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Trapping effects on short-range two-body interactions
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In contrast to conventional ideal Bose and Fermi degenerate gases, atoms in experimental ultracold gases interact among themselves and «
trapped by an external potential. In this work, we consider two particles of masspped by @D harmonic potential of frequency, and
interacting through an isotropic short range potential of interigjtgnd range/2, with b/2 < /h/mw. Eigenfunctions and eigenenergies

are obtained and compared with those resulting (a) from an effective contact interaction and (b) in the absence of the trapping potential.
Concepts like zero-resonance and binding energy, usually introduced for problems that allow a continuum spectra, are discussed for trappe
particles.

Keywords:Two body interactions; trapped systems; finite range potential effects.

En contraste con los gases degenerados de Fermiy Bose ideales convencionales, experimentalmentedosgasabrafios interadian
entre $aden@s de estar confinados por medio de un potencial externo. En este trabajo, estudiamogdi@smtmasa, las cuales eah
atrapadas por medio de un potencial anigo tridimensional con frecuencig e interacian a traés de un potencial de corto alcance con
intensidad; y rangob/2, siendob/2 < /i/mw. Se obtienen las eigenfunciones y eigenel@esigy se comparan con aquellas obtenidas:
(a) a partir de una interadm de contacto; (b) en ausencia del potencial de confinamiento. Conceptos como resonancia-cefa gleenerg
ligadura, que usualmente se introducen en problemas que pueden tener un espectro continuo, se discuten en elicalss dérppadas.

Descriptores:Interacciones de dos cuerpos; sistemas atrapados; interactuantes; efectos de potenciales de rango finito.

PACS: 03.65.Ge; 03.65-w; 32.80.Lg

1. Introduction if the interaction potential has a range much smaller than the
trapping natural length scale, it is still expected (and experi-

In recent years, it has been possible to tune the interactiongentally confirmed) that the scattering length defined in the

betWeen atoms in d|lute Ultracold gaseS Via. FeshbaCh re%bsence of a trapping potentia' determines essentia| proper-

onances. This is achieved by inducing slight variations onjes of the system at low temperatures.

open and closed channel energies using magnetic fields [1]. Buschet al. [2] studied this problem in the case of a reg-

For broad resonances, the binary interaction may be modjarized contact interaction

eled by a single channel potential. Experiments are always

performed with trapped atomic gases. The relevance of the Veontact (7, 7)) = Anh?ag 5@(% —7) (1)

system makes necessary to understand clearly the trapping m

effects on the behavior of the interacting particles. V2rh2ag YN
Some general remarks must be done when comparing = T 6 (5 — Tj)g” &)

a collision process between interacting but otherwise free ) ) _

atoms, and interacting atoms trapped by an external potentignd @ spherical trapping potential of frequencyFor thes-

In the former case, in a single channel scenario, the scatterirgjates, they found an implicit equation for the energy eigen-
is usually described in terms of phase shifts. In the limit ofValuesE,
low energies, the process is determined bystheave scatter-

ing lengthag disregarding the detailed form of the interaction = , 3)
potential. For positive (negative) values @f the particles I(=E/(2hw) +1/4) o

experience an repulsive (attractive) effective contact interacand the explicit expression for the corresponding eigenfunc-
tion. In the caseay| — oo, @ zero energy resonance OCCUrS.tjgns

This critical value of|ag| corresponds to an infinite scatter-

\/if(—E/(Zhw)+3/4) i/ mw

. . . 2
ing cross-section dge f[o the presence of a virtual state of zero wo(r) = A : efél“(u)U <V, §7 f”") ’
energy; the potential is nearly strong enough to support an 2V 3 2" mw
s-wave bound state. E 3
In the case of interacting trapped atoms, the atomic two- V= ohe A (4)

body wave functions correspond always to bound states both o o

for the relative and center of mass degrees of freedom. As &h€ normalization constant satisfies

consequence, the scatteritgandout states cannot be de- ) , OF

fined and the concept of phase shift loses meaning. However, A" = \@77%870 ©)
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and U is the hypergeometric function in standard notation.of the range parametérand the intensity,, Eq. (11) il-

