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We start by describing two of the main proposals for duality in abelian gauge theories, namelyF (ield strength)-duality approach and the
S-duality formalism. We then discuss howF -duality andS-duality can be applied to the case of linearized gravity. By emphasizing the
similarities and differences between these two types of dualities we explore the possibility of combining them in just one duality formalism.
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Comenzamos describiendo dos propuestas principales de dualidad en teorı́as abelianas de norma, a saber el enfoque de dualidad-(del campo)F
y el formalismo de dualidad-S. De ahı́, discutimos como la dualidad-F y la dualidad-S pueden implementarse para el caso de gravedad
linealizada. Haciendóenfasis en las similitudes y diferencias entre estos dos tipos de dualidad, exploramos la posibilidad de combinarlos en
un śolo formalismo de dualidad.
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1. Introduction

Duality in linearized gravity [1] has been a topic of consider-
able interest [2-29]. There are at least two physical reasons
for this increasing interest of the topic. The first possibil-
ity arises from the hope of determining the strong coupling
limit for linearized gravity (see Refs. 1 and 2) via the ana-
logue of theS-duality concept [30] in gauge field theories.
In fact, just as in a dual gauge theory the coupling exchange
g2 → 1/g2 describes a basic dual symmetry, one may expect
a dual gravitational theory with either one of the exchanges
l2p → 1/l2p [2] or Λ → 1/Λ [1,26], wherelp is the Planck
length andΛ is the cosmological constant.

The second motivation comes from the idea of imple-
menting a dual symmetry of the linearized gravitational field
equations at the level of the corresponding action [5]. Such
a dual symmetry is the gravitational analogue of the cor-
responding electromagnetic dual symmetry provided by the
electric and magnetic field strengths. In this case, the Rie-
mann tensor and its dual play the role of the electric and
magnetic fields strengths, respectively. This dual gravita-
tional approach has its origins in the old observation [31] that
in the case of electromagnetism, this kind of dual symmetry
can be implemented at the level of the action if the infinitesi-
mal transformations are applied canonically to the gauge field
rather than to the corresponding field strength.

From the above comments we observe that while in the
S-duality approach [30] emphasis is placed on the coupling
exchange, in the case of the canonical approach attention
is focused on the dual transformation of the field strength.
Both generalized approaches have, however, a common ori-

gin, namely the dual symmetry of the Maxwell equations dis-
covered by Dirac himself [32-33]. Since linearized gravity
can be understood as an abelian gauge theory [26] one be-
comes motivated to see whether there is a kind of dual theory
for gravity in which both coupling and field strength dual ex-
changes are equally important. In order to find such a dual
gravitational theory we first need to analyze carefully the dif-
ferences between theF -duality (field strength duality) and
S-duality in an abelian gauge field theory. For this purpose
in Secs. 2 and 4 we briefly discuss theF -duality approach
of Refs. 31 and 5, respectively. In Secs. 3 and 5, we briefly
review theS-duality theory for abelian gauge fields proposed
in Ref. 30 and theS-duality theory for linearized gravity de-
scribed in Ref. 1, respectively. With these reviews at hand in
Secs. 6 and 7, we propose a unified duality theory for abelian
gauge field theory and linearized gravity, respectively. Fi-
nally, in Sec. 8 we make some final remarks.

2. F -duality for an abelian gauge field theory

In this section, we summarize the main duality ideas of the
approach proposed in Ref. 31. Consider the field strength
Fµν = −F νµ and its dual

∗Fµν =
1
2
εµναβFαβ , (1)

where εµναβ is the completely antisymmetric Levi-Civita
density in a Minkowski spacetime. The source-free Maxwell
equations are

∂νFµν = 0 (2)
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and
∂∗νFµν = 0. (3)

It is straightforward to see that these field equations are
invariant under the transformation

δFµν = β∗Fµν (4)

and
δ∗Fµν = −βFµν , (5)

whereβ is an arbitrary constant. Here we used the fact that
∗∗Fµν = −Fµν .

