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We start by describing two of the main proposals for duality in abelian gauge theories, n&(ety strength)-duality approach and the
S-duality formalism. We then discuss hof-duality andS-duality can be applied to the case of linearized gravity. By emphasizing the
similarities and differences between these two types of dualities we explore the possibility of combining them in just one duality formalism.
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Comenzamos describiendo dos propuestas principales de dualidadas ébefianas de norma, a saber el enfoque de dualidad-(del campo)F

y el formalismo de dualidad-S. De ialdiscutimos como la dualidad-F y la dualidad-S pueden implementarse para el caso de gravedad
linealizada. Haciendénfasis en las similitudes y diferencias entre estos dos tipos de dualidad, exploramos la posibilidad de combinarlos en
un Dlo formalismo de dualidad.

Descriptores: Dualidad-S; gravedad linealizada; teoabeliana de norma.

PACS: 04.60.-m, 11.25.Tq, 11.15.-q, 11.30.Ly

1. Introduction gin, namely the dual symmetry of the Maxwell equations dis-
covered by Dirac himself [32-33]. Since linearized gravity

Duality in linearized gravity [1] has been a topic of consider-can be understood as an abelian gauge theory [26] one be-
able interest [2-29]. There are at least two physical reasongomes motivated to see whether there is a kind of dual theory
for this increasing interest of the topic. The first possibil- for gravity in which both coupling and field strength dual ex-
ity arises from the hope of determining the strong couplingchanges are equally important. In order to find such a dual
limit for linearized gravity (see Refs. 1 and 2) via the ana-gravitational theory we first need to analyze carefully the dif-
logue of theS-duality concept [30] in gauge field theories. ferences between the-duality (field strength duality) and

In fact, just as in a dual gauge theory the coupling exchang&-duality in an abelian gauge field theory. For this purpose
g2 — 1/g? describes a basic dual symmetry, one may expedf! Secs. 2 and 4 we briefly discuss theduality approach

a dual gravitational theory with either one of the exchange®f Refs. 31 and 5, respectively. In Secs. 3 and 5, we briefly
12— 1/12 [2] or A — 1/A [1,26], wherel, is the Planck review theS-duality theory for abelian gauge fields proposed
length andA is the cosmological constant. in Ref. 30 and th&'-duality theory for linearized gravity de-
scribed in Ref. 1, respectively. With these reviews at hand in

menting a dual symmetry of the linearized gravitational fieldsecs' 6 and 7, we propose a unified duality theory for abelian

equations at the level of the corresponding action [5]. Suclgallfgef' f|§Id tréeory anltzl Imeanzf_ed lgrawty,krespectlvely. Fi-
a dual symmetry is the gravitational analogue of the corNally, IN S€C. & We make Some final remarks.

responding electromagnetic dual symmetry provided by the

electric and magnetic field strengths. In this case, the Rie- . . .
mann tensor and its dual play the role of the electric anaz' F-duality for an abelian gauge field theory
magnetic fields strengths, respectively. This dual gravita-

. . T : n this section, we summarize the main duality ideas of the
tional approach has its origins in the old observation [31] tha : : :

. ; L approach proposed in Ref. 31. Consider the field strength
in the case of electromagnetism, this kind of dual symmetr

y [ Rl 7 i
can be implemented at the level of the action if the infinitesi-F = —F"*andits dual

mal transformations are applied canonically to the gauge field R v
rather than to the corresponding field strength. P = 5 Fap, @

From the above comments we observe that while in the ) . ) o
S-duality approach [30] emphasis is placed on the couplingVhere e*”*? is the completely antisymmetric Levi-Civita
exchange, in the case of the canonical approach attentid#fnSity in a Minkowski spacetime. The source-free Maxwell
is focused on the dual transformation of the field strength€duations are
Both generalized approaches have, however, a common ori- O, F* =0 (2)

