

avoids this unphysical feature.
If the field intensity is further increased towards the sec-

ond zero-energy resonance condition

V0 → z2
1~2/(mb2) = ṽ1

the first excited state energy of the trapped system ap-
proaches the1/2~ω eigenvalue. The other excited states are
separated by a∼ 2~ω factor. For even largerV0, we observe
that the difference between thefirst excited state energy for
trapped and unconfined atoms also tends to zero.
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TABLE I. Lower discretes-state relative motion energy eigenvalues of two particles interacting through the potential Eq. (6) with
b = 0.03

√
~/mω. When two rows are reported for a givena0 the upper corresponds to the interaction in the absence of a trapping

potential and the lower when it is on.

a0 V0 E0 E1 E2 a0 V0 E0 E1 E2 E3[√
~

mω

] [
~ω

] [
~ω

] [
~ω

] [
~ω

] [√
~

mω

] [
~ω

] [
~ω

] [
~ω

] [
~ω

] [
~ω

]

-0.0584 28848.5 -4304.95

-0.0525 3614.504 1.45885 3.43836 5.42338 -0.0584 28848.5 -4304.97 1.45460 3.43261 5.41691

-0.1173 30515.2 -4820.49

-0.1106 4720.985 1.41502 3.37331 5.34333 -0.1173 30515.2 -4820.43 1.41078 3.36830 5.33877

-0.1804 31403.2 -5101.96

-0.1879 5310.566 1.36008 3.29344 5.24771 -0.1804 31403.2 -5101.98 1.36631 3.30455 5.26333

-0.5732 32937.2 -5599.0

-0.5733 6017.906 1.14462 3.01448 4.94650 -0.5732 32937.2 -5599.0 1.14909 3.02777 4.96757

∞ 33857.0 -5903.4

∞ 6425.786 0.510656 2.52659 4.53714∞ 33857.0 -5903.4 0.520239 2.54982 4.56705

2.1035 6545.231 -0.23188 2.0014 34152.3 -6002.0 -0.262403

2.1035 6545.231 0.00000 2.33058 4.38997 2.0014 34152.3 -6002.0 -0.031234 2.34447 4.41396

0.5810 6876.584 -3.2487 0.5812 34943.3 -6268.6 -3.52506

0.5810 6876.584 -3.2079 1.94716 4.07045 0.5812 34943.3 -6268.6 -3.48380 1.95525 4.08711

0.1952 7933.069 -34.580 0.1954 37779.3 -7250.0 -44.8408

0.1952 7933.069 -34.576 1.66094 3.73393 0.1954 37779.3 -7250.1 -44.8365 1.66185 3.73652

0.1170 9253.132 -115.04 0.1176 41798.7 -8704.85 -177.821

0.1170 9253.132 -115.04 1.59568 3.64153 0.1176 41798.7 -8704.9 -177.819 1.59631 3.64283

0.0524 14458.02 -774.04 0.0524 56857.6 -14699.7 -1334.76

0.0524 14458.02 -774.04 1.54230 3.55782 0.0524 56857.6 -14699.6 -1334.73 1.54229 3.56315

All these numerical results are compatible with Eq. (3)
valid for a range zero interaction, the comparison between
our numerical solutions for the eigenenergies and those ob-
tained by Buschet al. is shown in Fig. 1. It can be seen that
the positive eigenvalues are always very similar for potential
rangesb/2 < 0.03

√
~/mω. As for the negative eigenval-

ues, the comparison between the ground state energy of the
zero-range potential and of a potential with finite rangeb/2
is poorer as the depth of the latter potential increases. Let us
choose, for instance,a0 = 0.581

√
~/mω the Buschet al.

equation gives the ground state energyE0 = −2.9217~ω.
For the exponential potential trapped system,E0 = −3.2~ω
if b = 0.03

√
~/mω (see Table I),versus

E0 = −2.96~ω = −~2/ma2
0

for the contact interaction in free-space. Taking again
b = 0.03

√
~/mω, for a0 = 0.117011

√
~/mω the en-

ergy for the trapped system and a regularized delta potential
is E0 = −73.04~ω, versus E0 = −115.0389~ω for the

b = 0.03
√
~/mω exponential potential (see Table I),versus

E0 = −73.04~ω = −~2/ma2
0

for the contact interaction in free-space. In order to get results
closer to contact interaction, shorter ranges must be consid-
ered. For instance, ifa0 = 0.117011

√
~/mω, for different

values of the parameterb in the limit b → 0 we found: for
b = 0.02

√
~/mω, it turns out thatE0 = −99.261418~ω,

while for b = 0.015, it results E0 = −91.940596~ω.
A numerical fit of the energy as a function ofb using
a second order polynomial predictsE0 = −72.25~ω in
good agreement with the zero-range energy reported above
(E0 = −73.04~ω). If one is interested in obtaining results
closer to the contact interaction ones, it is necessary to take
into account more significant figures for the scattering length.
For the potential ranges illustrated in the second column of
Table I, excited states energiesEi, i ≥ 1 coincide at least
within the first three figures with the analytical result for the
regularized delta function.
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FIGURE 1. Lowests-wave relative energy eigenvalues in units of
~ω for two colliding trapped particles, Eq. (13), around the first
resonance. They were evaluated by considering a potential range
b/2 = 0.015

√
~/mω and a strengthV0 starting fromV0 ∼ 0 to

the lowest|V0| yieldinga → 0+. The scattering length is measured
in units of

√
~/mω. Circles show the energy obtained by Buschet

al.

FIGURE 2. Difference between the binding energies as estimated
with interacting trapped atoms and with interacting atoms in oth-
erwise free space. The dots give the numerical values with errors
smaller than the symbols used to plot them and the line is a numer-
ical interpolation. The interaction intensity is chosen so that just
one bound state is allowed for the free space system. The param-
eter b = 0.03

√
~/mω was used for the numerical calculations.