Since
FµνδFµν = βFµν∗Fµν , (6)

the action
SI =

1
2

∫
d4xFµνFµν (7)

is not invariant under (4) unless we write

Fµν = ∂µAν − ∂νAµ, (8)

which means solving (3). The authors of Ref. 31 pointed out
that this contradictory invariance can be solved if one con-
siders consistent canonical variations of the potentialδAµ in-
stead of variations of the field strengthδFµν . With the idea
of emphasizing the invariance of the action (7) at the level of
the field strengthFµν according to (4), we shall refer to this
approach asF -duality formalism.

3. S-duality for an abelian gauge field theory

Here, we shall briefly review theS-duality formalism for an
abelian gauge theory (see Ref. 30). Our starting point is the
action

SII =
1

2g2

∫
d4xFµνFµν +

θ

2

∫
d4xFµν∗Fµν . (9)

Here, it is assumed thatFµν = ∂µAν−∂νAµ. Theθ-term
is topological and, of course, classically it can be dropped
from (9). This implies that in this case (9) can be reduced to
the action (7). However, if our goal is to quantize the theory
described by (9), it becomes necessary to keep theθ-term.
Observe that in contrast to the formalism of Sec. 2, in this
approach emphasis is placed on the role played by of the con-
stantsg2 andθ.

Now, by introducing the (anti) self-dual field strengths

±Fαβ = (
1
2
)±Nαβ

τλ F τλ, (10)

where
±Nαβ

τλ =
1
2
(δαβ

τλ ∓ iεαβ
τλ), (11)

with δαβ
τλ = δα

τ δβ
λ − δβ

τ δα
λ denoting a generalized delta, one

can prove that the action (9) can be written as

SIII =
1
2
(τ+)

∫
d4x+Fµν+Fµν

+
1
2
(τ−)

∫
d4x−Fµν−Fµν , (12)

whereτ+ andτ− are two different constant parameters given
by

τ+ =
1
g2

+ iθ (13)

and

τ− =
1
g2
− iθ. (14)

The fact that the parametersτ+ and τ− are complex
means that, in addition to the field strength duality transfor-
mation,

δ±Fαβ = ± iβ±Fαβ , (15)

one can in principle implement, fora, b, c, d ∈ Z, the more
general duality transformation

τ ′ =
a + cτ

b + dτ
. (16)

Observe that (16) generalizes the coupling duality transfor-
mation

g2 → 1
g2

. (17)

In fact, it is known that the modular group described by (16)
can be generated by the elementsT : τ → τ + 1 and
S : τ → −1/τ (see Sec. 1.4.3 of Ref. 34). So, if the
vacuum angleθ vanishes, theS−symmetry yields precisely
the transformation (17) .

The next step is to write a meaningful action which may
allow us to transfer information from the action (9) to its as-
sociated dual action. First, one considers the generalized field
strength

Hµν = Fµν −Gµν , (18)

whereGµν is an auxiliary two-form. Secondly, one intro-
duces the dual field strengthWµν = ∂µVν −∂νVµ, whereVµ

is a one-form vector gauge field. The generalized action is
then written as [30]

SIV =
1
2
(τ+)

∫
d4x+Hµν+Hµν

+
1
2
(τ−)

∫
d4x−Hµν−Hµν

+
∫

d4x+Wµν+Gµν −
∫

d4x−Wµν−Gµν . (19)

This action is invariant under the transformations

δA = B, δG = dB, (20)

whereB is any one-form. If we eliminateV from (19), we
see thatdG = 0 and therefore we can setG = 0. Hence
from (18) we see thatHµν = Fµν and consequently the ac-
tion (19) is reduced to (12). On the other hand the gauge
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invariance (20) allows us to setA = 0 and therefore the ac-
tion (19) becomes

SIV =
1
2
(τ+)

∫
d4x+Gµν+Gµν

+
1
2
(τ−)

∫
d4x−Gµν−Gµν

+
∫

d4x+Wµν+Gµν −
∫

d4x−Wµν−Gµν . (21)

Finally, after eliminating±G one finds that (21) leads to

SV =
1
2
(− 1

τ+
)
∫

d4x+Wµν+Wµν

+
1
2
(− 1

τ−
)
∫

d4x−Wµν−Wµν , (22)

which is the dual action. We observe that the coupling con-
stantτ transforms as−1/τ . Actually, when quantum topo-
logical effects are considered, theτ transformation can be
extended to the more general duality transformation given
in (16) (see Ref. 30).

