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O. Félix-Beltrán
Facultad de Ciencias de la Electrónica, Beneḿerita Universidad Aut́onoma de Puebla.
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Apartado Postal 20-364, Ḿexico, D.F., 01000 Ḿexico.
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We perform a numerical study of the SUSY flavor problem in the MSSM, which allows us to estimate the size of the SUSY flavor problem
and its dependence on the MSSM parameters. For that, we have made a numerical analysis, randomly generating the entries of the sfermion
mass matrices and then determined what percentage of these points is consistent with current bounds on the flavor violating transitions
on lepton flavor violating (LFV) decaysli → lj γ. We applied two methods, the mass-insertion approximation method (MIAM) and the
full diagonalization method (FDM). Furthermore, we determined which fermion masses could be radiatively generated (through gaugino-
sfermion loops) in a natural way, using those random sfermion matrices. In general, the electron mass generation can be obtained for 30%
of points for largetan β, while in both schemes the muon mass can be generated by 40% of points only when the most precise sfermion
splitting (from the FDM) is taken into account.

Keywords: Supersymmetric; flavor problem; MSSM; sfermion masses; LFV decays.

Estudiamos nuḿericamente el problema supersimétrico del sabor en el MSSM, estamos propiamente interesados en estimar la dimensión
del problema del sabor supersimétrico y su dependencia de los parámetros del modelo MSSM. Para esto, realizamos un análisis nuḿerico
generando aleatoriamente las entradas de las matrices de masa de los sfermiones y entonces determinamos cuál es el porcentaje de puntos
que son consistentes con las cotas actuales en las transiciones con violación de sabor en los decaimientos que violan sabor leptónico (LFV)
li → lj γ. Aplicamos dos ḿetodos, el Ḿetodo Aproximado de Inserción de Masa (MIAM) y el Ḿetodo de Diagonalización Total (FDM).
Además, determinamos cuáles masas de los fermiones podrı́an ser generadas radiativamente (a través de los rizos gaugino-sfermión) en
forma natural, usando las matrices de masa generadas aleatoriamente. En general, la generación de la masa del electrón puede ser realizada
con el 30% de los puntos paratan β grande; en ambos esquemas la masa del muón puede ser generada por un 40% de puntos sólo cuando el
desacoplo sfermiónico ḿas preciso (del FDM) es considerado.

Descriptores:Problema del sabor supersimétrico; MSSM; masas de sfermiones; decaimientos con LFV.

PACS: 11.30.Hv; 11.30.Pb; 13.35.-r

1. Introduction

Weak-scale supersymmetry (SUSY) [1], has notably become
one of the leading candidates for physics beyond the standard
model, by supporting the mechanism of electroweak symme-
try breaking (EWSB). Being a new fundamental space-time
symmetry, SUSY necessarily extends the SM particle con-
tent by including superpartners for all fermions. Because
the mass spectrum of the superpartners needs to be lifted,
SUSY must be softly broken; this is needed so as to maintain
its ultraviolet properties. SUSY breaking is parameterized

in the Minimal Supersymmetric SM (MSSM) by the soft-
breaking lagrangian [2]; as an outcome, the combined effects
of the large top quark Yukawa coupling and the soft-breaking
masses make radiative breaking of the electroweak symmetry
possible. The Higgs sector of the MSSM includes two Higgs
doublets, the light Higgs boson (mh ≤ 125 GeV) being per-
haps the strongest prediction of the model.

However, the soft breaking sector of the MSSM is of-
ten problematic with low-energy flavor changing neutral cur-
rents (FCNC) without making specific assumptions about its
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free parameters. Minimal choices to satisfy those constraints,
such as assuming universality of squark masses, have been
widely studied in the literature [2]. However, non-minimal
flavor structures could be generated in a variety of contexts.
For instance, within the context of realistic unification mod-
els by the evolution of soft-terms, from a high-energy GUT
scale to the weak scale. Similarly, models that attempt to ad-
dress the flavor problem, could induce sfermion soft-terms
that reflect the underlying flavor symmetry of the fermion
sector [3,4].

It is not a trivial task to find models of SUSY breaking
that can actually generate minimal and safe patterns. This is
the so-called SUSY flavor problem. The known solutions in-
clude the following:degeneracy[5] (sfermions of different
families have the same mass),proportionality [5] (trilinear
terms are proportional to the Yukawa terms),decoupling[6]
(superpartners are too heavy to affect low energy physics) and
alignment[7] (the same physics that explains the pattern of
fermion masses and mixing angles, forces the sfermion mass
matrices to be aligned with the fermion ones, in such a way
that the fermion-sfermion-gaugino vertices remain close to
diagonal).

Sometimes the SUSY flavor problem is stated by saying
that if the sfermion mass matrix entries were randomly gen-
erated, most of these points would lead to the exclusion of
the MSSM. In this paper, we would like to quantify the for-
mer statement, namely, we wish to estimate thesizeof the
SUSY flavor problem, and to determine its dependence on
the parameters of the MSSM. Then, we would like to deter-
mine what would be left of the SUSY flavor problem after
Tevatron and LHC establish bounds on the masses of the su-
perpartners, or hopefully a signal of their presence! We focus
on lepton sector, and in particular we use the LFV decays
li → lj +γ to state our point, namely to derive bounds on the
parameters of the MSSM and to determine the viability and
interplay of the solutions above.