The second motivation comes from the idea of imple-
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and wherer+ andr~ are two different constant parameters given
Oy F* = 0. (3) by
. It_is straightforward to see 'Fhat these field equations are = iZ + i (13)
invariant under the transformation
SFH = B* P (4) and
I
and T = 972 —10. (14)
O FH = —gBFH, (5)
wherej3 is an arbitrary constant. Here we used the fact that The fact that the parameters and 7~ are complex
*k UV — RV means that, in addition to the field strength duality transfor-
Since mation,
FPOF,, = BEM E,,, (6) STFP = 4Bt Fes, (15)
the action 1 S
Sy == /d‘*xFWFW ) one can in p_r|nC|pIe |mplement, far, b, c,d € Z, the more
2 general duality transformation
is not invariant under (4) unless we write
,  a-+cT
Fu =0,A) — 0, A, 8) Ty +dr’ (16)

which means sol_vmg (3_))' The authors of Ref. 31 pomted OUbpserve that (16) generalizes the coupling duality transfor-
that this contradictory invariance can be solved if one CON<ation

siders consistent canonical variations of the potentig] in- 1

stead of variations of the field strengil},,,. With the idea 9> — . (17)

of emphasizing the invariance of the action (7) at the level of g

the field strengthf’,,, according to (4), we shall refer to this In fact, it is known that the modular group described by (16)
approach ag’-duality formalism. can be generated by the elemefits: = — 7 + 1 and

S : 17 — —1/7 (see Sec. 1.4.3 of Ref. 34). So, if the
vacuum anglé vanishes, theS—symmetry yields precisely

3. S-duality for an abelian gauge field theory the transformation (17)

Here, we shall briefly review th&-duality formalism for an The next step is to write a meaningful action which may
abelian gauge theory (see Ref. 30). Our starting point is thallow us to transfer information from the action (9) to its as-
action sociated dual action. First, one considers the generalized field

1 \ } 0 . i strength
S][:@/d.rF'u Flty+§/d£()F'u FHV' (9)

Here, itis assumed thé#i,, = 0,4, —0, A,. Thef-term i . ,
is topological and, of course, classically it can be droppethereG IS an auxiliary wo-form. Secondly, one intro-
from (9). This implies that in this case (9) can be reduced todUCeS the dual field strengW,,,_V = 0pVy = 0V, \_/vhereV,,_, .
the action (7). However, if our goal is to quantize the theoryIS a ong-form vector gauge field. The generalized action is
described by (9), it becomes necessary to keepptteem. then written as [30]

Observe that in contrast to the formalism of Sec. 2, in this

HW = Fr _ Giv, (18)

1
approach emphasis is placed on the role played by of the con- Srv = 5(7*) / d*z*H" T H,,
stantsg? andé.
. . . _ . 1
Now, by introducing thel(ant|) self-dual field strengths 4 5(77) / d%fH’“’fH,w
iF(xﬁ _ (i)ifoFT/\7 (10)
+ / dtxTWHrG,, — / 'z W =G, (19)
where 1
+ praf8 af . _af
NY =—=(o 11 . o . .
A 2( X FET ), (11) This action is invariant under the transformations
with 629 = 6287 — §26% denoting a generalized delta, one
can prove that the action (9) can be written as 0A =B, 6G=dB, (20)
SIII — l(TJr) d4$+FW/+F h . ..
5 pv where B is any one-form. If we eliminat& from (19), we
see thatdlG = 0 and therefore we can sé& = 0. Hence
+ }(T—)/d4x—FMV—FHV7 (12) f.rom (18) we see that/#¥ = F*¥ and consequently the ac-
2 tion (19) is reduced to (12). On the other hand the gauge
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invariance (20) allows us to set = 0 and therefore the ac- It is not difficult to see that both field equations (26)
tion (19) becomes and (28) are invariant under the infinitesimal rotations
1 *
Sry = 5(T+) / d*ztarra,, ORuwap = 0" Ruvap (30)
1 o and
+ §(T )/d G CTVI“’ 6*R;u/aﬁ = _ﬁRNVULB7 (31)

whereg is again a constant. Comparing the development of
Sec. 2 with the present section, we observe that these trans-
) o _ formations are completely analogous to the expressions (4)
Finally, after eliminating"G one finds that (21) leads to and (5). Thus, it is expected that the Pauli-Fierz action

+/d4x+WW+GW 7/d4:c*W“”*GW. (21)

