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SU(2) symmetry and conservation of helicity for a Dirac
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M.S. Shikakhwa
Department of Physics, University of Jordan, 11942—Amman,
Jordan and Physics Program, Middle East Technical University Northern Cyprus Campus,
Kalkanli, Guzelyurt via Mersin 10, Turkey.
e-mail: mohammad@metu.edu.tr

A. Albaid
Department of Physics, University of Jordan, 11942—Amman, Jordan
and Department of Physics, Oklahoma Sate University
145 Physics Building,Stillwater OK 74078-3072 USA.
e-mail: albaid1979@gmail.com

Received 24 April 2017; accepted 26 July 2017

We investigate the spin dynamics and the conservation of helicity in the first Srderatrix of a Dirac particle in any static magnetic

field. We express the dynamical quantities using a coordinate system defined by the three mutually orthogonal vectors; the total momentum
k = pr + pi, the momentum transfer = prs — pi, andl = k x q. We show that this leads to an alternative symmetric description of the
conservation of helicity in a static magnetic field at first order. In particular, we show that helicity conservation in the transition can be viewed
as the invariance of the component of the spin alkrend the flipping of its component alorg just as what happens to the momentum

vector of a ball bouncing off a wall. We also derive a “plug and play” formula for the transition matrix element where the only reference

to the specific field configuration, and the incident and outgoing momenta is through the kinematical factors multiplying a general matrix
element that is independent of the specific vector potential present.
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1. Introduction the spin of the particle along its momentum. In the pertur-
bative expansion of a helicity-conserving theory, helicity is

The use of the helicityi.e. the projection of the spin along conserved at each order of the perturbation series. For ex-
the direction of the momentum, to describe the polarizationymple, in the first order S-matrix element of the elastic scat-
of Dirac particles in collision problems became common as Rering of a particle in some helicity-conserving vector poten-
result of the pioneering work by Jacob and Wick [1]. ObVi- tjg|  the conservation of helicity manifests itself through the
ously, the reason is that the energy eigenstates of the Hamilact that if the incident state is in an eigen state of the he-
tonian are also helicity eigenstates. In particular the plangcity operatorS.p,; (p; = (ps/|p:])), then the matrix ele-
wave solutions of the free Dirac equation which are used tenent for the transition to a final state with the opposite he-
represent the incident and outgoing particles in the firstordeﬁcity is zero [2] (p; andp; are, respectively, the incident
S—matrix are simultaneous eigenstates of the helicity operyng outgoing momenta). This work focuses on the conserva-
ator X.P of the particle. The analysis of collisions with the tjo of helicity for the scattering of a Dirac particle in a static
use of these basis is greatly simplified. magnetic fieldat this order It is shown that, by formulat-

Among the interactions that conserve helicity, probably,ing the whole spin dynamics in terms of the three operators
the interaction with a static magnetic field is the most popuy, = ¥ k; Y, =X.qand ¥, = >.1, with the three mu-

lar. As is well-known, the helicity of a Dirac particle in an tyally orthogonal vectors; the total momentm= p¢ + p;,
electromagnetic potential is conserved given that there is nfhe momentum transfey = pr — p;, andl = k x q, one
electric field acting on the particle [2]. Indeed, the Heisen-gets a more symmetric and intuitive picture of the dynamics
berg equation of motion for the helicity operafBrII where  that lead to the conservation of the helicity in the transition.
IT = (p — eA) is the mechanical momentum of the particle |t js also demonstrated that one can, within this framework,
readsfp = c=1): express the helicity sector of the matrix element in a form that

is independent of the specific form of the vector potential.
[XII,H|=eX-E Q)

Here, H is the Hamiltonian of a Dirac particle in an elec- 2. The Spin Interaction

tromagnetic field. Thus, the helicity of a particle in a static

magnetic field is conserved. In physical terms, conservatiol€onsider a Dirac particle in a given magnetic field whose vec-
of helicity is described as the invariance of the component ofor potential is the static vector functiak(x) and such that
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there is no scalar potential. The first order S-matrix element § P;
for the elastic scattering of a particle in this potential is:
_ k
s =i [dads @ (e M@, @
6/2
Carrying out the time integral,we get this as
1 .
S = —2me| N23(Ey — Ei)ul (py, s7) 6/2

v

P
X (/ BxetPrmPIx (4. A)) u; (pi,si) - (3) '

which can be casted in the form

FIGURE 1. Scattering diagram in they—plane.