First, we evaluate the LFV decays above using the mass-
insertion approximation method (MIAM), both for muon and
tau decays. Our procedure will consist first in writing the off-
diagonal elements of the slepton mass matrices as the product
of O(1) coefficients times an average sfermion mass parame-
ter, then we randomly generate105 pointsi for theO(1) coef-
ficients, and determine which fraction of such points satisfies
the current bounds on the LFV transitions. We repeat this
procedure for different values of other relevant parameters of
the MSSM, such astanβ, gaugino masses,µ-parameter and
the sfermion mass scale.

Next, to estimate how much we can trust the MIAM, we
compare those results with the ones coming from particular
models that enable us to obtain exact diagonalization for the
sfermion mass matrices. Namely, we take into account that
the constraints on sfermion mixing coming from low-energy
data mainly suppress the mixing between the first two fam-
ily sleptons, but still allow large flavor-mixings between the
second- and third-family sleptons,i.e. the smuon (̃µ) and
stau (̃τ ), which can be as large asO(1) [8]. Thus, we con-

sider models where the mixing involving the selectrons could
be neglected, as it involves small off-diagonal entries in the
slepton mass matrices. But theµ̃−τ̃ mixing will involve large
off-diagonal entries in the sfermion mass matrices, which re-
quires at least a partial diagonalization in order to be treated
consistently. Namely, in our models the general6×6 slepton-
mass-matrix will include a4 × 4 sub-matrix involving only
theµ̃− τ̃ sector, which can be exactly diagonalized, similarly
to the squark case first discussed in Ref. 9. Since we follow
a bottom-up approach, we simply take anAnsatzfor theA-
terms valid on the TeV-scale; such large off-diagonal entries
can be motivated by considering the large mixing detected
with atmospheric neutrinos [10], especially in the framework
of GUT models with flavor symmetries. Then, we repeat the
above method of random generation for the parameters of the
sfermion matrices, which will then be diagonalized. Armed
with the exact expressions for the mass and mixing matri-
ces and the interaction lagrangian written in terms of mass
eigenstates, we evaluate the fraction of points that satisfy all
the LFV constraints coming from theτ → µ+γ decays. The
results with exact diagonalization for LFV tau decays will be
compared with those obtained using the MIAMii.

Another aspect of the Flavor Problem involves the pos-
sibility of radiatively inducing the fermion masses, which
is known to be possible within SUSY through sfermion-
gaugino loops. Here, we shall determine which fraction of
points can generate correctly the fermion masses through
sfermion-gaugino loops. Again, we are interested in compar-
ing the results obtained using FDM with those of the MIAM.
Implications for LFV in the Higgs sector are discussed in
Refs. 12 and 13.

The organization of this paper is as follows: in Sec. 2 we
discuss the SUSY flavor problem in the lepton sector, using
the mass-insertion approximation. This section includes the
evaluation of the radiative LFV loop transitions (li → lj +γ)
with a random generation of the sleptonA-terms. Then, in
Sec. 3 we present anAnsatzfor soft breaking trilinear terms,
the diagonalization of the resulting sfermion mass matrices,
and we repeat the calculus of the previous section. The ra-
diative generation of fermion masses is discussed in detail in
Sec. 4, within the context of the MSSM. Finally, our conclu-
sions are presented in Sec. 5.

2. The SUSY flavor problem in the Super
CKM basis.

2.1. The slepton mass matrices in the MSSM

First, we discuss the slepton mass matrices and the gaugino-
lepton-slepton interactions. The MSSM soft-breaking slep-
ton sector contains the following quadratic mass-terms and
trilinearA-terms:

Lsoft = −L̃†i (M
2
L̃
)ijẼj

− Ẽ†
i (M2

Ẽ
)ijẼj + (Aij

l L̃iHdẼj + h.c.), (1)
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whereL̃i andẼj denote the doublet and singlet slepton fields,
respectively, withi, j(= 1, 2, 3) being the family indices. For
the charged slepton sector, this gives a generic6×6 mass ma-
trix given by

M̃2
l =

(
M2

LL M2
LR

M2 †
LR M2

RR

)
, (2)

where

M2
LL = M2

L̃
+ M2

l + 1
2 cos 2β (2m2

W −m2
Z) ,

M2
RR = M2

Ẽ
+ M2

l − cos 2β sin2 θW m2
Z ,

M2
LR = Alv cosβ/

√
2−Ml µ tan β .

(3)

HeremW,Z denote theW± with Z0 masses andMl be-
ing the lepton mass matrix (for convenience, we shall choose
a basis whereMl(= Mdiag

l ) is diagonal).
In our minimal scheme, we consider all large LFV that

solelycome from the non-diagonal entries of theAl-terms in
the slepton-sector, such that they respect the low-energy con-
straints and CCB-VS bounds [14]. In the Super CKM basis,
the gaugino-slepton-lepton interactions are diagonal in flavor
space, while flavor-violation associated with the off-diagonal
entries of the slepton mass matrices are treated as perturba-
tions, i.e., mass-insertions. We shall write the off-diagonal
soft-terms as

(M2
MN )off−diag = zl

MN · m̃2
0, (4)

whereM,N : L,R, m̃0 denotes an average slepton mass
scale and the coefficientszl

MN will be taken as random coef-
ficients ofO(1).