4. F -duality for linearized gravity

The Riemann tensor for linearized gravity is given by

Rµναβ =
1
2

(∂µ∂βhνα

−∂µ∂αhνβ−∂ν∂βhµα+∂ν∂αhµβ) . (23)

Here, the objecthµν = hνµ can be understood as a small
deviation from the full metricgµν , namely

gµν = ηµν + hµν , (24)

where
(ηµν) = diag(−1, 1, 1, 1) (25)

is the Minkowski flat metric. The vacuum Einstein equations
are

Rνβ = 0, (26)

whereRνβ = ηµαRµναβ is the linearized Ricci tensor.
Let us now introduce the dual tensor

∗Rµναβ =
1
2
εµνσρR

σρ
αβ. (27)

We observe that due to the Bianchi identity

Rµναβ + Rµβνα + Rµαβν = 0,

we have that∗Rνβ = ηµα∗Rµναβ satisfies the dual field
equation

∗Rνβ = 0 (28)

or
1
2
εµνσρη

µαRσρ
αβ = 0. (29)

It is not difficult to see that both field equations (26)
and (28) are invariant under the infinitesimal rotations

δRµναβ = β∗Rµναβ (30)

and
δ∗Rµναβ = −βRµναβ , (31)

whereβ is again a constant. Comparing the development of
Sec. 2 with the present section, we observe that these trans-
formations are completely analogous to the expressions (4)
and (5). Thus, it is expected that the Pauli-Fierz action

SV I = 4
∫

d4x(∂αhµν∂αhµν

− 2∂µhµν∂αhα
ν + 2∂µh∂νhµν − ∂αh∂αh), (32)

whereh = hα
α is not invariant under (30) and (31) unless we

describe an infinitesimal canonical transformation in terms
of the potentialδhµν instead of the field strengthsRµναβ

and∗Rµναβ . Actually, theSO(2) rotations are achieved by
means of two superpotentials; one is associated withhµν and
the other with its canonical conjugate momenta (see Ref. 5
for details).

5. S-duality for linearized gravity

Let us start by observing that the curvature Riemann tensor
Rµναβ for linearized gravity, given in (23), can be written as

Rµναβ = ∂µAναβ − ∂νAµαβ , (33)

where

Aµαβ =
1
2
(∂βhµα − ∂αhµβ). (34)

The expression (33) immediately suggests thatRµναβ can
be seen as an abelian field strength withAµαβ = −Aµβα as
the gauge potential. In fact, as mentioned in Refs. 1 and 26,
this interpretation is reinforced by noticing thatRµναβ is in-
variant under the gauge transformation

δAµαβ = ∂µλαβ , (35)

whereλαβ = −λβα is an arbitrary two-form. Now, it is not
difficult to prove that, up to surface term, the action (32) can
be written as [1]

SV II =
1
2

∫
d4xεµναβΩτλ

µνRσρ
αβετλσρ. (36)

Here,Ωαβ
µν is given by

Ωαβ
µν = δα

µhβ
ν − δβ

µhα
ν − δα

ν hβ
µ + δβ

ν hα
µ. (37)

Suppose we add to the action (36) the topological term

ST =
1
4

∫
d4xεµναβRτλ

µνRσρ
αβετλσρ (38)
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and the cosmological constant term

SC =
1
4

∫
d4xεµναβΩτλ

µνΩσρ
αβετλσρ. (39)

What we obtain is the generalized action [1];

