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The three dynamical fates of Boson Stars
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In this manuscript the three types of late-time behavior of spherically symmetric Boson Stars are presented, namely: stable configurations,
unstable bounded that collapse and form black holes and unstable unbounded that explode. These three possibilities have been predicted by
perturbation theory and other analytical results, whereas the full non-linear evolution of Boson Star configurations has verified the stable and
unstable bounded cases using numerical relativity. In this paper also the unbounded case is confirmed to happen. In order to do so, Boson
Star solutions are used as initial data of the Einstein-Klein-Gordon system of equations formulated as a constrained initial value problem,
which in turn is solved using the finite differences approximation.
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En este trabajo se presentan los tres tipos de comportamiento temporal de estrellas de bosones esféricamente siḿetricas, es decir: configura-
ciones estables, inestables que colapsan para formar agujeros negros e inestables que explotan. Estas tres posibilidades han sido predichas
por la teoŕıa de perturbaciones y otros resultados analı́ticos, mientras que la evolución no-lineal de las configuraciones de estrellas de bosones
ha verificado los casos estable e inestable acotado usando relatividad numérica. En este artı́culo se confirma adeḿas el caso inestable no aco-
tado. Para tal efecto, las soluciones de estrellas de bosones se usan como datos iniciales del sistema de ecuaciones de Einstein-Klein-Gordon
formulado como un problema de valores iniciales con evolución restringiuda que resolvemos usando la aproximación con diferencias finitas.

Descriptores:Sistemas bośonicos; relatividad nuḿerica; sistemas autogravitantes.
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1. Introduction

Boson Stars (BSs) are self-gravitating systems that help il-
lustrate how more complicated systems -like neutron stars-
evolve. Nevertheless, BSs have been studied not only as toy
models but have also been considered as potentially exist-
ing astrophysical objects. In this sense, BSs can be assumed
to potentially exist because they can be considered to repre-
sent the final stage of zero temperature self-gravitating Bose
Condensates [1], with regular geometry and smooth matter
distribution, with no horizons or singularities. Because these
objects do not emit in the electromagnetic spectrum and do
not interact in any way except through gravity, they are trans-
parent. In fact BSs are studied as potential black hole candi-
dates, with results that discard their existence such as those
presented in [2], others showing that there must be significant
differences when the model considers an accretion disk [3],
and a third position showing that by choosing the correct Bo-
son Star, that star can mimic the behavior of a black hole [4].
In a different context, the Newtonian version of BSs has been
considered as a model of galactic halos, explaining the galaxy
formation process under the scalar field dark matter hypothe-
sis [1,5–7]. For reviews on BSs see Refs. 8 and 9.

The relevance of the association of BSs with astrophys-
ical objects becomes important when possible astrophysical
measurable signals related to these objects might be at hand
soon. This is the case of gravitational wave (GW) astronomy.
There are already some results related to the GW signals
sourced by Boson Stars, either single stars perturbed with
shells of particles [10] or binary Boson Star systems [11].

The key point is that as gravitational wave sources are an-
alyzed numerically, the technology is also applicable to the
study of BS systems.

BS solutions, as happens with other type of general rela-
tivistic self-gravitating configurations, define a stable and an
unstable branch. Nevertheless, the BS unstable branch shows
a rather strange property, that is, there are unstable configu-
rations that collapse into black holes and others that disperse
away, because the binding energy is allowed to be negative or
positive. It calls attention to the fact that the later configura-
tions have not been studied sufficiently, and here we present
important properties of this type of configurations. The re-
sults presented in this paper are related to the confirmation
in the full non-linear regime of the three behaviors using the
integration of an initial value problem using numerical rela-
tivity with the finite differences approximation. This study
was presented before for the bounded cases [12, 13]. The
unbounded case is presented for the first time as the confir-
mation of the predictions made using perturbation theory and
other approaches (seee.g.Refs. 14 and 15).