Introducing a third unit vectol = k x § that is normal

3(1) —2me|N|?5(Ef — Ei)U} (pf,sy) to thek — g plane, we get a set of three mutually orthogonal
unit vectors which we employ to define a new set of axes,
x (a- A(a)) ui (pi, si) - 4 see Fig. 2. To this end, we introduce the three operators

=3k ¥,=3g§and % = 2.1 Using the identity
E AXY.B = A.B +iX.A x B we can immediately verify
the following commutation and anti-commutation relations:

whereA(q) is the Fourier transform of the vector potentlal
with respect to the momentum transfer veaio= ps — p;
andN is a normalization constant. Recalling that= ~v5%;,

where . Xk, Bq] = 28
X = =il ,j=1...3),
2 [ry r}/]] (Z j ) [El, Ek;] — 2 (8)
and ivs = 1727374, With ~’s being the Dirac matrices S S 9%
{Yus Y} = 29,0, We write the matrix element as: (¥, 2] = 2%,
{2, 5k} = {Z¢, 8} = {2, 2} =0 ©)

1
Sy = —2melNP|A(@8(Ey — Ei)u (py.5y)
X (v52.8) ui (pi, $:) - (5) Thus, the consequences:
2 _ 2 _ 2 __
where we have introduced the unit vecier(A (q) /|A(q)|). (Er)"=(E)" =(E)" =1L (10)
The operatorn;X.a is what we denote with the spin interac-
tion operator (Sl) as it is the operator that induces transitio@nd,
in the spin space of the particle. The helicity conservation is
reflected in the first order transition as the vanishing of the = iXr = XX, 13 = XXy, X = X2y (11)
helicity flip scattering matrix element;
(1) ; The above relations says that the newly introduteda-
Sy = —2me|N[*|A(Q)|0(Ef — Eq)u} trices furnish a representation of t§é/(2) algebra, and are
x (pr, F) (152.8) u; (pi, £) = 0. (6) ; X
h
wherew; (p;, =) are the eigenstates &.p, with eigenval-
ues+1. We will focus now on the non-vanishing spin-space
matrix elemeniM, and express it using the Dirac notation:

M= uJch (pf> i) ('752-5> u; (pi, i)
= (Pr; £|752.4|P;; +) (7)

We now note that the two unit vectors;

)

> Y
k= Pr + Pi
Ipr + pil
along the total momentum and G
~ Pf — Pi Z
Q=
Ipr — pil

k
along the momentum transfer are orthonormal; see Fig. 1.

This is, of course, true for the scattering in any potential field.FIGURE 2. Scattering diagram in thie — g plane.
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generators of rotation in the spin space. We will now express q
all the spin operators and the Sl in terms of these generators 4
We will thus, demonstrate that the description of the helicity-

conserving first order transition in the spin space becomes _p.
more symmetric. To start with, expre3&p; and X.p; in N
terms of¥;, andX, (see Fig. 2): ~

0 0
3.p; =cos §Zk — sin iZq ~ 6/2

0 0 6/2
3.pr =cos izk + sin 52[1 (12) // /

The symmetry in the above expression between the helicity P
operators of the initial and final particles - which goes with e
the symmetry in figure - is obvious. One can actually go fur- —Py
ther and check that - as the figure also suggestg; and

3..pr are related by a rotation about thaxis: \

Spr=U"Y,0)Z.5:U(1,0) (13)  FIGURE 3. The components d in thek — ¢ plane.