SV III =
1
4

∫
d4xεµναβQτλ

µνQσρ
αβετλσρ, (40)

whereQαβ
µν is defined by

Qαβ
µν = Rαβ

µν + Ωαβ
µν . (41)

Moreover, it is not difficult to prove that the action (40) is
reduced to (see Ref. 1 for details)

SV III =
1
4

∫
d4xεµναβRτλ

µνRσρ
αβετλσρ

+ 8
∫

d4xhµν(Rµν − 1
2
ηµνR)

− 8
∫

d4x(h2 − hµνhµν). (42)

We recognize in the second and third terms of (42) the Pauli-
Fierz action for linearized gravity with a cosmological con-
stant, while the first term is a total derivative (Euler topo-
logical invariant or Gauss-Bonnet term). Note that the usual
cosmological factorΛ in the third term can be derived simply
by changingΩ → a2Ω, wherea is a constant, and rescaling
the total actionSV II → 1

4Λ−1SV II , with Λ = a2.
In order to develop anS-dual linearized gravitational ac-

tion we generalize the action (40) as follows;

SIX =
1
2
(λ+)

∫
d4xεµναβ+Qτλ

µν
+Qσρ

αβετλσρ

+
1
2
(λ−)

∫
d4xεµναβ−Qτλ

µν
−Qσρ

αβετλσρ, (43)

where λ+ and λ− are two different constant parameters
(playing the analogue role of the parametersτ+ andτ− in
the Maxwell case) and±Qαβ

µν is given by

±Qαβ
µν = (

1
2
)±Nαβ

τλ Qτλ
µν , (44)

where
±Nαβ

τλ =
1
2
(δαβ

τλ ∓ iεαβ
τλ). (45)

It turns out that+Qαβ
µν is self-dual, while−Qαβ

µν is anti self-
dual curvature tensors. Therefore, the action (43) describes
self-dual and anti-self-dual linearized gravity.

Following the steps of section 3 let us introduce a two-
form G and use it for defining

Hαβ
µν ≡ Qαβ

µν −Gαβ
µν . (46)

We assume thatGαβ
µν satisfies the same indices symmetry

properties asRαβ
µν , namely

Gµναβ = −Gµνβα = −Gνµαβ = Gαβµν ,

Gµναβ + Gµβνα + Gµαβν = 0.
(47)

Now, let us consider the extended action

SX =
1
2
(λ+)

∫
dx4εµναβ+Hτλ

µν
+Hσρ

αβετλσρ

+
1
2
(λ−)

∫
dx4εµναβ−Hτλ

µν
−Hσρ

αβετλσρ

+
∫

d4xεµντλ+Wαβ
µν

+Gσρ
τλεαβσρ

−
∫

d4xεµντλ−Wαβ
µν

−Gσρ
τλεαβσρ, (48)

whereWµναβ = ∂µVναβ − ∂νVµαβ is the dual field strength
satisfying the Dirac quantization law

∫
W ∈ 2πZ. (49)

It is not difficult to see that, beyond the gauge invariance
A → A− dλ, G → G, the partition function

Z =
∫

d+Gd−GdAdhdV e−SX (50)

is invariant under

A → A + B and G → G + dB, (51)

whereBµαβ = −Bµβα is an arbitrary tensor.
Starting from (48) one can proceed in two different ways.

For the first possibility, we note that the path integral that in-
volvesV is

∫
DV exp

( ∫
d4xεµντλ+Wαβ

µν
+Gσρ

τλεαβσρ

−
∫

d4xεµντλ−Wαβ
µν

−Gσρ
τλεαβσρ

)
. (52)

Integrating over the dual connectionV , we get a delta
function settingdG = 0. Thus, using the gauge invari-
ance (51), we may gaugeG to zero, reducing (48) to the orig-
inal action (43). Therefore, the actions (48) and (43) are, in
fact, classically equivalent.