The paper is organized as follows: in Sec. 2 the usual al-
gorithm to construct BS configurations is shown, in Sec. 3 the
algorithm used here to evolve BSs is presented; in Sec. 4 the
configurations for the different types of behavior are selected;
in Sec. 5 basic tests are shown for stable configurations; in
Secs. 6 and 7 the expected behavior of unstable bounded and
unbounded configurations (respectively) is presented; finally
in Sec. 8 a few comments are mentioned.
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2. Boson Star configurations

BSs arise from the Lagrangian density of a complex scalar
field minimally coupled to gravity, that is:

L = − R

κ0
+ gµν∂µφ∗∂νφ + V (|φ|2), (1)

whereκ0 = 16πG in units wherec = ~ = 1, φ is the
scalar field, the star stands for complex conjugate andV the
potential of self-interaction of the field [8, 9]. Notice that
this Lagrangian density is invariant under the globalU(1)
group, and the associated conserved charge is the amount
called number of particles (defined below). When the ac-
tion is varied with respect to the metric, Einstein’s equations
arise,Gµν = κ0Tµν , where the resulting stress-energy tensor
reads

Tµν =
1
2
[∂µφ∗∂νφ + ∂µφ∂νφ∗]

− 1
2
gµν [φ∗,αφ,α + V (|φ|2)]. (2)

Boson Stars are related to the potential

V = m2|φ|2 +
λ

2
|φ|4,

although the name Boson Star has been applied to solutions
using other types of potentials (seee.g. Ref. 16). The quan-
tity m is understood as the mass of a boson andλ is the co-
efficient of a two-body self-interaction mean field approxi-
mation. The Bianchi identity reduces to the Klein-Gordon
equation (

¤− dV

d|φ|2
)

φ = 0, (3)

where

¤φ =
1√−g

∂µ[
√−ggµν∂νφ].

Boson Stars (BSs) are spherically symmetric solutions
to the above set of equations under a particular condi-
tion: the scalar field has a harmonic time dependence
φ(r, t) = φ0(r)e−iωt, wherer is the radial spherical coor-
dinate. This condition implies that the stress energy tensor
in Eq. (2) is time-independent, which implies through Ein-
stein’s equations that the geometry is also time-independent.
That is, there is a time-dependent scalar field oscillating upon
a time-independent geometry whose source is the scalar field
itself. It is possible to construct solutions for Boson Stars as-
suming that the metric can be written in normal coordinates
as

ds2 = −α(r)2dt2 + a(r)2dr2 + r2dΩ2. (4)

For these coordinates the Einstein-Klein-Gordon (EKG) sys-
tem of equations reads:

∂ra

a
=

1− a2

2r

+
1
4
κ0r

[
ω2φ2

0

a2

α2
+ (∂rφ0)2 + a2φ2

0(m
2 +

1
2
λφ2

0)
]

,

∂rα

α
=

a2 − 1
r

+
∂ra

a
− 1

2
κ0ra

2φ2
0(m

2 +
1
2
λφ2

0),

∂rrφ0 + ∂rφ0

(
2
r

+
∂rα

α
− ∂ra

a

)
+ ω2φ0

a2

α2

− a2(m2 + λφ2
0)φ0 = 0. (5)

The system (5) is a set of coupled ordinary differential equa-
tions to be solved under the conditions of spatial flatness at
the origina(0) = 1, φ0(0) finite and∂rφ0(0) = 0 in order
to guarantee regularity and spatial flatness at the origin, and
φ0(∞) = 0 in order to ensure asymptotic flatness at infinity
as described in Refs. 12 to 14, 17 and 18; these conditions
reduce the system (5) to an eigenvalue problem forω, that is,
for every central value ofφ0 there is a uniqueω with which
the boundary conditions are satisfied. Because the system (5)
presents several constants, it is convenient to re-scale the vari-
ables in such a way that they do not appear. In order to do so,
the following transformation is convenient:

φ̃0 =
√

κ0

2
φ0, r̃ = mr, t̃ = ωt,

α̃ =
m

ω
α and Λ =

2λ

κ0m2
.