2.2. Bounds on the soft-breaking parameters from the
LFV decay li → lj γ

Here, we are interested in obtaining bounds on thezl
MN

and m̃0 parameters, applying the MIAM in order to eval-
uate the LFV transitionµ → e + γ and τ → µ(e) + γ.
Within this method, the expression for the branching ratio
BR(li → lj + γ), including the photino contributions, can
be written as follows [5]:

BR(li → lj γ) =
α3

G2
F

12π

m4
l̃

{ ∣∣∣M3(xγ̃)(δl
ij)LL

+
mγ̃

mli

M1(xγ̃)(δl
ij)LR

∣∣∣∣
2

+ (L ↔ R)

}

×BR(li → lj νi ν̄j), (5)

whereM1 andM3 are the loop functions, which are given
below;(δl

ij)MN = M̃2
MN/m̃2

0 andxγ̃ ≡ (mγ̃/m̃0)2.
Assuming that the(δl

ij)LR term exclusively contributes
to the branching ratio, and considering

(
M̃2

LR

)
ij

=
v1√
2
(Al

LR)ij , i 6= j, (6)

with v1 = v cos β and(Al
LR)ij = (zl

LR)ij · m̃0, we obtain
the following expression for(δl

ij)LR:

(δl
ij)LR =

(
M̃2

LR

)
ij

m̃2
0

=
cos β√

2
v

m̃0
· (zl

LR)ij . (7)

Finally, replacing the above expression in Eq. (5), we obtain
the following expression:

BR(li → lj γ) ≈ α3

G2
F

6π

m4
l̃

(
mγ̃

mli

)2

|M1(xγ̃)|2 cos2 β

×
(

v

m̃0

)2

· (zl
LR)2ij ·BR(li → lj νi ν̄j), (8)

whereml̃i
≈ m0 and

M1(xγ̃) =
1 + 4x− 5x2 + 4x ln(x) + 2x2 ln(x)

2(1− x)4
. (9)

In order to discuss the processesµ → e γ andτ → µγ(e γ),
we shall make use of the following experimental results:
BR(µ → e νµ ν̄e) ≈ 100%; BR(τ → µ ντ ν̄µ) ≈ 17.36%;
BR(τ → e ντ ν̄e) ≈ 17.84%, respectively [15].

Then, we calculate the bino contributions to
BR(li→lj γ) following Ref. [11], and obtain

BR(li → lj γ) ≈ 25π

3 cos4 θW

α3

G2
F

m̃4

m8
L

(
m1

mli

)2

×
{∣∣M1(aL)(δl

ij)LR

∣∣2
}

BR(li → lj νi ν̄j), (10)

whereaL = m2
1/m2

L, m1(mU ) = m1/2 is the gaugino mass
(in this case the mass of thẽB), andm2

L(mU ) = m2
0 is a

common scalar mass.
If we consider the approximationm2

L = m2
0 = m̃2

0 and
m1 = mB̃ , then Eq. (10) reduces to

BR(li → lj γ) ≈ 25π

3 cos4 θW

α3

G2
F

1
m̃4

0

(
mB̃

mli

)2

×
{∣∣M1(xB̃)(δl

ij)LR

∣∣2
}

BR(li → lj νi ν̄j), (11)

wherexB̃ ≡ (mB̃/m̃0)2.
Now, our numerical analysis is based on a random gen-

eration of the parameters(zl
LR)ij (105 points are generated)

and then a study of their effects on the LFV transitions. Our
results forµ → e γ are shown in Fig. 1, assumingtan β = 15
for xB̃ = 0.3, 1.5, 5.

Figure 1 illustrates the severity of the SUSY flavor prob-
lem for low sfermion masses. We can see that even for
m̃0=1 TeV almost100% of the randomly generated points
are experimentally excluded, while we needs to havem̃0 ≈
10 TeV in order to obtain that approximately10% of the gen-
erated points satisfy the current bound onµ → e γ. On
the other hand, larger gaugino masses help to ameliorate the
problem, but not much. For instance, assumingxB̃ = 5 and
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tan β = 15, implies that even for̃m0 = 10 TeV, the percent-
age of acceptable points only increases to18%.

Current bounds on tau decays do not pose such a severe
problem, as is shown in Fig. 2. In this case most of the
randomly generated points satisfy the bounds onτ → µγ
and τ → e γ. For instance, in the case ofτ → µγ, with
x = 0.3 andtanβ = 15 (see Fig. 2a), it is obtained that for
ml̃ = 200 GeV approximately10% of the points are accepted
by experimental data. However, this percentage increases
with the slepton mass, and forml̃ ≥ 400 GeV, about100%
of the points are accepted by experimental data. In Fig. 2b,
we notice that a similar behavior is obtained forτ → e γ.
We can also notice in Fig. 2a (Fig. 2b) that forx = 0.5 and
tan β = 15 in the caseτ → µ γ (τ → e γ) requires slepton
masses, underml̃ ≥ 220 GeV (ml̃ ≥ 180 GeV) in order to
get100% of the points as acceptable by experimental data.

3. The SUSY flavor problem beyond the mass-
insertion approximation

Now, we shall consider SUSY FCNC schemes where the gen-
eral6 × 6 slepton-mass-matrix reduces to a4 × 4 matrix in-
volving only theµ̃ − τ̃ sector, similarly to the quark sector
discussed in Ref. 9. In this case,µ̃ − τ̃ flavor-mixings can
be as large asO(1). Although such large mixing could be
related to the largeνµ − ντ mixing observed in atmospheric
neutrinos [10], we shall follow a bottom-up approach, where
we simply take as anAnsatzthe following form of theA-
terms, taken also to be real and valid at the TeV-scale. Here,
we consider twoAnsatzkinds for A-terms, which are used
for the diagonalization of fermion mass matrices.

