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SU(2) symmetry and conservation of helicity for a Dirac
particle in a static magnetic field at first order
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We investigate the spin dynamics and the conservation of helicity in the first orderS−matrix of a Dirac particle in any static magnetic
field. We express the dynamical quantities using a coordinate system defined by the three mutually orthogonal vectors; the total momentum
k = pf + pi, the momentum transferq = pf − pi, andl = k× q. We show that this leads to an alternative symmetric description of the
conservation of helicity in a static magnetic field at first order. In particular, we show that helicity conservation in the transition can be viewed
as the invariance of the component of the spin alongk and the flipping of its component alongq, just as what happens to the momentum
vector of a ball bouncing off a wall. We also derive a “plug and play” formula for the transition matrix element where the only reference
to the specific field configuration, and the incident and outgoing momenta is through the kinematical factors multiplying a general matrix
element that is independent of the specific vector potential present.
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1. Introduction

The use of the helicity,i.e. the projection of the spin along
the direction of the momentum, to describe the polarization
of Dirac particles in collision problems became common as a
result of the pioneering work by Jacob and Wick [1]. Obvi-
ously, the reason is that the energy eigenstates of the Hamil-
tonian are also helicity eigenstates. In particular the plane
wave solutions of the free Dirac equation which are used to
represent the incident and outgoing particles in the first order
S−matrix are simultaneous eigenstates of the helicity oper-
atorΣ.P of the particle. The analysis of collisions with the
use of these basis is greatly simplified.

Among the interactions that conserve helicity, probably,
the interaction with a static magnetic field is the most popu-
lar. As is well-known, the helicity of a Dirac particle in an
electromagnetic potential is conserved given that there is no
electric field acting on the particle [2]. Indeed, the Heisen-
berg equation of motion for the helicity operatorΣ.Π where
Π = (p − eA) is the mechanical momentum of the particle
reads (~ = c = 1):

[Σ.Π,H] = eΣ ·E (1)

Here,H is the Hamiltonian of a Dirac particle in an elec-
tromagnetic field. Thus, the helicity of a particle in a static
magnetic field is conserved. In physical terms, conservation
of helicity is described as the invariance of the component of

the spin of the particle along its momentum. In the pertur-
bative expansion of a helicity-conserving theory, helicity is
conserved at each order of the perturbation series. For ex-
ample, in the first order S-matrix element of the elastic scat-
tering of a particle in some helicity-conserving vector poten-
tial, the conservation of helicity manifests itself through the
fact that if the incident state is in an eigen state of the he-
licity operatorΣ.p̂i (p̂i ≡ (pi/|pi|)), then the matrix ele-
ment for the transition to a final state with the opposite he-
licity is zero [2] (pi andpf are, respectively, the incident
and outgoing momenta). This work focuses on the conserva-
tion of helicity for the scattering of a Dirac particle in a static
magnetic fieldat this order. It is shown that, by formulat-
ing the whole spin dynamics in terms of the three operators
Σk = Σ.k̂; Σq = Σ.q̂ and Σl = Σ.̂l, with the three mu-
tually orthogonal vectors; the total momentumk = pf + pi,
the momentum transferq = pf − pi, andl = k× q, one
gets a more symmetric and intuitive picture of the dynamics
that lead to the conservation of the helicity in the transition.
It is also demonstrated that one can, within this framework,
express the helicity sector of the matrix element in a form that
is independent of the specific form of the vector potential.

2. The Spin Interaction

Consider a Dirac particle in a given magnetic field whose vec-
tor potential is the static vector functionA(x) and such that
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there is no scalar potential. The first order S-matrix element
for the elastic scattering of a particle in this potential is:

S
(1)
fi = i

∫
d4x ψ̄f (x) (eγ ·A)ψi (x). (2)

Carrying out the time integral,we get this as

S
(1)
fi = −2πe|N |2δ(Ef − Ei)u

†
f (pf , sf )

×
(∫

d3x ei(pf−pi)·x (α ·A)
)

ui (pi, si) . (3)

which can be casted in the form

S
(1)
fi = −2πe|N |2δ(Ef − Ei)u

†
f (pf , sf )