For the second possibility, we note that the gauge invari-
ance (51) enables us to fix a gauge withA = 0. (It is impor-
tant to note that, at this stage, we are consideringAµαβ and
hµν as independent fields.) The action (48) is then reduced
to

SX =
1
2
(λ+)

∫
dx4εµναβ+P τλ

µν
+P σρ

αβετλσρ

+
1
2
(λ−)

∫
dx4εµναβ−P τλ

µν
−P σρ

αβετλσρ

+
∫

d4xεµντλ+Wαβ
µν

+Gσρ
τλεαβσρ

−
∫

d4xεµντλ−Wαβ
µν

−Gσρ
τλεαβσρ, (53)
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where
P τλ

µν ≡ Ωτλ
µν −Gτλ

µν . (54)

By eliminatingGτλ
µν in (53), we get the dual action

SXI =
1
2

(
− 1

λ+

) ∫
dx4εµναβ+Ξτλ

µν
+Ξσρ

αβετλσρ

+
1
2

(
− 1

λ−

) ∫
dx4εµναβ−Ξτλ

µν
−Ξσρ

αβετλσρ, (55)

Here,Ξτλ
µν means

Ξαβ
µν = Wαβ

µν + Ωαβ
µν . (56)

Observe that the complex parameterλ has been ex-
changed by−1/λ as expected.

6. A relation betweenF -duality and S-duality
for an abelian gauge field

One of our main goals is to establish, in section 7, a possible
link between theF -duality and theS-duality for linearized
gravity. But we shall first investigate a possible connection
betweenF -duality andS-duality in the context of an abelian
gauge field theory.

As we mentioned in Sec. 2, the Maxwell action (7) is not
invariant under the infinitesimal transformations (4) and (5)
in spite of the fac that field Eqs. (2) and (3) are. This problem
can be overcome if one solves (3) in terms of the relation

Fµν = ∂µAν − ∂νAµ, (57)

and considers canonical variations of the potentialδAµ in-
stead of variations of the field strengthδFµν . In turn, in order
to maintain duality invariance at the level of the correspond-
ing canonical action, this forces us to introduce what is called
superpotential (see Refs. 5 and 28 for details). However, in
this case we are already using the field equations (3) which,
in principle, cannot be obtained from the original action (7).
This means that the action (7) needs to be properly modified
in such a way that the field equations (3) are a consequence
of an extended action. The procedure is well known: one in-
troduces an auxiliary vector field Lagrange multiplierV µ and
writes the new action as

S =
1
2

∫
d4xFµνFµν +

∫
d4xεµναβVµ∂νFαβ . (58)

Here, of course we are not assuming the form (57) for
Fµν , otherwise the second term in (58) is identically zero. In
fact, starting with (58) one can proceed in two different ways.
In the first case, varyingVµ one obtains the field equation (3)
which has the solution (57). Substituting (57) into the second
term of (58) one sees that the action (7) is recovered. In the
second case, it is first convenient to make an integration by
parts obtaining (up to the surface term)

S =
1
2

∫
d4xFµνFµν +

1
2

∫
d4xεµναβWµνFαβ , (59)

whereWµν = ∂µVν−∂νVµ and then solving forFµν . In this
way, we obtain the relation

Fµν = −1
2
εµναβWαβ = −∗Wµν , (60)

which can be used to get the dual action

S =
1
2

∫
d4xWµνWµν . (61)

Observe that if one assumes (57), then the second term
in (59) is identically zero. An important change in this pro-
cedure arises if one assumes a nontrivial topology. In this
case, the solution (57) to (3) is no longer true. But the correct
expression is

Fµν → Hµν = ∂µAν − ∂νAµ −Gµν , (62)

where the two-formG is a “string” field associated with a
nontrivial topology, so thatdG = 0. This phenomenon can
be emphasized if instead of starting with the action (59) one
considers the action

S =
1
2

∫
d4x{HµνHµν + εµναβWµνHαβ}, (63)

with

Hµν = Fµν −Gµν . (64)

Note that by assuming the relation (62) the action (63) is
reduced to

S =
1
2

∫
d4x{HµνHµν − εµναβWµνGαβ}. (65)