The result is that the physical constants vanish from the equa-
tions and the radial coordinate has units ofm and the time has
units ofω. In fact the mass of the boson becomes the param-
eter that fixes the scale of the system. After substituting this
transformation and removing the tildes from everywhere, the
resulting EKG system of equations reads:

∂ra

a
=

1− a2

2r

+
1
2
r

[
φ2

0

a2

α2
+ (∂rφ0)2 + a2(φ2

0 +
1
2
Λφ4

0)
]

,

∂rα

α
=

a2 − 1
r

+
∂ra

a
− ra2φ2

0(1 +
1
2
Λφ2

0),

∂rrφ0 + ∂rφ0

(
2
r

+
∂rα

α
− ∂ra

a

)
+ φ0

a2

α2

− a2(1 + Λφ2
0)φ0 = 0. (6)

Notice that the bisected parameterω now turns into the cen-
tral value of the lapseα due to the rescaling. This is the sys-
tem that is being solved in practice using finite differences
with an ordinary integrator (adaptive step-size fourth-order
Runge-Kutta algorithm in the present case) and a shooting
routine that bisects the value ofω (the central value ofα).
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FIGURE 1. Sequences of equilibrium configurations for two val-
ues ofΛ are shown as a function of the central value of the scalar
field φ0(0); each point in the curves corresponds to a solution of
the eigenvalue problem and represents a Boson Star configuration.
The filled circles indicate the critical solution that separates the sta-
ble from the unstable branch. Those configurations to the left of the
maxima represent stable configurations. The inverted triangles in-
dicate the point at which the binding energy is zero. Those config-
urations between the filled circles and the inverted triangles (along
each sequence) collapse into black holes as a response to a pertur-
bation. Configurations to the right of the inverted triangles disperse
away.

The solutions to (6) define sequences of equilibrium con-
figurations like those shown in Fig. 1. Each point in the
curves corresponds to a Boson Star solution. In each of the
curves two important points for each value ofΛ are marked:

i) the critical point -marked with a filled circle- indicating
the threshold between the stable and unstable branches
of each sequence, that is, configurations to the left of
this point are stable and those to the right are unstable
as found through the analysis of perturbations [14,18],
catastrophe theory [15] and full non-linear evolution of
the equilibrium solutions [12,13,19] and

ii) the point at which the binding energy
EB=M−Nm=0 marked with an inverted filled tri-
angle (see Ref. 14 for this convention of the binding
energy), where

N =
∫

j0d3x =
∫

i

2
√−ggµν [φ∗∂νφ− φ∂νφ∗]d3x

is the number of particles; that is, the conserved quan-
tity due to the invariance under the globalU(1) group
of the Lagrangian density (1).

M = (1 − 1/a2)r/2 evaluated at the outermost point of the
numerical domain is the ADM mass; the configurations be-
tween the instability threshold and the zero binding energy
point have negative binding energy (EB < 0) and collapse
into black holes, whereas those to the right have positive
binding energy and disperse away. Last but most important,
those configurations to the left of the threshold of instabil-
ity, that is, stable configurations, obviously posses a negative

binding energy. The non-filled circles, triangles and squares
pointed out in the plot correspond to the six configurations
chosen as special cases to be developed here.