3.1. Diagonalization of fermion mass matrices

3.1.1. Ansatz A

The reduction of the slepton mass matrix proceeds, for in-
stance, by considering at the weak scale the followingA-term
(AnsatzA):

Al =




0 0 0
0 0 z
0 y 1


A0 , (12)

wherey andz can be ofO(1), representing a naturally large
flavor-mixing in theµ̃ − τ̃ sector. Actually, the zero en-
tries could be ofO(ε), with ε ¿ 1, and their effect could
be treated using the MIAM. Moreover, if we identify the
non-diagonalAl as the only source of the observable LFV
phenomena, this would imply that the slepton-mass-matrices
M2

L̃,Ẽ
in Eqs. (2)-(3) are nearly diagonal. For simplicity, we

define

M2
LL ' M2

RR ' m̃2
0 I3×3 , (13)

with m̃0 being a common scale for scalar-masses.

FIGURE 1. Analysis of the LFV decayµ → e γ as a function of
m̃0, using the MIAM and by randomly generating105 points for
(zl

LR)21 coefficient, assumingtan β = 15 for xB̃ = 0.3, 1.5, 5.
The different draw-lines show the fraction of such points that satis-
fies the current experimental boundBR(µ → e γ) < 1.2×10−11.

Within this minimal scheme, we observe that the first
slepton familỹeL,R decouples from the rest in Eq. (2) so that,
in the slepton basis(µ̃L, µ̃R, τ̃L, τ̃R), the6× 6 mass-matrix
is reduced to the following4× 4 matrix:

M̃2
l̃

=




m̃2
0 0 0 Az

0 m̃2
0 Ay 0

0 Ay m̃2
0 Xτ

Az 0 Xτ m̃2
0


 (14)

where

Ay = yÂ , Az = zÂ ,

Â = Av cos β/
√

2 , Xτ = Â− µmτ tan β. (15)

The reduced slepton mass matrix (14) allows for an exact di-
agonalization. Therefore, when evaluating loop amplitudes
one can use the exact slepton mass-diagonalization and com-
pare the results with those obtained from the popular but
crude MIAM.

We now have obtained the mass-eigenvalues of the eigen-
states(µ̃1, µ̃2, τ̃1, τ̃2) for any(y, z), given as:

M2
µ̃1,2

= m̃2
0 ∓ 1

2 |
√

ω+ −√ω−| ,
M2

τ̃1,2
= m̃2

0 ∓ 1
2 |
√

ω+ +√
ω−| ,

(16)

where ω± = X2
τ + (Ay ± Az)2 . From (16), we

can deduce the mass-spectrum of theµ̃ − τ̃ sector as
Mτ̃1<Mµ̃1<Mµ̃2<Mτ̃2 .
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FIGURE 2. Analysis of the LFV decaysτ → µ γ andτ → e γ
as a function ofm̃0, using MIAM and by randomly generating
105 points for (a)(zl

LR)32 and (b)(zl
LR)31 coefficients, assum-

ing tan β = 15 and xB̃ = 0.3, 1.5, 5. The different draw-
lines show the fraction of such points that satisfies the current
experimental bounds (a)BR(τ → µ γ) < 1.1 × 10−6 and (b)
BR(τ → e γ) < 2.7× 10−6.

The4 × 4 rotation matrix of the diagonalization is given
by,




µ̃L

µ̃R

τ̃L

τ̃R




=




c1c3 c1s3 s1s4 s1c4

−c2s3 c2c3 s2c4 −s2s4

−s1c3 −s1s3 c1s4 c1c4

s2s3 −s2c3 c2c4 −c2s4







µ̃1

µ̃2

τ̃1

τ̃2




, (17)

with

s1,2 =
1√
2

[
1− X2

τ ∓A2
y ±A2

z√
ω+ω−

]1/2

, s4 =
1√
2

, (18)

ands3 = 0 (1/
√

2) if yz = 0 (yz 6= 0).
In Fig. 3, we plot the slepton spectra as functions of

z for m̃0 = 100, 500 GeV andm̃0 = 1, 10 TeV, taking

tan β = 15. We can observe that both̃τ1 and τ̃2 differ sig-
nificantly from the common scalar mass̃m0; stauτ̃1 can be
as light as about100− 300 GeV, which has an important ef-
fect on the loop calculations. Furthermore, even forz ' 0.5
the smuon masses can differ from̃m0 for 30-50 GeV. With
these mass values the slepton phenomenology would have to
be reconsidered, since one is not allowed to sum over all the
selectrons and smuons, for instance, when evaluating slep-
ton cross-sections, as it is usually assumed in the constrained
MSSM.

We can also observe in Fig. 3 thatmµ̃1 − mτ̃1 and
mµ̃2 −mτ̃2 remain almost constant as one varies the param-
eter z in the range0 ≤ z ≤ 1. However, the differences
mµ̃2 −mµ̃1 andmτ̃2 −mτ̃1 are sensitive to the non-minimal
flavor structure. Besides, such splitting will affect the results
for LFV transitions and the radiative fermion mass genera-
tion.

3.1.2. Ansatz B

Now, we shall reduce the slepton mass matrix by considering
anotherA-term on the weak scale (AnsatzB):

Al =




0 0 0
0 w y
0 y 1


 A0 , (19)

wherew andy can be ofO(1), and asAnsatzA, the zero en-
tries could be ofO(ε), with ε ¿ 1. For this case, we take
the same considerations ofAnsatzA. Again, the first slepton
family ẽL,R decouples from the rest in (2) and we obtain

M̃2
l̃

=




m̃2
0 Aw 0 Ay

Aw m̃2
0 Ay 0

0 Ay m̃2
0 Xτ

Ay 0 Xτ m̃2
0




. (20)

Here, Aw = wÂ, andAy, Â and Xτ are the same as in
Eq. (15).