× (α ·A(q))ui (pi, si) . (4)

whereA(q) is the Fourier transform of the vector potential
with respect to the momentum transfer vectorq = pf − pi

andN is a normalization constant. Recalling thatαi = γ5Σi,
where

Σi =
i

2
[γi, γj ], (i, j = 1 . . . 3),

and iγ5 = γ1γ2γ3γ4, with γ’s being the Dirac matrices
{γµ, γν} = 2gµν , we write the matrix element as:

S
(1)
fi = −2πe|N |2|A(q)|δ(Ef − Ei)u

†
f (pf , sf )

× (γ5Σ.â)ui (pi, si) . (5)

where we have introduced the unit vectorâ=(A(q)/|A(q)|).
The operatorγ5Σ.â is what we denote with the spin interac-
tion operator (SI) as it is the operator that induces transition
in the spin space of the particle. The helicity conservation is
reflected in the first order transition as the vanishing of the
helicity flip scattering matrix element;

S
(1)
fi = −2πe|N |2|A(q)|δ(Ef − Ei)u

†
f

× (pf ,∓) (γ5Σ.â)ui (pi,±) = 0. (6)

whereui (pi,±) are the eigenstates ofΣ.p̂i with eigenval-
ues±1. We will focus now on the non-vanishing spin-space
matrix elementM, and express it using the Dirac notation:

M = u†f (pf ,±) (γ5Σ.â)ui (pi,±)

= 〈p̂f ;±|γ5Σ.â|p̂i;±〉 (7)

We now note that the two unit vectors;

k̂ =
pf + pi

|pf + pi|
along the total momentum and

q̂ =
pf − pi

|pf − pi|
along the momentum transfer are orthonormal; see Fig. 1.
This is, of course, true for the scattering in any potential field.

FIGURE 1. Scattering diagram in thexy−plane.

Introducing a third unit vector̂l = k̂ × q̂ that is normal
to thek̂− q̂ plane, we get a set of three mutually orthogonal
unit vectors which we employ to define a new set of axes,
see Fig. 2. To this end, we introduce the three operators
Σk = Σ.k̂; Σq = Σ.q̂ and Σl = Σ.̂l. Using the identity
Σ.AΣ.B = A.B + iΣ.A × B we can immediately verify
the following commutation and anti-commutation relations:

[Σk,Σq] = 2iΣl

[Σl,Σk] = 2iΣq (8)

[Σq, Σl] = 2iΣk, .

{Σl, Σk} = {Σq, Σl} = {Σq, Σk} = 0 (9)

Thus, the consequences:

(Σk)2 = (Σq)2 = (Σl)2 = I. (10)

and,

iΣk = ΣqΣl, iΣq = ΣlΣk, iΣl = ΣkΣq (11)

The above relations says that the newly introducedΣ ma-
trices furnish a representation of theSU(2) algebra, and are

FIGURE 2. Scattering diagram in thek − q plane.
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generators of rotation in the spin space. We will now express
all the spin operators and the SI in terms of these generators.
We will thus, demonstrate that the description of the helicity-
conserving first order transition in the spin space becomes
more symmetric. To start with, expressΣ.p̂i andΣ.p̂f in
terms ofΣk andΣq (see Fig. 2):

Σ.p̂i =cos
θ

2
Σk − sin

θ

2
Σq

Σ.p̂f =cos
θ

2
Σk + sin

θ

2
Σq (12)

The symmetry in the above expression between the helicity
operators of the initial and final particles - which goes with
the symmetry in figure - is obvious. One can actually go fur-
ther and check that - as the figure also suggests-Σ.p̂i and
Σ.p̂f are related by a rotation about thel-axis:

Σ.p̂f = U−1(l, θ)Σ.p̂iU(l, θ) (13)

The above equation makes explicit the intuitive picture that
the spin of the incident particle gets rotated by an angleθ to
remain aligned along the direction of the momentum.