3. The evolution of Boson stars

As the main objective of this manuscript is to show the ex-
pected behavior of different sets of BS configuration, here
we choose a simple way of dealing with the evolution process
of the data constructed in the previous section. The strategy
consists of splitting up the scalar field into its real and imag-
inary partsφ = φ1 + iφ2. In this way, the Klein Gordon
equation becomes two equations:

(
¤− dV

d|φ|2
)

φ1 = 0,

(
¤− dV

d|φ|2
)

φ2 = 0. (7)

Another major point is that as time-dependence of the space-
time is going to be allowed, the space-time metric has to be
relaxed to:

ds2 = −α(r, t)2dt2 + a(r, t)2dr2 + r2dΩ2, (8)

where time dependence ofα and a has been set up, but
the radial coordinate has been kept the same for simplic-
ity. Using this new line element for the space-time, it is
convenient to define first-order variables for the scalar field:
πi = (a/α)∂tφi andψi = ∂rφi, for eachi = 1, 2. With these
new variables and the metric (8), the KG equations are trans-
lated into the following set of PDEs of first order in space and
time

∂tφ1 =
α

a
π1,

∂tφ2 =
α

a
π2,

∂tψ1 = ∂r

(α

a
π1

)
,

∂tψ2 = ∂r

(α

a
π2

)
,

∂tπ1 =
1
r2

∂r

(
r2 α

a
ψ1

)
− aα

dV

d|φ|2 φ1,

∂tπ2 =
1
r2

∂r

(
r2 α

a
ψ2

)
− aα

dV

d|φ|2 φ2. (9)

In terms of the first-order variables and the line element (8),
Einstein’s equations read:

∂ra

a
=

1− a2

2r
+

r

2
[π2

1 + π2
2 + ψ2

1 + ψ2
2 + a2V ], (10)

∂rα

α
=

a2 − 1
r

+
a′

a
− ra2V, (11)

∂ta = αr[ψ1π1 + ψ2π2]. (12)

These equations correspond to the Hamiltonian constraint,
the slicing condition and the momentum constraint, respec-
tively. Clearly, this set of equations is over-determined, and
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TABLE I. Configurations used to present the three different types
of behavior. The properties of the Gaussian shell acting as pertur-
bation and the magnitude in percent of the perturbation are men-
tioned. The perturbation profile isA exp(−(r − r0)

2/0.1). M
is the mass of the unperturbed Boson Star,Mpert is the mass of
the perturbed Star, % indicates the percent of mass the perturbation
contributes with,r95 is the radius of the Star containing 95 per cent
of the total mass of the star.

Label M Mpert % r95 r0 A

C1 0.620882 0. 7.66

C2 0.608758 0.60937 0.1 4.84 6. 0.0008

C3 0.5248 0.52537 0.1086 3.68 5. 0.0012

C4 1.390156 0. 12.27

C5 1.389544 1.39101 0.105 7.62 9. 0.0008

C6 0.9043 0.905234 0.103 5.66 7. 0.0008

FIGURE 2. (top) Convergence ofamax for configurations 1 and 4.
The constant line indicates the value ofamax at the initial time,
which is assumed to be the value it should keep during the evolu-
tion. Second-order convergence to this value during evolution is
a good indicator that the evolution is being carried out properly.
(Middle) Fourier Transform of the central value of the field for the
same configurations. The peak shows up atω = 1/2π. This test
indicates that the scalar field is oscillating with the assumed fre-
quency. (Bottom) Convergence of the 2-norm of the momentum
constraint; the aim of these plots is to show that the momentum
constraint (which was not considered to carry out the evolution of
the system) is satisfied in the continuum limit. The numerical pa-
rameters are as indicated in the plots: two resolutions were used so
that the convergence test was possible.

FIGURE 3. (Top) Maximum of the metric functiona and minimum
of α. What is shown is the collapse of the lapse and the divergence
of a, which indicates the formation of a horizon in the coordinates
that are being used. (Bottom) Snapshots ofa andα that show the
process of collapse. The resolution used is the one shown in the
plots and the numerical domain isr ∈ [0, 30] for the two configu-
rations.