— 1 1 4.+ v+
SV == 5(*;)/d x WM Wuy SV[ :4/d4m(aahuuaahuy
+ %(—%) / A=W W, 22) — 20, h* O hS + 201K by, — O°hOah),  (32)
T

which is the dual action. We observe that the coupling conWhere: = hg is not invariant under (30) and (31) unless we
stantr transforms as-1/7. Actually, when quantum topo- describe an infinitesimal canonical transformation in terms
logical effects are considered, thetransformation can be ©f the potentialon,,, instead of the field strengthB,,,.s
extended to the more general duality transformation giver@Nd"R,.as. Actually, theSO(2) rotations are achieved by

in (16) (see Ref. 30). means of two superpotentials; one is associated kyjthand
the other with its canonical conjugate momenta (see Ref. 5
. . . . for details).
4. F-duality for linearized gravity
The Riemann tensor for linearized gravity is given by 5. S-duality for linearized gravity
1 Let us start by observing that the curvature Riemann tensor
Ruvap = 3 (0,.98hva R,.ap for linearized gravity, given in (23), can be written as
_aﬂaahVﬁ_aVaﬁhMa+8VaahHﬁ) : (23) R/J,l/aﬁ = auAuaﬁ - 81/14;1,04,6’7 (33)
Here, the object,, = h,, can be understood as a small where
iation f he full i I 1
deviation from the full metrig,,,,, namely Apas = 5(8[3]1”& — Dahus). (34)
G = N + My 24 The expression (33) immediately suggests th&f, .3 can

be seen as an abelian field strength with,s = — A3, as

. the gauge potential. In fact, as mentioned in Refs. 1 and 26,
() = diag—=1, 1,1, 1) (25) this interpretation is reinforced by noticing th&l,, s is in-

is the Minkowski flat metric. The vacuum Einstein equationsvariant under the gauge transformation

are

where

Ryp =0, (26) 5 A0 = Opdag, (35)
whereR, 5 = n® Ry.ap IS the linearized Ricci tensor. where),s = — g, is an arbitrary two-form. Now, it is not
Let us now iniroduce the dual tensor difficult to prove that, up to surface term, the action (32) can
1 be written as [1
"Ruvap = iguwprgg. @7) -
1 4 wvaf3O)\TA PO
We observe that due to the Bianchi identity Svir = §/d S U v (36)
Ryvas + Rugva + Ruapy =0, Here,Q;jff is given by
we have that*R,,ﬁ = ’I’}#a*Rlu,aﬁ satisfies the dual field Qaﬁ _ 5ahﬂ o 5ﬁho¢ _ (;ozhﬁ + (Sﬂha, (37)
equation wy prve Teew R G
"Ryp =0 (28) Suppose we add to the action (36) the topological term
or . )
S Euvopn" Ry = 0. (29) St =7 / d*ze" PRy R e rrop (38)
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and the cosmological constant term Now, let us consider the extended action
1 4 ,uyaﬂQTAQap 1 4 A o
SC = 1 d*xe % aﬁE‘r/\Up' (39) SX = 5()\+)/dl' E“Vaﬁ_i—H;VJrHagE-,-)\o—p
What we obtain is the generalized action [1]; 1 . N
+5(07) / date" P HI " HI b ra0p

1 o
Svriir = 1 /d4$5”mﬁQ;ﬁ a’éﬁmop, (40)
+ / d ze" WPt G e wpop

whereQ</ is defined by
Q) = Ry + Qo). (41) - / dae AW T G apop, (48)

Moreover, it is not difficult to prove that the action (40) is

reduced to (see Ref. 1 for details) whereW,,ap = 0, Vias — 0, Viap IS the dual field strength

) satisfying the Dirac quantization law
Svirr = 1 /d%EWQBR;ﬁRZgET,\op
/ W e 2nZ. (49)

1
+8 / d*xh" (R — =1 R)

2 It is not difficult to see that, beyond the gauge invariance

. / Pl — W) 42) A — A—d)\ G — G, the partition function
uv ).

We recognize in the second and third terms of (42) the Pauli- e /dJer GdAdhdVe™ (50)

Fierz action for linearized gravity with a cosmological con-

stant, while the first term is a total derivative (Euler topo-IS invariant under

logical invariant or Gauss-Bonnet term). Note that the usual

cosmological facton in the third term can be derived simply A—A+B and G— G +dB, (51)

by changing) — a2, whereq is a constant, and rescaling hereB

the total actionSy ;7 — $A~!Sy 7, with A = a®. where
In order to develop als-dual linearized gravitational ac-

tion we generalize the action (40) as follows;

1 o
Six = 5(A+) / Az P QI Qe rap

Lap = —Bupa iS an arbitrary tensor.