3. The Transition in the k̂ − q̂ Basis

In this section we will express the SI in terms of the newly
introduced generators and investigate the interesting conse-
quences of this. We will then write the scattering states in
terms of thek̂-basis and obtain an expression for the ma-
trix element in terms of these basis. We first note the fol-
lowing major relations which can be easily proven using
Eqs. (8)-(12):

Σ.p̂fΣkΣ.p̂i = Σk (14)

Σ.p̂fΣqΣ.p̂i = −Σq (15)

Note how the above two equations go with the symmetry in
Fig. 2. Now, from Fig. 3, we have the unit vectorâ appearing
in the SI given as:

â =
(
â.̂l

)
l̂ +

(
â.k̂

)
k̂ + (â.q̂) q̂ (16)

= Âl + Bk̂ + Cq̂.

The spin interaction operator will then take the form:

γ5Σ.â = Aγ5Σl + Bγ5Σk + Cγ5Σq (17)

with A, B andC defined in Eq. (16) above. The transition
matrix element, Eq. (7), upon employing the expansion given
by Eq. (17) above can be further reduced. To do this, consider
first the matrix element ofΣq, namely〈p̂f ;±|γ5Σq|p̂i;±〉.
This can be written ( just by noting that the states are eigen-
states of the initial and final helicity operators) as:

〈p̂f ;±|γ5Σq|p̂i;±〉 = 〈p̂f ;±|γ5Σ.p̂fΣqΣ.p̂i|p̂i;±〉
= −〈p̂f ;±|γ5Σ.p̂fΣqΣ.p̂i|p̂i;±〉 (18)

FIGURE 3. The components of̂a in thek − q plane.

where we have used Eq. (15) to write the second line. Let-
ting operators act on their eigenstates and noting thatγ5 com-
mutes with all theΣ′s, we get

〈p̂f ;±|γ5Σq|p̂i;±〉 = −〈p̂f ;±|γ5Σq|p̂i;±〉 (19)

with the obvious consequence:

〈p̂f ;±|γ5Σq|p̂i;±〉 = 0 (20)

The Σq part of the SI does not contribute to the helicity-
conserving transition. This should not be too surprising,
as it is a guarantee of the gauge-invariance of the transi-
tion probability. Obviously, under a gauge transformation
A(q) −→ A(q) + qf(q), with f(q) arbitrary. So, if the
matrix element is to be gauge-invariant, which is indeed so,
then the contribution ofΣq should vanish. We now move to
theΣl matrix element. This, again, can be expressed as:

〈p̂f ;±|γ5Σl|p̂i;±〉 = 〈p̂f ;±|γ5Σ.p̂fΣlΣ.p̂i|p̂i;±〉 (21)

This can be reduced (see the appendix) to :

〈p̂f ;±|γ5Σ.p̂iΣlΣ.p̂i|p̂i;±〉

= ±i〈p̂f ;±|γ5

(
− cos

θ

2
Σq + sin

θ

2
Σk

)
|p̂i;±〉 (22)

The matrix element of theΣq component vanishes as we have
demonstrated above, and we are left with theΣk contribution.
Thus, putting every thing together we have the result:

〈p̂f ;±|γ5Σ.â|p̂i;±〉

=
(

B ± iA sin
θ

2

)
〈p̂f ;±|γ5Σk|p̂i;±〉 (23)

The transition is induced solely byγ5Σk, i.e the component
of the spin interaction operator along the direction of the total
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momentum vectork!. To see what is special with this direc-
tion, look again at Fig. 2. The helicity-conserving transition
is a transition that leaves the component of the spin alongk̂
invariant, while flipping the component alonĝq. This is what
Eqs. (14) and (15) also say. Therefore, formulated in the
k̂ − q̂ basis, the conservation of helicity at first order scatter-
ing in a static magnetic field amounts to the conservation of
the spin component alonĝk in the transition and the flipping
of the component alonĝq. This is just what happens to the
momentum of a classical object; a ball say, as it bounces off a
wall. The momentum along the wall is conserved, while that
parallel to it flips. In our case, the “wall” is defined by the to-
tal momentum vectork, see Fig. 4. The transition, however,
takes place in the spin space, and the relevant quantity is the
orientation of the spin of the particle.