The expression forA can be found using similar proce- lustrates the well known fact that the scattering length can

dures to those outlined in Ref. 3 and taking into accounbe positive or negative although the two-body potential is

Eg. (3). Notice that atag| — oo, the ground state energy always attractive. The scattering length diverges whenever

is By = hw/2. Jo(bv/Vom/h) = 0. If z;,t = 0,1,2, ... are the zeros of this
The purpose of this paper is to study the energy eigenvaBessel function in increasing order, the potentidl) only

ues and eigenfunctions of two particles of mastrapped in  admits¢-bound states fot; < b/Vom/h < z;41. The dis-

a harmonic potential of frequencyand interacting through crete eigenvalues are determined by the boundary condition

an isotropic potential of finite rang®/2 < /fi/mw. The atr =0, me/h(b\/%m/h) =0.

potential is chosen so that, in otherwise free space, it would When the two-body collision process takes place in the

admit a finite number of bound states as its intensity is variedpresence of a spherical harmonic potential of frequency

We compare the results for trapped and unconfined particleshe two-body Schirdinger equation can be separated in a cen-
and analyze the role of the scattering length defined for a biter of mass equation

nary collision in free space. Comparison is also made with

the regularized contact interaction results given above. Thus, | P? 1

our study complements the work by Busehal. wherea, 2M+2Mw2R2] ®(R)=Ecuy®R), M=2m, (12)

is directly introduced into the effective interaction. Besides, -
our results provide a two-body correlated basis which car@nd a relative coordinate equation

be used, for example, in many-body quantum Monte Carlo -, 1

simulations of atomic degenerate gases [4]. In Monte Carlo erpwzrzvoe%/b} o(r)=Ep(r), p=—. (13)
calculations, for numerical reasons and because of concep- [2p 2 2

tual problems in th¢ao| — oo limit, the contact interaction  The former is the well known harmonic oscillator equation,

Veontact CANNOL be implemented directly [4, 5]. and the latter can be numerically solved for giveand V.
In Table I, the ground energy,,, and thes-wave lowest
2. Two-body potential eigenvaluest; of Eq. (13) are illustrated for a given value

of the potential rangé/2 and several potential depth$.
Consider a two-body interaction potential of rardgé given  We first considerl}, values between zero and a maximum
by Vmaz SO that at most one bound state is admitted by the po-
Vir)= —Voe /b, Vo >0 (6) tential. The inverse of the scattering length covers the interval

wherer denotes the relative distance between the particled. 00, o) once. We observe that for interaction strengths
The Schédinger equation Vo < 222/ (mb) = 5o

~ 2

L

o ¢=E¢ (7)  the system in the absence of the trapping potential, Eq. (7),

has no bound states. Meanwhile, the energies for trapped
has analyticai-wave solutions [6}(r) = v(r)/r bothinthe  particles are lower than the noninteracting vabi@hw. At
continuum Vb =~ 9 the scattering length diverges and, for sudhathe
— o] L] 3 confined system ground ;tate has an energy elgenval_ue near
_ oly) = e1day Em/h(.y) <27 iv/ B/ 9) ® 1/2hw and thes-wave excited states of ordethave energies
and in the bound states region ~ (2n+1/2)hw, as expected from Buseh al. calculations.
o(y) =y J Y). 9) As V; increases _the difference between the_ ground state en-
) by ‘E‘m/h( ) ergy for the particles in the presence and in the absence of
Herey = (by/Vom/h)e~"/* and.J, represents the Bessel the trapping potential tends to zero. Besides, the first excited
function of the first kind of order. By imposing the bound- state energy approachgffiw asag — 0. In that limit the
ary condition at the origin, contact interaction in free space would admit a bound state
with divergent binding energy. Here the finite value 16f
1T gm0V Vom /) avoids this unphysical feature.