FIGURE 4. (Top) Snapshot of the metric functions for configura-
tions C3 and C6. It is clear that the metric evolves toward the flat
metric. (Middle) Mass vs time of the system, which shows that
the configuration is releasing all its mass toward infinity. (Bottom)
Central value of the Kretchmann scalar, which tends to zero with
the pass of time. The resolution used is indicated in the plots.

it is necessary to choose two of these three equations as the
set to be solved; the first two equations are solved and it is
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verified that the momentum constraint is satisfied in the con-
tinuum limit using a Cauchy type of convergence test. There-
fore the algorithm for the evolution consists in using (9) to
evolve the system, then solve (10,11) and use the new values
of the metric functions for the next step of the evolution.

The boundary condition for the scalar field is that of
an outgoing spherical wave on a Schwarzschild background,
which in its differential equation form reads:

∂rπi + ∂tπi + πi/r = 0, ψi = −πi − φi/r, (13)

for eachi = 1, 2. That is, the real and imaginary parts of
the scalar field are considered to behave as outgoing spheri-
cal waves separately. This is a quite simple boundary condi-
tion that certainly can be improved, the only requirement de-
manded in the present analysis being that the boundary condi-
tions allow second-order convergence after various crossing
times.

For the evolution of the scalar field variables we used a
second-order accurate centered finite differences approxima-
tion, and the Method of Lines with a third order Runge-Kutta
time integrator. Einstein’s equations were integrated using a
fourth-order Runge-Kutta ODE solver. The boundary condi-
tions were implemented using a second-order approximation
and an upwind stencil.

4. Preparing the states

In order to illustrate the three types of fate for Boson Stars,
we choose three configurations for each of the two values of
the self-interactionΛ = 0, 20, that clearly indicate the ex-
pected behavior. According to the labels in Fig. 1, the theory
predicts that the results should be: configurations 1 and 4
should remain stable; configurations 2 and 5 should collapse
to black holes; finally, configurations 3 and 6 should disperse
away.

In Table I we summarize the properties of the configura-
tions chosen. The selected stable configurations were not per-
turbed so that it was possible to track the convergence toward
a time-independent geometry, whereas we used a gaussian
shell to trigger the further evolution of the unstable configu-
rations.

5. Stable configurations

The test consists in showing the validity of the hypotheses
used in the construction of BS solutions (harmonic time de-
pendence of the scalar field and time independence of the
metric functions). The configurations proposed for the test
are the configurations marked with unfilled circles and num-
bers 1 and 4 in Fig. 1.

In the top part of Fig. 1 the maximum of the metric func-
tion a is shown. Due to the discretization error, the config-
urations are perturbed permanently, and therefore the metric
is oscillating in time. The point is that one has to show that
the amplitude of the oscillations converges to zero, which is

equivalent to having the convergence ofamax to the value
it should keep during all the evolution, which we consider
to be the value ofamax calculated for the equilibrium con-
figuration at the initial time. The oscillations of this metric
functions were assumed to be a sort of quasi-normal mode
oscillation, when first calculated for boson stars [13].

After the convergence toward a time-independent metric
(achieved by monitoring the maximum ofa), the main test of
an evolution code consists in showing that the scalar field is
truly oscillating meanwhile with the correct frequency. In the
middle panel of Fig. 1 the Fourier Transform of the central
value ofφ1 is shown. The result indicates that the frequency
of oscillation of the scalar field corresponds to the eigenvalue
calculated when solving the initial value problem (remember
the time was rescaled to bẽt = ωt). In the units used here,
wheret → ωt, the frequency isω = 1/2π).

For completeness, in the bottom panel of Fig. 1, second-
order convergence of the momentum constraint is shown us-
ing two different resolutions. This indicates that in the con-
tinuum limit the momentum constraint is satisfied.

No explicit perturbations are applied in the stable case.
Instead, measuring the correct frequency of oscillation of the
scalar field determines whether or not the evolution code is
working properly. Applying explicit perturbations to the par-
ticle number of these stable configurations would imply a
more dynamical behavior, and the amplitude decay of the
maximum of the metric functiona as in Ref. 13.