The above equation makes explicit the intuitive picture thatvhere we have used Eq. (15) to write the second line. Let-

the spin of the incident particle gets rotated by an afdte  ting operators act on their eigenstates and notingythabm-
remain aligned along the direction of the momentum. mutes with all the2's, we get

3. The Transition in the k — ¢ Basis (Pr; £[1524[Pi; £) = —(Pr; 5254 [Pis ) (19)

In this section we will express the Sl in terms of the newly with the obvious consequence:

introduced generators and investigate the interesting conse-

quences of this. We will then write the scattering states in (Be; |55 [P £) = 0 (20)
terms of thek-basis and obtain an expression for the ma-

trix element in terms of these basis. We first note the fol-The X, part of the S| does not contribute to the helicity-
lowing major relations which can be easily proven USingconserving transition. This should not be too surprising,

Egs. (8)-(12): as it is a guarantee of the gauge-invariance of the transi-
tion probability. Obviously, under a gauge transformation
DIN TINBIN DI (14)  A(q) — A(q) + qf(a), with f(q) arbitrary. So, if the
. . matrix element is to be gauge-invariant, which is indeed so,
S0 = -, (15) gaug

then the contribution oE, should vanish. We now move to

Note how the above two equations go with the symmetry ifthe®; matrix element. This, again, can be expressed as:
Fig. 2. Now, from Fig. 3, we have the unit vectbappearing

in the Sl given as: (Pes £ [Pis £) = (P £ Z.pe 5 2.5i [P =) (21)
a= (é,i) 1+ (a,f() k+(3.9)4 (16)  This can be reduced (see the appendix) to :
= Al+ Bk + Cq. (Pr; [P 2 251 |Ps; £)
The spin interaction operator will then take the form: = +i(Pe; £ ( oS gzq +sin sz) B ) (22)
V535.84 = Ay 4+ BysXy + Cys2y a7

_ o . The matrix element of thE, component vanishes as we have
with A, B andC defined in Eq. (16) above. The transition gemonstrated above, and we are left with¥hecontribution.

matrix element, Eq. (7), upon employing the expansion giverrhys, putting every thing together we have the result:
by Eq. (17) above can be further reduced. To do this, consider

first the matrix element oE,, namely(pr; +|vs X, |Pi; ). (Be: |75 .4|pi; £)

This can be written ( just by noting that the states are eigen-

states of the initial and final helicity operators) as: — (B +iAsin 9) (Be; 755k [Pi; £) (23)
2 ) 1

(Pr; |53 [Pi; £) = (Brs £ 2.9 2 2.1 Bi; ) o .
) ) o The transition is induced solely by Xy, i.e the component
= —(Pr; 1|5 2.Pr X .5 |Pi; ) (18)  of the spin interaction operator along the direction of the total
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momentum vectok!. To see what is special with this direc- In fact, one can check directly that the Sl interaction
tion, look again at Fig. 2. The helicity-conserving transition connects initial and finak— states with the same helic-
is a transition that leaves the component of the spin along ity only, i.e.no flip, but different helicityg—states. To see
invariant, while flipping the component alodg This is what  this ,we consider the matrix eIemer{fs; q:|752k|f<; +) and
Egs. (14) and (15) also say. Therefore, formulated in thdq; |v53x|§; =) and show that they both vanish. Consider
k — ¢ basis, the conservation of helicity at first order scatterthe first one :
ing in a static magnetic field amounts to the conservation of
the spin component alorgin the transition and the flipping
of the component alon§. This is just what happens to the
momentum of a classical object; a ball say, as it bounces off a
wall. The momentum along the wall is conserved, while that
parallel to it flips. In our case, the “wall” is defined by the to-
tal momentum vectok, see Fig. 4. The transition, however, Thus,
takes place in the spin space, and the relevant quantity is the
orientation of the spin of the patrticle.