tead Em/h(b /Vom/h) -0, (10) If the field intensity is further m_creased towards the sec-
) ond zero-energy resonance condition

and the boundary condition at— oo, v — sin(kr + d),
and considering the limiZ — 0, the following expression Vo — 2212 /(mb?) = 0,

is found for thes-wave scattering length: )
the first excited state energy of the trapped system ap-

ap = ,b[fNO(b— VVorn/h) —log (bm/gh) —C} (11)  proaches the /2hw eigenvalue. The other excited states are
2 Jo(byv'Vom/h) separated by & 27w factor. For even larger,, we observe
with Ny the Bessel function of the second kind and orderthat the difference between tiférst excited state energy for
zero, andC the Euler constant. Depending on the valuestrapped and unconfined atoms also tends to zero.
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TABLE |. Lower discretes-state relative motion energy eigenvalues of two particles interacting through the potential Eq. (6) with
b = 0.03\/h/mw. When two rows are reported for a give the upper corresponds to the interaction in the absence of a trapping
potential and the lower when it is on.

ao Vo Ey Ey E, ao Vo Ey By Es E3

i O ) S ) % 5 B U
-0.0584 28848.5 -4304.95

-0.0525  3614.504  1.45885  3.43836 5.42338 -0.0584 28848.5 -4304.97 1.45460 3.43261 5.41691
-0.1173 30515.2  -4820.49

-0.1106  4720.985 141502 3.37331 5.34333 -0.1173 30515.2  -4820.43 1.41078 3.36830 5.33877
-0.1804 31403.2 -5101.96

-0.1879  5310.566  1.36008  3.29344 5.24771 -0.1804 31403.2 -5101.98 1.36631 3.30455 5.26333
-0.5732 32937.2  -5599.0

-0.5733  6017.906  1.14462  3.01448 4.94650 -0.5732 32937.2  -5599.0 1.14909 3.02777  4.96757
0 33857.0  -5903.4

00 6425.786 0.510656 2.52659 4.5371400 33857.0 -5903.4 0.520239  2.54982  4.56705

2.1035 6545.231  -0.23188 2.0014 34152.3  -6002.0 -0.262403

2.1035 6545.231  0.00000 2.33058 4.38997 2.0014 34152.3  -6002.0 -0.031234 2.34447 4.41396

0.5810 6876.584 -3.2487 0.5812 34943.3  -6268.6 -3.52506

0.5810 6876.584 -3.2079 1.94716 4.07045 0.5812 34943.3  -6268.6 -3.48380 1.95525 4.08711

0.1952 7933.069 -34.580 0.1954 37779.3  -7250.0 -44.8408

0.1952 7933.069 -34.576 1.66094 3.73393 0.1954 37779.3  -7250.1 -44.8365 1.66185 3.73652

0.1170 9253.132 -115.04 0.1176 41798.7 -8704.85 -177.821

0.1170 9253.132 -115.04 1.59568 3.64153 0.1176 41798.7  -8704.9 -177.819 159631 3.64283

0.0524 14458.02 -774.04 0.0524 56857.6 -14699.7 -1334.76

0.0524 14458.02 -774.04 154230 3.55782 0.0524 56857.6 -14699.6  -1334.73 1.54229 3.56315

All these numerical results are compatible with Eq. (3)b = 0.03/:/mw exponential potential (see Tabled)rsus
valid for a range zero interaction, the comparison between
our numerical solutions for the eigenenergies and those ob-
tained by Busclet al. is shown in Fig. 1. It can be seen that

the positive eigenvalues are always very similar for potentlalfor the contact interaction in free-space. In order to get results

rangesb/2 < 0'0_3 v/B/mw. As for the negative eigenval- closer to contact interaction, shorter ranges must be consid-
ues, the comparison between the ground state energy of ﬂ}—:‘?ed. For instance, if — 0117011% for different
zero-range potential and of a potential with finite range ' '

values of the parametérin the limitb — 0 we found: for

Ey = —73.04hw = —h?/ma?

is poorer as the depth of the latter potential increases. Let us :
. = 0.024/h/muw, it turns out thatty = —99.261418hw,
choose, for instancay = 0.581/7/ s the Buscher al. Lo/ TS B0 Ey = —91.940596h

equation gives the ground state enefigy = —2.9217Aw.