For this case, mass-eigenvalues of the eigenstates
(µ̃1, µ̃2, τ̃1, τ̃2) for any (w, y) have the following expres-
sions:

M2
µ̃1,2

= 1
2 (2m̃2

0 ±Aw ±Xτ ∓R),

M2
τ̃1,2

= 1
2 (2m̃2

0 ∓Aw ∓Xτ ∓R),
(21)

whereR =
√

4A2
y + (Aw −Xτ )2, from (21) and consid-

ering µ < 0, the mass-spectrum of thẽµ − τ̃ sector as
Mτ̃1 < Mµ̃1 < Mµ̃2 < Mτ̃2 .

With this ansatz, the slepton spectra as functions ofy for
m̃0 = 100, 500 GeV, m̃0 = 1, 10 TeV with tan β = 15, by
consideringw = 0.0, 0.5, 1.0 have a similar behavior to the
case ofAnsatzA.
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TABLE I. Slepton-lepton-neutralino couplings (ηmN
αk ) for the case wheny = z andχ0

1 = B̃.

(l̃α, lk) (µ̃1, µ) (µ̃1, τ) (µ̃2, µ) (µ̃2, τ) (τ̃1, µ) (τ̃1, τ) (τ̃2, µ) (τ̃2, τ)

ηL
αk −cl̃

g1
2

sl̃
g1
2

−cl̃
g1
2

sl̃
g1
2

−sl̃
g1
2

−cl̃
g1
2

−sl̃
g1
2

−cl̃
g1
2

ηR
αk −cl̃g1 sl̃g1 −cl̃g1 −sl̃g1 sl̃g1 cl̃g1 −sl̃g1 −cl̃g1

FIGURE 3. Mass spectrum for the smuon and stau sleptons as a function ofz for tan β = 15 and the SUSY scale (a)̃m0 = 100 GeV, (b)
m̃0 = 500 GeV, (c)m̃0 = 1 TeV and (d)m̃0 = 10 TeV.

By defining

sin φ =
2Ay√

4A2
y + (Aw −Xτ )2

,

cos φ =
2Aw −Xτ√

4A2
y + (Aw −Xτ )2

, (22)

the4× 4 rotation matrix of the diagonalization is given by,



µ̃L

µ̃R

τ̃L

τ̃R




= 1√
2




−sξ sξ −cξ cξ

−sξ −sξ cξ cξ

cξ −cξ −sξ sξ

cξ cξ sξ sξ







µ̃1

µ̃2

τ̃1

τ̃2




, (23)

wheresξ ≡ sin(φ/2) andcξ ≡ cos(φ/2).

3.2. Gaugino-sfermion interactions

The interaction between gauginos and lepton-slepton pairs
can be written as follows:

Lint = χ̄0
m[ηmL

αk PL + ηmR
αk PR]l̃αlk + h.c., (24)

whereχ0
m (m = 1, ..., 4) denotes the neutralinos, whilẽlα

correspond to the mass-eigenstate sleptons. The factorsηmN
αk

are obtained after substituting the rotation matrices for both
neutralinos and sleptons in the interaction lagrangian.
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FIGURE 4. Analysis of the LFV decayτ → µ γ as a function of
m̃0, using a FDM and by randomly generating105 points for z
coefficient, assumingtan β = 15 andxB̃ = 0.3, 1.5, 5. The dif-
ferent draw-lines show the fraction of such points that satisfies the
current experimental boundBR(τ → µ γ) < 1.1× 10−6.

To carry out the forthcoming analysis of LFV transitions,
we choose to work with the simplified casey = z, which
gives:c1=c2=cl̃, s1=s2=sl̃ andc3=s3=c4=s4=1/

√
2. The

expressions forηmL,R
αk simplify further when the neutralino is

taken as the bino, which we shall assume in the calculation
of Higgs LFV decays; the resulting coefficients (ηL,R

αk ) are
shown in Table I.

3.3. Bounds on the LFV parameters fromτ → µ + γ

Here, we are interested in determining which fraction of
points in parameter space satisfy current bounds on LFV tau
decays, when the exact slepton mass-diagonalization is ap-
plied; again we generate105 random values ofO(1) for the
parameterz appearing in the soft-terms, and fix the values of
m̃0, M̃ andtanβ. Using interaction lagrangian (21) one can
write the general expressions for the SUSY contributions to
the decaysτ → µ + γ given in Ref. [16]. The expression for
Γ(τ → µ+γ), including theµ̃ andτ̃ contributions, is written
as follows:

Γ(τ → µ + γ) =
αm5

τ

4π
[
∑
α

|ALα|2 + |ARα|2], (25)

where

ARα =
1

32π2m2
l̃α

[ηR
l̃ατ

ηR
l̃αµ

f1(xα)

+ ηR
slpατηL

l̃αµ

mB̃

mτ
f2(xα)], (26)

with xα = m2
B̃

/m2
l̃α

, and the functionsf1,2(xα) are given
in Ref. [16]. ALα is obtained by making the substitutionsL,
R → R, L in Eq. (23). The expressions for theΓ(µ → e+γ)
andΓ(τ → e + γ) decays are still given by the MIAM.

FIGURE 5. Radiative generation of theme andmµ as a function of
tan β, using MIAM and by generating105 random values for (a)
(zl

LR)11 and (b)(zl
LR)22, with xγ̃ = 0.1, 0.3, 1.5, 5. The differ-

ent draw-lines show the fraction of points that produce a correction
that falls within the range0.5 < δml/me, < δml/mµ < 2.0.