This picture can be enhanced by expanding the initial and
final helicity states in terms of the eigenstates ofΣk andΣq,
which can be achieved by simple rotations about thel̂−axis.
We focus here on states with positive helicity; those with neg-
ative helicity can be obtained in exactly the same manner.
Indeed, from Fig. 2, we can see that:

|p̂i; +〉 = U

(
l̂,
−θ

2

)
|k̂; +〉 = cos

θ

4
|k̂; +〉+ sin

θ

4
|k̂;−〉

= U

(
l̂,−θ + π

2

)
|q̂; +〉 = cos

θ + π

4
|q̂; +〉

+ sin
θ + π

4
|q̂;−〉 (24)

and,

|p̂f ; +〉 = U

(
l̂,

θ

2

)
|k̂; +〉 = cos

θ

4
|k̂; +〉 − sin

θ

4
|k̂;−〉

= U

(
l̂,

θ − π

2

)
|q̂; +〉 = sin

θ + π

4
|q̂; +〉

+ cos
θ + π

4
|q̂;−〉 (25)

Investigating the above equations it is obvious that

|〈k̂;±|p̂i; +〉|2 = |〈k̂;±|p̂f ; +〉|2 (26)

while,

|〈q̂;±|p̂i; +〉|2 = |〈q̂;∓|p̂f ; +〉|2 (27)

FIGURE 4. The bouncing ball picture of helicity conservation

In fact, one can check directly that the SI interaction
connects initial and final̂k− states with the same helic-
ity only, i.e.no flip, but different helicitŷq−states. To see
this ,we consider the matrix elements〈k̂;∓|γ5Σk|k̂;±〉 and
〈q̂;±|γ5Σk|q̂;±〉 and show that they both vanish. Consider
the first one :

〈k̂;∓|γ5Σk|k̂;±〉 = ±〈k̂;∓|γ5|k̂;±〉
= 〈k̂;∓|(∓)Σkγ5(±)Σk|k̂;±〉
= −〈k̂;∓|γ5|k̂;±〉 (28)

Thus,

〈k̂;∓|γ5Σk|k̂;±〉 = ±〈k̂;∓|γ5|k̂;±〉
= ∓〈k̂;∓|γ5|k̂;±〉 = 0 (29)

Similarly,

〈q̂;±|γ5Σk|q̂;±〉 = 〈q̂;±|Σqγ5ΣkΣq|q̂;±〉
= −〈q̂;±|γ5Σk|q̂;±〉

where in the last line we noted thatΣk andΣq anticommute
in view of Eqs. (9). So, again:

〈q̂;±|γ5Σk|q̂;±〉 = 0 (30)

These results support our earlier arguments regarding the
conservation of thêk component and the flipping of thêq
component of the spin of the incident particle.

Finally, one can, by expanding the initial and final states
in terms of theΣk eigenstates, thus eliminating any reference
to these in the matrix element, express the matrix element to-
tally in k̂ variables and states. Starting from Eq. (23), we
express the matrix element (see Eq. (24) and (25)) as:

〈p̂f ;±|γ5Σk|p̂i;±〉 = 〈k̂;±|U−1

(
l̂,

θ

2

)
γ5

× ΣkU

(
l̂,−θ

2

)
|k̂;±〉 (31)

One can easily check that

U−1

(
l̂,

θ

2

)
γ5ΣkU

(
l̂,−θ

2

)
= γ5Σk (32)

Combining this result with Eq. (23) we get

〈p̂f ;±|γ5Σ.â|p̂i;±〉 =
(

B ± iA sin
θ

2

)

× 〈k̂;±|γ5Σk|k̂;±〉 (33)

Acting with Σk on its eigenstates, we get the result:

〈p̂f ;±|γ5Σ.â|p̂i;±〉 = ±
(

B ± iA sin
θ

2

)