. . A numerical fit of the energy as a function éf usin
For the exponential potential trapped systdip,= —3.2w umen ! gy as Hncti Hsing

o a second order polynomial predictyy = —72.25hw in
it b= 0.03/h/mw (see Table lyersus good agreement with the zero-range energy reported above
(Eo = —73.04hw). If one is interested in obtaining results

Ey = —2.96hw = —h? /maj closer to the contact interaction ones, it is necessary to take
into account more significant figures for the scattering length.
for the contact interaction in free-space. Taking againFor the potential ranges illustrated in the second column of
b = 0.03y/h/mw, for ay = 0.117011/h/mw the en- Table I, excited states energiés, i > 1 coincide at least
ergy for the trapped system and a regularized delta potentiabithin the first three figures with the analytical result for the

is By —73.04hw, versus Fy = —115.0389hw for the  regularized delta function.

Rev. Mex. . 55(3) (2009) 221-225



224

Energy [ 70 ]

L.E.C. ROSALES-ARATE AND R. JAUREGUI

ot

w
|
|
[
{

[

o o
| I |
Mo

=)

system the concept of binding energy must be revisited. For
particles in free space, it is defined as the energy necessary
to reach the continuum. According to the previous discus-
sion, for trapped atoms it could be defined as the difference
between the energy eigenvalue of the state under consider-
ation and the lowest eigenvalug > hw/2. The scenario
behind measuring such energies would be the dissociation of
the molecule keeping the trapping potential on. In Fig. 2, the
difference between the binding energies measured with and
without harmonic trapping, as a function of the inverse of the
scattering length, is illustrated.

The general behavior of the radigdeigenfunctions,,
andu,, is illustrated for unconfined particles in Fig. 3 and
for trapped particles in Fig. 4. For an interaction in oth-

-1I ] 5 0 5
1/a, [(me/r)™]

T T
-20 -15

J erwise free space, the zero-energy resonant funetiofr)

1
FIGURE 1. Lowests-wave relative energy eigenvalues in units of (
hw for two colliding trapped particles, Eq. (13), around the first o.8lf"
resonance. They were evaluated by considering a potential range
b/2 = 0.0154/h/mw and a strengthy starting fromVs ~ 0 to 0.6
the lowest V| yieldinga — 07. The scattering length is measured " ) .
in units of \/h/mw. Circles show the energy obtained by Busth g
al. :
0.2
2.1 el
oty ttteccecccccnnns]
20 @ 0.8 1 1.5 2 2.5 3
] r [ (h/mw)’?]
z 197 FIGURE 3. Radial functionve, (), ¢a(r) = ue(r)/r, for interact-
= 1 ing particles in otherwise free space, Egs.(8-9). The zero-energy
w® 184 resonant function., () (solid line) tends to a nonzero constant
< asr — oo, while v 1 (r) (dashed line) andy.ss(r) (dotted line)
1.7 correspond to increasingly bound states.
16 e
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FIGURE 2. Difference between the binding energies as estimated 0.75

with interacting trapped atoms and with interacting atoms in oth-

erwise free space. The dots give the numerical values with errors
smaller than the symbols used to plot them and the line is a numer-
ical interpolation. The interaction intensity is chosen so that just 0

0.5
0.25

one bound state is allowed for the free space system. The param-
eterb = 0.03,/h/mw was used for the numerical calculations.

FIGURE 4.