This development leads to the conclusion that, rather than
looking for the invariance of the action (7) under the infinites-
imal transformation (4), one should consider invariance of the
action (63) or (65) under such transformations. But one may
recognize that the action (65) has exactly the same form as
the expression (19) (see Sec. 3) which was considered in the
context ofS-duality approach. The main difference between
(65) and (19) is that in (19) one considers±Hµν , ±Wµν and
±Gαβ rather thanHµν , Wµν andGαβ as in (65). Further
the parameters±τ are considered in (19), while in (65) this
is not the case. This means that (65) can be considered as a
particular case of (19). And in this context one should expect
that invariance of (19) leads to a reduced invariance of (65).
Indeed, the transformation (20), namelyδA = B, δG = dB,
whereB is any one-form, also leaves the action (65) invari-
ant. It is interesting to note that the infinitesimal transforma-
tion (4) can be considered as a particular case of (20) as soon
as one also assumes the transformationδG = β∗F for the
“string” field G. One of our conclusions is that in order to
implement the transformation (4) at the level of the action of
Mawxell theory, one needs to introduce an auxiliary fieldG
and consider (63) or (65) as starting point rather than (7).
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Let us use the notationD = dB. From (64) we then
observe that

δHµν = δFµν − δGµν = Dµν −Dµν , (66)

which is of course identically equal to zero. But writ-
ing δHµν as in (66) suggests we should consider (4)
δFµν = β∗Fµν as a particular case withDµν = β∗Fµν and
δGµν = β∗Fµν . In fact, this possibility seems to have passed
unnoticed before, in the context ofS-duality formalism. Per-
haps this is because the invariance of (66) was written in
terms ofδAµ rather than in terms ofδFµν . It is true thatδAµ

implies δFµν but the converse is not in general true; unless
one considers nonlocal formalism in the senseδA = d−1D,
which in the case of the variationδFµν = β∗Fµν means
δA = B = βd−1∗F . It is tempting to assume that from
the canonical point of view this is equivalent to introducing
what is called superpotential [5, 31]. In other words, our con-
jecture is that the ”string” fieldG and the superpotential are
closely related [35].

7. Duality and S duality in linearized gravity

An application of the prescription of the previous section to
the case of linearized gravity is straightforward. From (46)
one sees thatHαβ

µν = Qαβ
µν − Gαβ

µν remains invariant under
the transformations

δQαβ
µν = Dαβ

µν , δGαβ
µν = Dαβ

µν . (67)

Here, Dαβ
µν is an arbitrary two-form with the property

D = dB, whereB is any ”one-form”. This implies that the
action (48) is invariant under (67).

As a particular case of (67) one writes

δQαβ
µν = β∗Qαβ

µν . (68)

This corresponds to consideringDαβ
µν = β∗Qαβ

µν . The ex-
pression (68) refers of course to infinitesimal rotations and
therefore we have found a mechanism to make the extended
action (48) invariant under such rotations. Again, one can try
to relate (68) to the gauge fieldAναβ according to (33), but
this would imply a nonlocal variationδA = βd−1∗Qαβ

µν . It
is intriguing that with this procedure we do not even need to
consider the perturbationhµα as in the canonical method of
Ref. 5. However, one should expect that if the action (48)
is written in a canonical form, a link would have to be found
between what is called a superpotential in Ref. 5 and the
auxiliary fieldGαβ

µν .

8. Discussion and final comments

In this work we have shown that theF -duality is indeed con-
tained in theS-duality formalism as proposed in Ref. 30.
One of the advantages of this identification is that it is not
necessary to rely on canonical formalism in order to imple-
ment duality invariance at the level of the action. In a sense,

S-duality provides the route that it is necessary to follow in
the case of theF -duality program. In fact,S-duality estab-
lishes that duality can be achieved at the level of the action
by adding aθ term to the Maxwell action and by introducing
an auxiliary two-formG. It turns out that this is also true for
linearized gravity, as we have pointed out in Sec. 7.