× 〈k̂;±|γ5|k̂;±〉 (34)
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In the above equation, the only reference to the initial and
final states is through the kinematical/geometrical factorsA
andB. So, to calculate the transition matrix element for any
vector potential, just find these factors - which is a trivial task-
and plug them into the above expression. Things can be even
further simplified if we use the explicit forms of the spinors:

|k̂;±〉 = N ′
(

χ±
σ.k0

E+mχ±

)
(35)

whereχ± are eigenstates ofσ.k0 with eigenvalues±1, and
k0 = pk̂0 is a vector alonĝk0 with p being the conserved
magnitude of the initial and the final momenta. Plugging this
expression into Eq. (34) and using

γ5 =
(

0 I
I 0

)
,

we have:

〈p̂f ;±|γ5Σ.â|p̂i;±〉 = ±
(

B ± iA sin
θ

2

)

×
(

2N ′2p
E + m

)
(36)

This is just a “plug and play” formula, where one just fixes
the geometrical factorsA andB for the specific vector po-
tential present, and then gets the spin sector of the matrix
element immediately. The following two examples illustrate
this explicitly.

4. Examples

In this section we consider two concrete examples of vector
potentials whose field configurations conserve helicity, and
we bring the first order transition matrix elements of Dirac
particles in these potentials to the form given by Eq. (34).
Consider first the Ahronov-Bohm (AB) potential [3] which
gives rise to aδ-function mgnetic field extended along the
z-axis. This vector potential is given as:

A(r) =
Φ
2π

−yx̂ + xŷ
x2 + y2

=
Φ

2πρ
ε̂ϕ, (37)

whereρ =
√

x2 + y2, ε̂ϕ is the unit vector in theϕ-direction,
andΦ is the flux through the AB tube. Since the magnetic
field is along thez−axis; thez−component of the incident
momentum doe not change during the scattering process.
Therefore, we consider normal scattering,i.e. take the in-
cident, and consequently, the outgoing momenta to be in the
x − y plane. In such a geometry,l̂ is just ẑ. Pluggingb this
vector potential into Eq. (7), we get :

S
(1)
fi = −2πe|N |2δ(Ef − Ei)u

†
f (pf , sf )

×
(

(−eΦ)
α1q2 − α2q1

q2

)
ui (pi, si) . (38)

So,

A(q) = −Φ
q2x̂− q1ŷ

q2
=
−Φ
q

â(q) (39)

with â(q) given as

â(q) =
q2x̂− q1ŷ

q
(40)

For the purpose of applying the formula (34), we need to find
the geometrical factorsA andB. Obviously,A = 0. As for
B, we note that we can without any loss of generality, take
the incident momentum to be along thex−axis;pi = px̂ so
that

pf = p

(
cos

θ

2
x̂ + sin

θ

2
ŷ
)

.

Straight forward algebra shows that with such a choice of
the incident momentum, we getâ(q) = k̂, so thatγ5Σ.â =
γ5Σ.k̂, meaning thatB = 1. The matrix element for the AB
potential then becomes [4]:

M = 〈p̂f ;±|γ5Σ.â|p̂i;±〉 = 〈p̂f ;±|γ5Σ.k̂|p̂i;±〉
= ±〈k̂;±|γ5|k̂;±〉 (41)

We can even move to calculate the scattering cross section.
The unpolarized scattering cross section of a Dirac particle
in the AB field is given as [5-7]:

dσ

dθ
=

e2Φ2

2πp3 sin2 θ
2

1
2

∑
si,sf=±

|〈p̂f ; sf |γ5Σ.â|p̂i; si〉|2 (42)

where the summation is over the initial and final particles’
helicities. As a consequence of Eqs. (41) we have

〈p̂f ;−|γ5Σ.â|p̂i;−〉 = −〈k̂; +|γ5|k̂; +〉
= −〈p̂f ; +|γ5Σ.â|p̂i; +〉.

So, using Eq. (33), and taking the normalization constant

N ′ =

√
E + m

4m

we get
dσ

dθ
=

e2Φ2

8πp sin2 θ
2

(43)

which is the well-known AB scatttering cross section of a
Dirac particle at first order [5].