The decay width depends on the SUSY parameters, and
again we shall randomly generate the points and use the cur-
rent boundBR(τ → µ + γ) < 1.1 × 10−6 to determine
which percentage is excluded/accepted. In Fig. 3, we can
see that starting with values of the scalar mass parameter
m̃0 ≥ 460 GeV, about100% of the generated points are ac-
ceptable forx ≥ 0.3, see Fig. 7 (compare with the result
m̃0 ≥ 360 GeV, obtained using MIAM).

4. Radiative Fermion masses in the MSSM

Understanding the origin of fermion masses and mixing an-
gles is one of the main problems in Particle Physics. Because
of the observed hierarchy, it is plausible to suspect that some
of the entries in the full (non-diagonal) fermion mass matri-
ces could originate as a radiative effect. The MSSM loops in-
volving sfermions and gauginos some of those entries could
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generate. However, most attempts presented so far [17–20]
could be seen as being highly dependent on the details of the
SUSY breaking particular aspects. In this section we would
like to scan the parameter space in order to determine which
is the natural size of such corrections, namely to study which
of the fermion masses could be generated in a natural man-
ner. We shall concentrate on the charged lepton case, and
shall use both the MIAM as well as the FDM of a particular
Ansatzfor the soft-breaking trilinear terms.

4.1. Mass-insertion approximation method (MIAM)

A Left-Right diagonal mass-insertion(δii)LR=(δii)RL gen-
erates a one-loop mass term for leptons given by [5]:

δmi = − α

2π
mγ̃ Re(δii)LR I(xγ̃), (27)

where the functionI(x) is given by

I(x) =
−1 + x− x ln(x)

(1− x)2
. (28)

In our approximation

Re(δii)LR =
cosβ√

2
v

m̃0
, (zl

LR)ii (29)

hence

δmi = − α

2π
I(xγ̃)

cosβ√
2
√

xγ̃ v (zl
LR)ii. (30)

Here,xγ̃ ≡ (mγ̃/m̃0)2. Again, we shall generate105

random values ofO(1) for the parameter(zl
LR)ii. In addi-

tion such points must satisfy the LFV current bounds. One
can estimate the natural value of the fermion mass generated
from SUSY loops, by takingxγ̃ = 0.3, tanβ = 15− 50 and
(zl

LR)ii ≈ 1, which givesδmi ≈ 10− 3 MeV. Thus, in order
to generate thee-µ hierarchy, one will need to include it in
theA-terms, namely:

δme

δmµ
=

me

mµ

∼= 1
200

,

then
(zl

LR)11
(zl

LR)22
∼= 1

200
.

This type of hierarchy can only arise as a result of some flavor
symmetry. Thus, one can see that a radiative mechanism re-
quires an additional input in order to reproduce the observed
fermion masses. The percentage of points that produce a cor-
rection that falls within the range0.5 < δme/me < 2.0 as
a function oftan β, for xγ̃ = 0.1, 0.3, 1.5, 5.0, is shown in
Fig. 5a; the percentage of points that produce a correction
that falls within the range0.5 < δmµ/mµ < 2.0 as a func-
tion of tan β, for xγ̃ = 0.1 is plotted in Fig 5b,xγ̃ = 0.3,
xγ̃ = 1.5 andxγ̃ = 5. We numerically observed that it is
not possible to generate the tau mass (it can be shown that

at least one fermion should have a mass in order to radia-
tively generate the rest). Numerically, we have found that it
is possible to find a set of parametersxγ̃ andtan β for which
the fraction of points that produce a correction that falls si-
multaneously within the range0.5 < δme/me < 2.0 and
0.5 < δmµ/mµ < 2.0 is small, but different from zero, as
shown in Fig. 6.

It can be noticed that without further theoretical input the
values of(zl

LR)ii do not make a distinction between the fam-
ilies. For the electron mass, one needs higher values oftan β
in order to get a significant fraction of points (bigger than
10%) where the electron mass is generated. For lower values
of tan β, what happens is that the mass generated exceeds the
range (0.5 < δme/me < 2.0).

4.2. Exact diagonalization of a particularAnsatzand the
one loop correction

4.2.1. Ansatz A

When one uses the exact diagonalization, one can identify
the dominant finite one loop contribution to the lepton mass
correctionδml. It is given by

(δml)ab =
α

2π
mB̃

∑
c

Zl
caZl∗

c(b+3)B0(mB̃ ,ml̃c
), (31)

where lc (c = 4, 5, 6 )are the lepton left mass eigen-
states (c=1, 2, 3) and the lepton right mass eigenstates. The
selectrons can be decoupled with no flavor mixing with
the µ̃ − τ̃ sector; then the sfermion matrix is diagonal-
ized by an unitary matrix,Zl, which is given on the basis
(ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R) as follows:

FIGURE 6. Radiative generation of themµ andme as a function
of tan β, using MIAM and by generating105 random values for
(zl

LR)22 = (zl
LR)11 with xγ̃ = 5. The solid draw-line shows

the fraction of points that produce a correction that falls within the
range0.5 < δml/mµ < 2.0, while the dashed one shows the frac-
tion of points that produce a correction that falls within the range
0.5 < δml/me < 2.0.
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ẽL

µ̃L

τ̃L

ẽR

µ̃R

τ̃R




=




1 0 0 0 0 0
0 c1c3 s1s4 0 c1s3 s1c4

0 −s1c3 c1s4 0 −s1s3 c1c4

0 0 0 1 0 0
0 −c2s3 s2c4 0 c2c3 −s2s4

0 s2s3 c2c4 0 −s2c3 −c2s4







ẽ1

µ̃1

τ̃1

ẽ2

µ̃2

τ̃2




, (32)

with s1,2,3,4 defined in Eq. (18).