These results also suggest we consider the coupling pa-
rameterτ in theF -duality formalism. This is because the par-
tition functionZ(τ) in theS-duality approach has the prop-
erty

Z(τ) = Z

(
−1

τ

)
or Z(λ) = Z

(
− 1

λ

)
,

as can be deduced from our discussion of Secs. 3 and 5, re-
spectively. In fact, writing symbolically

Z(τ) =
∫

exp(iSIV ), (69)

whereSIV is given in (19), for the case of Maxwell theory
and

Z(λ) =
∫

exp(iSX), (70)

whereSX is given in (48), for the case of linearized gravity,
from the results of Sec. 3 we may establish that (69) has the
two limits

∫
exp(iSIII) ←

∫
exp(iSIV ) →

∫
exp(iSV ), (71)

(where SIII and SV are given by (12) and (22), respec-
tively), while from the discussion of Sec. 5 we may establish
that (70) gives

∫
exp(iSIX) ←

∫
exp(iSX) →

∫
exp(iSXI), (72)

(whereSIX and SXI are given by (43) and (55), respec-
tively). Therefore, one finds that (71) and (72) imply the
symmetriesZ(τ) = Z(−1/τ) andZ(λ) = Z(−1/λ), re-
spectively.

It has been shown [30] thatZ(τ) also contains the sym-
metryZ(τ) = Z(τ + 1) thereby showing thatZ(τ) is sym-
metric under the full groupSL(2, Z). So, it may appear inter-
esting to see whetherF -duality formalism may also be con-
nected with the transformationτ → τ + 1. In what follows
we shall outline this possibility.

First we note that, if we consider the infinitesimal trans-
formations (4) and (5), we find that the self-dual (antiself-
dual) field strength transforms as

δ±Fαβ = ±iβ±Fαβ . (73)

Therefore, we discover that the action (12) transforms as

δSIII = iβ

{
(τ+)

∫
d4x+Fµν+Fµν

−(τ−)
∫

d4x−Fµν−Fµν

}
. (74)
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In this case we have left the parametersτ+ and τ− un-
changed. However, we can obtain similar result if we leave
the field strengthFαβ unchanged and we require the param-
etersτ+ andτ− transform as follows:

τ ′+ = τ+ + iβτ+, τ ′− = τ− − iβτ−. (75)

An interesting possibility arises if one considers the par-
ticular casesβ = 1

τ+ or β = 1
τ− , leading in any case to the

result
τ ′+ = τ+ + i, τ ′− = τ− − i, (76)

which is similar to the expected formτ → τ + 1.
The result (74) means that the action (12) is not invariant

under (73) or (75). However, if one considers the transfor-
mations (76), this is not necessarily true for the associated
partition functionZ = Z(τ±), namely

Z(τ±) =
∫

exp(iSIII).

In fact the reason for this is that, using (76), one discovers
that the expression (74) becomes

δSIII = i

{∫
d4x+Fµν+Fµν

−
∫

d4x−Fµν−Fµν

}
, (77)

which can be reduced to theθ term

δSIII = θ

∫
d4xFµν∗Fµν . (78)

Since from (13) we haveτ = 1/g2 + iθ, one obtains
δτ = iδθ and therefore the prescription (76) impliesδθ = 1,
which means

θ → θ + 1. (79)

So, by assuming the smallest possible value for
∫

d4xFµν∗Fµν ,

one may recognize that the termexp(δSIII) leaves the parti-
tion functionZ = Z(τ±) invariant.

In Refs. 36 to 38 it is also discussed a kind ofF -duality
from the point of view of field equations rather than actions.
For new directions of research, it may be interesting to estab-
lish the precise relations of such references with our formal-
ism.

Finally, in Refs. 30 and 39 it is explained that the ac-
tion (12) is invariant mod2πn, not only under the change
τ → τ + 1 whenM is an spin manifold, but also under the
changeτ → τ + 2 for any closed four manifoldM . It may
be interesting for further research to explore what this means
in both scenarios, Maxwell theory and linearized gravity.
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