All these results confirmg as the relevant parameter fo

ap determines the eigenvalués > 1/2hw regardless of the

(Color

online) Radial
r ©ao (T) = ua, (1) /7, fOr two interacting particles in the presence of

determining the general features of the interaction. That isthe trapping potential, Eq. (13). The dot-dashed curve corresponds

function wue, (1),

to the grounds-state for a negative scattering length.6(r),
and the resonant functian. (r) is given by the solid curve, while

number of states witlh) < 1/2hw; it seems that the states ,, () by the dashed one ang ss(r) by the dotted line cor-
with £ > 1/2hw inherit the free space “scattering” states respond to positive scattering lengths. In this figure the wave
role, and the state with = 1/2hw replaces the zero-energy functions have been properly normalized. Distances are measured
resonance ato — oo. Notice that in the confined two-body in units of \/h/mw.
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(solid line) goes to a nonzero constant-as: co, meanwhile  with ¢ independent of and P(r/b) a polynomial of fourth
vg.1(r) (dashed line) andy ss(r) (dotted line) correspond order, both of which depend oy andb. The coefficients
to increasingly bound states. For trapped particles, beforef the polynomial and the parametemwere obtained using
the zero-resonance condition is achieved the wave functionstandard numerical fitting methods. Fd%| < (20/b)%hw,
have, in general, a structure in which three regions are re¢dhe polynomial P(r/b) is almost linear while for
ognized, as illustrated by the dot-dashed line in Fig. 3. Very|Vy| < (z0/b)?hw, it turns out thate ~ 0. The accuracy
close to the origin, the slope of ( ¢(r) is positive and large, of this approximation was measured by evaluating the ra-
so that forr ~ b/2 it becomes positive but less than one until tio .y, (1) /Ynum () between the analytical approximate
it reaches an extremum &at> r > b/2 and becomes nega- expression Eq. (15) and the numerical solution. This ratio
tive. At the zero-resonance condition the intermediate regioryielded1+0.0001 over the entire intervadl < r < 3\/h/mw
shrinks so that the extremum is reached at b/2; neverthe-  for b/2 < 0.015/h/mw.
less the function decays directly as the harmonic oscillator ~ All the results discussed above are just an illustration of
factorexp(—mwr?/h). what we have found numerically for all values of the param-
In the region of positive scattering lengths,@arsatz for  eterb that we studied withih < 0.05/7/mw.
the ground state function is:

3. Conclusions

p(r) = v(y(r)) exp(—=mwr? /R)g(r) /r (14) ,

We have shown that even an extremely short range interac-
with v defined in Eq. (9) for bound states in the absenceion between particles trapped in a harmonic potential, may
of a trapping potential, it is numerically found that the val- significantly alter both the spectra and eigenfunctions in com-
ues of the functiory(r) are in the interval0.99,1.01) for  parison with (i) noninteracting trapped particles and (ii) un-

b < 0.034/h/mw. The structure of Eq. (14) for the eigen- confined interacting particles. Our results are compatible

functions atlag| — oo allows us to understand the origin of with previous findings fors-states and a regularizedpo-

the eigenvalue- 1/2/w. In this casep(y(r)) takes care of tential [2]. They allow us to establish a more clear relation-

the boundary condition(0) = 0 so that the effective equa- ship between contact interaction and finite range results for

tion for ¢ (r) =: ¢(r) - r/v is almost identical to that of the trapped interacting dilute gases.

one-dimensional harmonic oscillator without the requirement  Notice that states with higher angular momenta can also

of becoming null at- = 0, thus admitting the possibility be analyzed and compared to pseudopotential contact inter-

E ~1/2hw. action predictions. In those cases, the scattering is character-
For negative values of the scattering length, we found thaized by other parameters, g., the p-scattering volume. It

the numerical solution to the ground state problem can be apnust also be emphasized that our results show the need to

proximated using the following analytical compact representake trapping effects into account when binding energies are

tation: measured particularly near the linai§ — oc.
, Although all calculations were presented for a particu-
apa (1) = Jo(20e ™"/ b)emer /4R lar potentialV (r), the qualitative features of our results are
. expected to apply in general for short range interaction po-
x(1+ ce 27/1))P(r/b)/7“ (15)  tentials.
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