All these results confirma0 as the relevant parameter for
determining the general features of the interaction. That is,
a0 determines the eigenvaluesE > 1/2~ω regardless of the
number of states withE < 1/2~ω; it seems that the states
with E > 1/2~ω inherit the free space “scattering” states
role, and the state withE = 1/2~ω replaces the zero-energy
resonance ata0 → ∞. Notice that in the confined two-body

system the concept of binding energy must be revisited. For
particles in free space, it is defined as the energy necessary
to reach the continuum. According to the previous discus-
sion, for trapped atoms it could be defined as the difference
between the energy eigenvalue of the state under consider-
ation and the lowest eigenvalueE > ~ω/2. The scenario
behind measuring such energies would be the dissociation of
the molecule keeping the trapping potential on. In Fig. 2, the
difference between the binding energies measured with and
without harmonic trapping, as a function of the inverse of the
scattering length, is illustrated.

The general behavior of the radials-eigenfunctionsva0

andua0 is illustrated for unconfined particles in Fig. 3 and
for trapped particles in Fig. 4. For an interaction in oth-
erwise free space, the zero-energy resonant functionv∞(r)

FIGURE 3. Radial functionva0(r), φa(r) = ua(r)/r, for interact-
ing particles in otherwise free space, Eqs.(8-9). The zero-energy
resonant functionv∞(r) (solid line) tends to a nonzero constant
asr → ∞, while v2.1(r) (dashed line) andv0.58(r) (dotted line)
correspond to increasingly bound states.

FIGURE 4. (Color online) Radial function ua0(r),
ϕa0(r) = ua0(r)/r, for two interacting particles in the presence of
the trapping potential, Eq. (13). The dot-dashed curve corresponds
to the grounds-state for a negative scattering lengthu−0.6(r),
and the resonant functionu∞(r) is given by the solid curve, while
u2.1(r) by the dashed one andu0.58(r) by the dotted line cor-
respond to positive scattering lengths. In this figure the wave
functions have been properly normalized. Distances are measured
in units of

√
~/mω.
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(solid line) goes to a nonzero constant asr →∞, meanwhile
v2.1(r) (dashed line) andv0.58(r) (dotted line) correspond
to increasingly bound states. For trapped particles, before
the zero-resonance condition is achieved the wave functions
have, in general, a structure in which three regions are rec-
ognized, as illustrated by the dot-dashed line in Fig. 3. Very
close to the origin, the slope ofu−0.6(r) is positive and large,
so that forr ∼ b/2 it becomes positive but less than one until
it reaches an extremum at1 > r À b/2 and becomes nega-
tive. At the zero-resonance condition the intermediate region
shrinks so that the extremum is reached atr ∼ b/2; neverthe-
less the function decays directly as the harmonic oscillator
factorexp(−mωr2/~).

In the region of positive scattering lengths, anansatz for
the ground state function is:

ϕ(r) = v(y(r)) exp(−mωr2/~)g(r)/r (14)

with v defined in Eq. (9) for bound states in the absence
of a trapping potential, it is numerically found that the val-
ues of the functiong(r) are in the interval(0.99, 1.01) for
b ≤ 0.03

√
~/mω. The structure of Eq. (14) for the eigen-

functions at|a0| → ∞ allows us to understand the origin of
the eigenvalue∼ 1/2~ω. In this case,v(y(r)) takes care of
the boundary conditionv(0) = 0 so that the effective equa-
tion for ψ(r) =: ϕ(r) · r/v is almost identical to that of the
one-dimensional harmonic oscillator without the requirement
of becoming null atr = 0, thus admitting the possibility
E ∼ 1/2~ω.

For negative values of the scattering length, we found that
the numerical solution to the ground state problem can be ap-
proximated using the following analytical compact represen-
tation:

ϕapx(r) = J0(z0e
−r/b)e−mωr2/4~

×(1 + ce−2r/b)P (r/b)/r (15)

with c independent ofr andP (r/b) a polynomial of fourth
order, both of which depend onV0 andb. The coefficients
of the polynomial and the parameterc were obtained using
standard numerical fitting methods. For|V0| ¿ (z0/b)2~ω,
the polynomial P (r/b) is almost linear while for
|V0| ≤ (z0/b)2~ω, it turns out thatc ≈ 0. The accuracy
of this approximation was measured by evaluating the ra-
tio ϕapx(r)/ϕnum(r) between the analytical approximate
expression Eq. (15) and the numerical solution. This ratio
yielded1±0.0001 over the entire interval0 ≤ r ≤ 3

√
~/mω

for b/2 ≤ 0.015
√
~/mω.

All the results discussed above are just an illustration of
what we have found numerically for all values of the param-
eterb that we studied withinb < 0.05

√
~/mω.

3. Conclusions

We have shown that even an extremely short range interac-
tion between particles trapped in a harmonic potential, may
significantly alter both the spectra and eigenfunctions in com-
parison with (i) noninteracting trapped particles and (ii) un-
confined interacting particles. Our results are compatible
with previous findings fors-states and a regularizedδ po-
tential [2]. They allow us to establish a more clear relation-
ship between contact interaction and finite range results for
trapped interacting dilute gases.

Notice that states with higher angular momenta can also
be analyzed and compared to pseudopotential contact inter-
action predictions. In those cases, the scattering is character-
ized by other parameters,e. g., thep-scattering volume. It
must also be emphasized that our results show the need to
take trapping effects into account when binding energies are
measured particularly near the limita0 →∞.

Although all calculations were presented for a particu-
lar potentialV (r), the qualitative features of our results are
expected to apply in general for short range interaction po-
tentials.
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