Starting from (48) one can proceed in two different ways.
For the first possibility, we note that the path integral that in-
volvesV is

/DVexp (/d4x€“”7’\+Wff+G:§€aﬁgp

1
4500 [l QR Qi (89)
2 H B p _/d4x5m”—>\_W§f_GZ§€aﬁap>- (52)
where AT and A\~ are two different constant parameters
(playing the analogue role of the parametetsand 7~ in Integrating over the dual connectidn, we get a delta
the Maxwell case) and Q%7 is given by function settingdG = 0. Thus, using the gauge invari-
1 ance (51), we may gaugeto zero, reducing (48) to the orig-
+aB __ + nraB T . . . .
Qv = ()N Qs (44)  inal action (43). Therefore, the actions (48) and (43) are, in

fact, classically equivalent.
 oB 1(5%8 SRYIN (45) For the second possibility, we note that the gauge invari-
™2 = 9\%rx A ance (51) enables us to fix a gauge with= 0. (It is impor-
tant to note that, at this stage, we are considedngsz and
de. as independent fields.) The action (48) is then reduced
to

where

It turns out thatt Q%7 is self-dual, while~ Q%7 is anti self-

dual curvature tensors. Therefore, the action (43) describ
self-dual and anti-self-dual linearized gravity.

Following the steps of section 3 let us introduce a two- 1, . 4 vaBt prA pop
form G and use it for defining Sx = 5()‘ )/dx € Pl Pogéraop
HeP = QB — Ggab, 46 1
uv Q/w uv ( ) + i(Af)/dlAé?“VaBiP;y)\i ;’g&_)ﬂp
We assume thaﬂgf satisfies the same indices symmetry
i B
properties agz;;,;, namely + /d4$5w7/\+W§f+G:f\)5aﬁop
Gp,uozﬁ = _Gp,l/ﬁa = _Guuaﬁ = Gaﬁuya
(47) —/d4aﬁ5“””‘_Wﬁ‘f—Gf§5aggp, (53)
G/W(x[)’ + G,uﬁuoz + Guaﬂu = 0.
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where whereW,,, = 9,,V,, —0,V,, and then solving foF,,,. In this
P =9 -G (54)  way, we obtain the relation

pr = pv

By eIiminatingG;;\ in (53), we get the dual action 1
P = — e W = =W, (60)
S — 1 _L dx? prof+m=rA+=0p hich he dual ;
X1=5 e T Zuv Sap€rirop which can be used to get the dual action
L (L [ gptemvan—gra-zon, (55) s=1 [ gawmw,,. (61)
B N Sur SapETAops 2. Hv
Here,E;f, means Observe that if one assumes (57), then the second term
—op B B in (59) is identically zero. An important change in this pro-
S = W + . (56)  cedure arises if one assumes a nontrivial topology. In this

case, the solution (57) to (3) is no longer true. But the correct

Observe that the complex parameterhas been ex- = o0
expression is

changed by-1/X as expected.

. . . F,., — H,, =0,A, —0,A, — G, (62)
6. A relation betweenF-duality and S-duality
for an abelian gauge field where the two-formG is a “string” field associated with a
nontrivial topology, so tha#G = 0. This phenomenon can

One of our main goals is to establish, in section 7, a possiblge emphasized if instead of starting with the action (59) one
link between thef-duality and theS-duality for linearized  ,nsiders the action

gravity. But we shall first investigate a possible connection
betweenF'-duality andS-duality in the context of an abelian 1 4 v va
gauge field theory. 5= 2 /d oA H Hy €W Hog (63)
As we mentioned in Sec. 2, the Maxwell action (7) is not
invariant under the infinitesimal transformations (4) and (5)W"[h
in spite of the fac that field Eqgs. (2) and (3) are. This problem H,, =Fu,—Gu. (64)
can be overcome if one solves (3) in terms of the relation
Note that by assuming the relation (62) the action (63) is
ELV = 8/LAU - ayA/u (57) reduced to