From the rotation matrix (32), we see that matrix ele-
ments(δml)a1 = (δml)1b = 0; therefore only the muon
mass can be entirely generated from loop corrections. The
rest of the matrix elements are given as follows:

(δml)22 =
α

4π
mB̃

{
[c2

1B0(mB̃ ,mµ̃1)− c2
2B0(mB̃ ,mµ̃2)]

+[s2
1B0(mB̃ , mτ̃1)− s2

2B0(mB̃ ,mτ̃2)]
}

,

(δml)23 =
α

4π
mB̃ {c1s1[B0(mB̃ ,mµ̃1)−B0(mB̃ ,mτ̃1)]

+c2s2[B0(mB̃ ,mµ̃2)−B0(mB̃ , mτ̃2)]} ,

(δml)32 = (δml)23,

(δml)33 =
α

4π
mB̃

{
[s2

1B0(mB̃ ,mµ̃1)− s2
2B0(mB̃ ,mµ̃2)]

+[c2
1B0(mB̃ ,mτ̃1)− c2

2B0(mB̃ ,mτ̃2)]
}

, (33)

where

B0(m, mi)−B0(m,mj) = ln

(
m2

j

m2
i

)

+
m2

m2
i −m2

ln
(

m2
i

m2

)
− m2

m2
j −m2

ln

(
m2

j

m2

)

which follows from

B0(m1,m2) = 1 + ln
(

Q2

m2
2

)
+

m2
1

m2
2 −m2

1

ln
(

m2
2

m2
1

)
.

After generating105 random values ofO(1) for the parame-
tersy andz, we show our results in Figs. 7 and 8. In Fig. 7 is
shown the percentage of points that produce a correction that
falls within the range0.5 < δmµ/mµ < 2.0 as a function of
tanβ, for xγ̃ = 0.1, xγ̃ = 0.3 andxγ̃ = 0.5. We notice that
a hightan β range is required to get a correct generation. In
Fig. 8 is plotted the percentage of points that produce a cor-
rection that falls within the range0.5 < δmµ/mµ < 2.0 as a
function ofm̃0, for xγ̃ = 0.1 andtan β = 32, xγ̃ = 0.3 and
tanβ = 56, xγ̃ = 0.5 andtanβ = 72. We find that a slepton

mass parameter̃m0
<∼ 1 TeV is required in order to generate

the muon mass for about 40-60% of generated points.

FIGURE 7. Radiative generation of themµ as a function oftan β,
using the FDM A and by generating105 random values fory and
z with xγ̃ = 0.1, 0.3, 0.5. The different draw-lines show the frac-
tion of points that produce a correction that falls within the range
0.5 < δmµ/mµ < 2.0.

FIGURE 8. Radiative generation of the muon mass as a function
of m̃0, using the FDM A and by generating105 random values for
y andz, with: a) xγ̃ = 0.1 and tan β = 32, b) xγ̃ = 0.3 and
tan β = 56, c) xγ̃ = 0.5 andtan β = 72. The different draw-
lines show the fraction of points that produce a correction that falls
within the range0.5 < δmµ/mµ < 2.0.
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FIGURE 9. Radiative generation of the muon mass as a function of
tan β, using the FDM B and by generating105 random values for
w andy, with xγ̃ = 0.05, 0.1, 0.2. The different draw-lines show
the fraction of points that produce a correction that falls within the
range0.5 < δmµ/mµ < 2.0.

FIGURE 10. Radiative generation of the muon mass as a function
of m̃0, using the FDM B and by generating105 random values
for w andy, with: a) xγ̃ = 0.05, tan β = 3.2, b) xγ̃ = 0.1,
tan β = 4.2 and c)xγ̃ = 0.2, tan β = 4.7. The different draw-
lines show the fraction of points that produce a correction that falls
within the range0.5 < δmµ/mµ < 2.0.

4.2.2. Ansatz B

As we have already mentioned above when we use the ex-
act diagonalization, we can identify the dominant finite one
loop contribution to the lepton mass correctionδml, which
is given by Eq. (31). Using theAnsatzB (Eq. (19)), the
sfermion matrix is diagonalized by an unitary matrix,Zl

B ,
which is given, in the basis(ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R), as:




ẽL

µ̃L

τ̃L

ẽR

µ̃R

τ̃R




=
1√
2

×




1 0 0 0 0 0
0 −sξ −cξ 0 sξ cξ

0 cξ −sξ 0 −cξ sξ

0 0 0 1 0 0
0 −sξ cξ 0 −sξ cξ

0 cξ sξ 0 cξ sξ







ẽ1

µ̃1

τ̃1

ẽ2

µ̃2

τ̃2




, (34)

with sξ ≡ sin(φ/2) andcξ ≡ cos(φ/2) (see Eq. (22)).
From the rotation matrix (34), we see that matrix ele-

ments(δml)a1 = (δml)1b = 0; therefore only theµ mass
can be entirely generated from loop corrections. The rest of
the matrix elements are given as follows:

(δml)22 =
α

4π
mB̃

{
s2

ξ [B0(mB̃ ,mµ̃2)−B0(mB̃ ,mµ̃1)]

+c2
ξ [B0(mB̃ ,mτ̃2)−B0(mB̃ ,mτ̃1)]

}

(δml)23 =
α

4π
mB̃ {sξcξ[B0(mB̃ ,mτ̃2)−B0(mB̃ , mµ̃2)]

+sξcξ[B0(mB̃ ,mτ̃1) + B0(mB̃ ,mµ̃1)]}
(δml)32 = (δml)23

(δml)33 =
α

4π
mB̃

{
c2
ξ [B0(mB̃ ,mµ̃2)−B0(mB̃ , mµ̃1)]

+s2
ξ [B0(mB̃ ,mτ̃2)−B0(mB̃ ,mτ̃1)]

}
, (35)

whereB0(m,mi) − B0(m,mj) andB0(m1,m2) are given
in the previous Subsection (4.2.1).