The second example is the vector potential of a magnetic
dipole, and is less symmetric as the resulting field is not, con-
trary to the AB one, axial. The vector potential of the dipole
is given by [8]

A(r) =
µ× r

r3
(44)

whereµ is the magnetic moment. The Fourier transform
of the above vector potential is (up to a numerical factor)
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A(q) = (µ× q/q2). Thus, the first order matrix element
reads

S
(1)
fi = −2πe|N |2|

(
1
q2

)
δ(Ef − Ei)u

†
f (pf , sf )

×
(

γ5Σ.
µ× q
|µ× q|

)
ui (pi, si) . (45)

Therefore
â =

µ× q
|µ× q| .

The kinematical factors of Eq. (33) are just

A = l̂.
µ× q
|µ× q|

and
B = k̂.

µ× q
|µ× q| .

which are straight forward to calculate; just specifyµ andpi.
Therefore, the transition matrix element reads now:

S
(1)
fi = ∓2πe|N |2|

(
1
q2

)
δ(Ef − Ei)

×
(
k̂.

µ× q
|µ× q| ± îl.

µ× q
|µ× q| sin

θ

2

)

× 〈k̂;±|γ5|k̂;±〉 (46)

The cross section can be calculated straight forwardly from
the above amplitude.

5. Conclusions

The spin interaction in the first orderS−matrix of a Dirac
particle in a static magnetic field was investigated. Noting
that the total momentum vectork = pf +pi and the momen-
tum transfer vectorq = pf − pi are always perpendicular,
we suggested that the three unit vectors;k̂, q̂ and̂l ≡ k̂× q̂
defined an “intrinsic” coordinate system, where the transi-
tion, and particularly, the conservation of helicity, could be
described in an alternative, more symmetric formalism. The
three generatorsΣk ≡ Σ.k̂, Σq ≡ Σ.q̂, andΣl ≡ Σ.̂l were
shown to close theSU(2) algebra. When the spin interaction
operatorγ5Σ.â was written in terms of these generators, we
have been able to reduce the transition in the spin space to an
expression proportional to the matrix element of the operator
γ5Σk.

ExpressingΣ.p̂i andΣ.p̂f and their eigenstates in terms
of Σk, Σq, and their eigenstates, we have demonstrated that

the conservation of helicity can be formulated as the invari-
ance of thêk component of the spin of the particle and the
flipping of its q̂ component. An intuitive physical picture of
the transition, similar to that of a ball bouncing off a wall
was suggested. The scattering matrix element was written,
for any static field configuration, as the matrix element of
theγ5Σk in Σk basis, multiplied by kinematical/geometrical
factors which carry the only reference to the initial and final
momenta.

Appendix

A.

We show here how to derive Eqs. (22) in the text. We start
with

〈p̂f ;±|γ5Σl|p̂i;±〉 = 〈p̂f ;±|γ5Σ.p̂fΣlΣ.p̂i|p̂i;±〉 (A.1)

Look at:

Σ.p̂fΣlΣ.p̂i|p̂i;±〉 = Σ.p̂fΣl

×
(

cos
θ

2
Σk− sin

θ

2
Σq

)
|p̂i;±〉 (A.2)

Using Eqs. (11), this can be written as:

Σ.p̂fΣlΣ.p̂i|p̂i;±〉 = iΣ.p̂f

×
(

cos
θ

2
Σq+sin

θ

2
Σk

)
|p̂i;±〉 (A.3)

Eqs. (14) and (15) allow us to re-introduceΣ.p̂i and thus
bring this into the form

Σ.p̂fΣlΣ.p̂i|p̂i;±〉

= i

(
− cos

θ

2
ΣqΣ.p̂i + sin

θ

2
ΣkΣ.p̂i

)
|p̂i;±〉 (A.4)

Allowing the operatorΣ.p̂i to act on its eigenstates, we get:

Σ.p̂fΣlΣ.p̂i|p̂i;±〉

= ±i

(
− cos

θ

2
Σq + sin

θ

2
Σk

)
|p̂i;±〉 (A.5)

Our result, now, follows immediately;

〈p̂f ;±|γ5Σl|p̂i;±〉 = ±i〈p̂f ;±|γ5

×
(
− cos

θ

2
Σq + sin

θ

2
Σk

)
|p̂i;±〉 (A.6)
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