and considers canonical variations of the potentid), in-
stead of variations of the field strength),,.. In turn, in order
to maintain duality invariance at the level of the correspond-
ing canonical action, this forces us to introduce what is called  This development leads to the conclusion that, rather than
superpotential (see Refs. 5 and 28 for details). However, itooking for the invariance of the action (7) under the infinites-
this case we are already using the field equations (3) whichimal transformation (4), one should consider invariance of the
in principle, cannot be obtained from the original action (7).action (63) or (65) under such transformations. But one may
This means that the action (7) needs to be properly modifiedecognize that the action (65) has exactly the same form as
in such a way that the field equations (3) are a consequencthe expression (19) (see Sec. 3) which was considered in the
of an extended action. The procedure is well known: one incontext ofS-duality approach. The main difference between
troduces an auxiliary vector field Lagrange multipiét and  (65) and (19) is that in (19) one considér& ", £, and
writes the new action as iGaﬁ rather thand#¥, W,,, and G, as in (65). Further
1 . , i wvas the parameter$r are considered in (19), while in (65) this
S=3 /d eF"F, + /d xe PV, 0, Fap. (58) s not the case. This means that (65) can be considered as a
| | ) particular case of (19). And in this context one should expect
Here, of course we are not assuming the form (57) forpat invariance of (19) leads to a reduced invariance of (65).
F,,., otherwise the second term in (58) is identically zero. '”Indeed, the transformation (20), namély = B, G = dB,
fact, starting with (58) one can proceed in two different WaySyyhereB is any one-form, also leaves the action (65) invari-
In the first case, varying, one obtains the field equation (3) ant, |t is interesting to note that the infinitesimal transforma-
which has the solution (57). Substituting (57) into the secongjg, (4) can be considered as a particular case of (20) as soon
term of (58) one sees that the action (7) is recovered. In thgg gne also assumes the transformaién— B*F for the
second case, it is first convenient to make an integration bystring“ field G. One of our conclusions is that in order to
parts obtaining (up to the surface term) implement the transformation (4) at the level of the action of
1 V. 1 4 B Mawxell theory, one needs to introduce an auxiliary fiéld
5= §/d eF F + 5 /d we" W Fap,  (39)  and consider (63) or (65) as starting point rather than (7).

1
S=3 / d*z{H" H,, — ""*PW,,Gup}. (65)
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Let us use the notatio® = dB. From (64) we then S-duality provides the route that it is necessary to follow in

observe that the case of thd’'-duality program. In factS-duality estab-
lishes that duality can be achieved at the level of the action
0Hpy, = 0Fu — 060G = Dy — Dy, (66) by adding & term to the Maxwell action and by introducing

an auxiliary two-formG. It turns out that this is also true for
linearized gravity, as we have pointed out in Sec. 7.
These results also suggest we consider the coupling pa-

which is of course identically equal to zero. But writ-
ing dH,, as in (66) suggests we should consider (4)

gg*“’ i p *?“’ a}s ? ptarttrl]c_:ular C?;ﬁ‘_tw"ﬁ’w :tﬁ hF wv and drameterr in the F'-duality formalism. This is because the par-
o B Fy. In fact, this possibility Seems 1o Nave passedy;, , fnction Z (1) in the S-duality approach has the prop-
unnoticed before, in the context Sfduality formalism. Per- erty

haps this is because the invariance of (66) was written in
terms ofé A, rather than in terms afF),, . Itis true thatv A, 1 1
implies 6 F},, but the converse is not in general true; unless 2(r) =2\ - or ZW=2Z(-+):
one considers nonlocal formalism in the sefide= d—'D,
which in the case of the variatiofF,,, = (§*F,, means
JA = B = Bd~'*F. Itis tempting to assume that from

as can be deduced from our discussion of Secs. 3 and 5, re-
spectively. In fact, writing symbolically

the canonical point of view this is equivalent to introducing .

what is called superpotential [5, 31]. In other words, our con- Z(r) = /GXP(ZSIV), (69)

jecture is that the "string” field+ and the superpotential are o _

closely related [35]. whereS;y is given in (19), for the case of Maxwell theory
and

7. Duality and S duality in linearized gravity 20 = /eXp(ZSX)’ (70)

whereSx is given in (48), for the case of linearized gravity,
from the results of Sec. 3 we may establish that (69) has the
two limits