6. Bounded unstable configurations

For this second case we choose the adequate configurations
2 and 5, which have a negative binding energy. In principle,
the discretization error would provide a strong enough per-
turbation to collapse the configuration. However, in order to
have a quicker collapse we use a small perturbation consist-
ing of a Gaussian shell of particles implemented through the
addition of a little Gaussian shell to the real part of the scalar
field, with properties shown in Table I. Then the equations
for α anda are resolved before starting the evolution. The
amplitude of the Gaussian shell is positive and the number of
particles (the Noether charge) is increased by a tiny fraction
of the initial total charge (which reflects in the total mass of
the perturbed configuration as well).

The results of the evolution are summarized in Fig. 3,
where snapshots of the lapse anda are shown; in fact the
lapse collapses to zero in a region expected to be covered by
a horizon and the metric functiona starts diverging due to the
slice-stretching effect when using normal coordinates [20].
In the coordinates used, an apparent horizon, has been formed
when the lapse is sufficiently near to zero. However, it is sim-
ple to use different coordinates allowing one to calculate the
location, mass and possible oscillations of an apparent hori-
zon. Up to this point the results in this section correspond to
the typical results found for spherically symmetric BSs in the
canonical papers [12,13].
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7. Unbounded unstable configurations

In this case, the binding energy is positive, which means that
there is no work needed to disassemble the configuration.
This is a case that is barely mentioned in BS research. As
far as the author is aware, the potential first case of fissioned
BS was shown in Ref. 19.

In Fig. 4 the results for configurations 3 and 6 are shown
with three different arguments:

i) the metric functiona and the lapseα become constant
after a while during the evolution,

ii) the mass functionM decays to zero during the same
time-scale, and

iii) the central value of the Kretchmann scalarK becomes
zero, in order to have an indication that no singularities
are left behind the exploding scalar field.

This is supported by the fact that the metric at the origin is
spatially flat and with a non-zero lapse.

The perturbation consisted in the addition of a tiny frac-
tion of partcles again, even though the configurations reacted
in a very explosive way.

The property assumed to be responsible for this explosive
behavior is the one argued as that responsible for working
against the gravitational collapse of the bosons, that is, the
uncertainty principle, as opposed to the degeneracy pressure
that prevents the gravitational collapse of fermionic stars.
The implication of the uncertainty principle is therefore that
the configuration has an excess of kinetic energy to compen-
sate for the localization of the wave function.

8. Final remarks

Among the three types of Boson Stars presented here, only
the stable type has been studied with certain attention, and
stable configurations are proposed either as potential existing
objects or as toy models. However, the unstable configura-
tions might indicate restrictions on the properties of funda-
mental scalar fields (mass and self-interaction potential) that
play different roles in cosmological models nowadays, from
low energy limits of string theories to brane world models.
Conversely, the properties of the scalar field might be re-
stricted from fundamental theories and therefore the potential
existence of BSs would be restricted also.
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A Kretschmann invariant

We use the central value of the Kretschmann invariant, in or-
der to easily see the formation of a singularity. The expres-
sion for the metric (8) is:

K = − 16ȧ2

r2α2a4
+

4(α′′)2

α2a4
− 8α′′ä

α3a3
+

8α′′α̇ȧ

α4a3

− 8α′′α′a′

α2a5
+

4(ä)2

α4a2
− 8äα̇ȧ

α5a2
+

8äα′a′

α3a4

+
4(α̇)2(ȧ)2

α6a2
− 8α̇ȧα′a′

α4a4
+

4(α′)2(a′)2

α2a6
+

8(α′)2

r2α2a4

+
8(a′)2

r2a6
+

4
r4
− 8

r4a2
+

4
r4a4

.
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4. F.S. Guzḿan, Phys. Rev. D73 (2006) 021501; ArXiV: gr-
qc/0512081.
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