After generating105 random values ofO(1) for the pa-
rametersw andy, we show our results in Figs. 9 and 10. In
Fig. 9 is shown the percentage of points that produce a cor-
rection that falls within the range0.5 < δmµ/mµ < 2.0 as a
function oftanβ, for xγ̃ = 0.05, xγ̃ = 0.1 andxγ̃ = 0.2. We

notice that a0 <∼ tan β
<∼ 10 range is required to get a correct

generation. The percentage of points that produce a correc-
tion that falls within the range0.5 < δmµ/mµ < 2.0 as a
function of m̃0, for xγ̃ = 0.05 andtanβ = 3.2, xγ̃ = 0.1
andtan β = 4.2, xγ̃ = 0.2 andtan β = 4.7, is plotted in

Fig. 10. We found that a slepton mass parameterm̃0
<∼ 1 TeV

is required in order to generate the muon mass for about
40-65% of the generated points.

5. Conclusions

We have discussed the SUSY flavor problem in the lep-
ton sector using the mass-insertion approximation, evaluat-
ing the radiative LFV loop transitions (li → ljγ) with a ran-
dom generation of the sleptonA-terms. Our results illustrate
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the severity of the SUSY flavor problem for low sfermion
masses. One can see that even form̃0 = 1 TeV almost100%
of the randomly generated points are excluded, while one
needs to havẽm0 ≈ 10 TeV in order to get about10% of the
generated points that satisfy the current bound onµ → e γ;
having larger gaugino helps to ameliorate the problem, but
not by much. On the other hand, we have shown that cur-
rent bounds on tau decays do not pose such a severe problem.
In this case, most of the randomly generated points satisfy
the experimental bounds onτ → µγ andτ → e γ. Also,
we presented twoAnsaetzefor soft breaking trilinear terms,
the diagonalization of the resulting sfermion mass matrices,
and repetition of the previous calculation. We showed that
for m̃0 ≥ 460 GeV, 100% of the points are acceptable for
xγ̃ ≥ 0.3, with similar behavior in both cases (to be com-
pared withm̃0 ≥ 360 GeV obtained using the mass-insertion
approximation).

The radiative generation of fermion masses within the
context of the MSSM with general trilinear soft-breaking
terms was discussed in detail. We presented results for
slepton spectra for̃m0 = 100, 500 GeV andm̃0 = 1, 10
TeV, with tanβ = 15, showing that both̃τ1 and τ̃2 dif-
fer significantly fromm̃0. Moreover,τ̃1 can be as light as
100− 300 GeV, which will have an important effect on the
loop calculations. Furthermore,mµ̃i can differ fromm̃0 for
30-50 GeV consideringz ' 0.5; with these mass values the
slepton phenomenology would have to be reconsidered. We
also observed thatmµ̃1 −mτ̃1 andmµ̃2 −mτ̃2 remain almost
constant as one varies the parameterz in the range0 ≤ z ≤ 1.
This splitting affects LFV transitions and radiative fermion
mass generation results.

Also, we have analyzed the radiative generation of thee
andµ masses using the MIAM by generating105 random val-
ues ofO(1) for the parameters(zl

LR)ii. It was shown that for
some parameters a percentage of points may produce a cor-
rection that falls within the range0.5 < δml/me < 2, while
another percentage of points can produce a correction that

falls within the range0.5 < δml/mµ < 2. Then, it is possi-
ble to find a set of parametersx andtan β for which the frac-
tion of points produce a correction that falls simultaneously
within the range0.5 < δme/me, δmµ/mµ < 2.0, which is
small, but different from zero. Numerically concluding that it
is not possible to generate the tau mass. Having noticed that
without further theoretical input the values of(zl

LR)ii do not
distinguish among the families. For the electron mass, one
needs higher values oftan β in order to get a significant frac-
tion of points (greater than 10%) where the electron mass is
generated. For lower values oftanβ, what happens is that the
mass generated exceeds the range (0.5 < δme/me < 2.0).

We have pointed out that in order to generate thee-µ hi-
erarchy, one needs to have(zl

LR)11/(zl
LR)22 ∼= 1/200. This

type of hierarchy can only arise as a result of some flavor
symmetry. Thus, one can conclude that the radiative mech-
anism requires an additional input in order to reproduce the
observed fermion masses.

On the other hand, we have analyzed the radiative gen-
eration of the muon mass using a FDM, by considering on
the weak scale two differentAnsaetzefor A-term, by gener-
ating105 random values ofO(1) for the parametersy andz
of the model. It is shown that for some parameters a percent-
age of points may produce a correction that falls within the
range0.5 < δmµ/mµ < 2, watching a quite different behav-
ior from the resulting fractions of acceptable points when we
consider the differentAnsaetzeas well as with the two full di-
agonalization models and the mass-insertion approximation.
Similarly to the mass-insertion approximation case, it is not
numerically possible to radiatively generate the tau mass by
using the two full diagonalization models considered.
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