An application of the prescription of the previous section to
the case of linearized gravity is straightforward. From (46)
one sees thal/}) = Q% — G2 remains invariant under

Nz

the transformations [etisun — [explisiw) — [ewtsy). @
5Qo8 =Dof, 5GS = Dol (67)

)

(where Sy;; and Sy are given by (12) and (22), respec-
Here, D% is an arbitrary two-form with the property tively), while from the discussion of Sec. 5 we may establish

D = dB, whereB is any "one-form”. This implies that the that (70) gives

action (48) is invariant under (67). _ _ _
As a particular case of (67) one writes /eXP(lSIX) - /eXP(lSX) — /eXP(lSXI)» (72)
5Q00 = 3Q. (68)  (whereS;x and Sx; are given by (43) and (55), respec-

) o tively). Therefore, one finds that (71) and (72) imply the

This corresponds to considerigf;) = 3*Q%5. The ex- symmetriesZ(r) = Z(—1/7) andZ(\) = Z(—1/)), re-
pression (68) refers of course to infinitesimal rotations andypectively.
therefore we have found a mechanism to make the extended |t has been shown [30] thaf(r) also contains the sym-
action (48) invariant under such rotations. Again, one can thynetry 7(7) = Z(r + 1) thereby showing thaf () is sym-
to relate (68) to the gauge field, s according to (33), but  metric under the full grous L (2, Z). So, it may appear inter-
this would imply a nonlocal variationd = 8d~""Qi]. It esting to see whethd?-duality formalism may also be con-
is intriguing that with this procedure we do not even need tohected with the transformation — = + 1. In what follows
consider the perturbatiom,, as in the canonical method of \ye shall outline this possibility.
Ref. 5. However, one should expect that if the action (48)  First we note that, if we consider the infinitesimal trans-

is written in a cgnonical form, a link Woyld _have to be found fgrmations (4) and (5), we find that the self-dual (antiself-
between what is called a superpotential in Ref. 5 and th%iual) field strength transforms as

auxiliary field G55

STFYB = BT FoP, (73)
8. Discussion and final comments Therefore, we discover that the action (12) transforms as
In this work we have shown that thfé-duality is indeed con- , . A+t
tained in theS-duality formalism as proposed in Ref. 30. 081 =iy (7 )/d a TR E
One of the advantages of this identification is that it is not
necessary to rely on canonical formalism in order to imple- _(T)/d‘ixFlelW} ) (74)
ment duality invariance at the level of the action. In a sense,
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In this case we have left the parameters and 7~ un- Since from (13) we have = 1/¢? + i, one obtains
changed. However, we can obtain similar result if we leave)r = 90 and therefore the prescription (76) impli&= 1,
the field strengtiF*” unchanged and we require the param-which means

eterstt and7~ transform as follows: 60— 0+1. (79)
Tt =rt4iprt, =77 —ipr.  (75) So, by assuming the smallest possible value for
An interesting possibility arises if one considers the par- .
ticular caseg? = T% org = T%, leading in any case to the /d cF"E,,,
result
T =7 4d, 7T =17 -, (76)  one may recognize that the teemp(6S;;;) leaves the parti-
which is similar to the expected form— 7 + 1. tion functionZ = Z(r*) invariant.

The result (74) means that the action (12) is not invariant  In Refs. 36 to 38 it is also discussed a kindofduality
under (73) or (75) However, if one considers the transfor.from the pOint of view of field equations rather than actions.

mations (76), this is not necessarily true for the associatefor new directions of research, it may be interesting to estab-
partition functionZ = Z(7%), namely lish the precise relations of such references with our formal-

ism.
Z(t%) = /eXp(iSHz)- Finally, in Refs. 30 and 39 it is explained that the ac-

tion (12) is invariant mod27n, not only under the change

In fact the reason for this is that, using (76), one discovers- — 7 + 1 when M is an spin manifold, but also under the

that the expression (74) becomes changer — 71 + 2 for any closed four manifold/. It may
be interesting for further research to explore what this means
0Sir =1 {/ d“:c*F‘”’*FW in both scenarios, Maxwell theory and linearized gravity.
- / d‘*m‘F"”‘FW} ; (77)  Acknowledgments
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