This picture can be enhanced by expanding the initial and
final helicity states in terms of the eigenstatesgfandX,,

(k; F s Sk ks £) = £(k; Flys|k; £)
= (k; F|(F) Spys (£) S [k; £)
= —(k; Flys|k; ) (28)

(k; F|ys Sk ks ) = £ (k; Fys|k; £)

= Fk Flpslk;£) =0 (29)

which can be achieved by simple rotations aboutithaxis.

Similarly,

We focus here on states with positive helicity; those with neg-

ative helicity can be obtained in exactly the same manner.

Indeed, from Fig. 2, we can see that:
. AN 0 - .0~
|pi;+)=U (l, 2) |k; +) = cos i‘k’+> + sin Z‘k’ —)
~ 0 0
=U(l,— ;”>|q;+>=cos i)

0+x .
4 |q7 _> (24)

+ sin

and,

(@ £y Xk|@; ) = (@ £[8g15 50, |G; £)
= —(q; x| 2k]q; £)

where in the last line we noted th&j, andX, anticommute
in view of Egs. (9). So, again:

(@; £|sZkla; £) =0 (30)

These results support our earlier arguments regarding the
conservation of th& component and the flipping of thg
component of the spin of the incident particle.

Finally, one can, by expanding the initial and final states

|pe; +) =U (i, 9) \1}; +) = cos Q“;; +) — sin Q|f<; -) in terms of theX, eigenstates, thus eliminating any reference
2 4 4 to these in the matrix element, express the matrix element to-
S 0—7\ S 0+T tally in k variables and states. Starting from Eq. (23), we
=U (L 5 > |G; +) = sin 4 +) express the matrix element (see Eq. (24) and (25)) as:
0 . . N (s 0
+ cos Zﬂq; -) (25) (Pe; 52k [Pi; ) = (k; £|U! (1, 2) ¥s
Investigating the above equations it is obvious that . O\ -
) e eove equarions 115 0 «o (L-g ) k) @D
(ks £[B3; +)[7 = [(k; £[Pg; +)| (26) 2
while, One can easily check that
(& 83 )1 = (& Flpe: +)I° (27) v (i, Z) s SkU (1 _§> =S (32)
4 Combining this result with Eq. (23) we get
0
a:";f’ (Pg; £|ys2.4|P5; 1) = (B:I:iAsin2>
x (k; s Sklk; +)  (39)
P, Ps

> k

FIGURE 4. The bouncing ball picture of helicity conservation

Acting with X, on its eigenstates, we get the result:
0
(Pr; £|:2.4|p;; ) = + (B + iAsin 2)

x (k; +|ysk; £) (34)
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In the above equation, the only reference to the initial andso,
final states is through the kinematical/geometrical factbrs pX-—qay -2,
J g icargeo A(q) = 0= = ——4(q) (39)
andB. So, to calculate the transition matrix element for any q q
vector potent|a[, justfind these factors_— wh|ch_|s atrivial task—With 4(q) given as
and plug them into the above expression. Things can be even

further simplified if we use the explicit forms of the spinors: Q) EX -y (40)
alq) = ——
X+ 1
S
[k £) = N < gf& i ) (35) For the purpose of applying the formula (34), we need to find

the geometrical factord and B. Obviously,A = 0. As for
whereyx . are eigenstates @fkq with eigenvaluest1, and B, we note that we can without any loss of generality, take
ko = pko is a vector alongEo with p being the conserved the incident momentum to be along the axis; p; = px so
magnitude of the initial and the final momenta. Plugging thisthat
expression into Eq. (34) and using pr=0p (COS ch L sin 9}7) _
s 2 2
V5 = < 9 0 ) ) Straight forward algebra shows that with such a choice of
the incident momentum, we gétq) = k, so thaty;3.4 =
we have: 75Xk, meaning thaB = 1. The matrix element for the AB
0 potential then becomes [4]:
(Br; £ 2alpi; +) = + (Biz‘Asin ) )
2 M = (Br; £ 3.4|B5; +) = (Br; £y k[B; £)

x ( 2N/2p) (36) = (ks |k £) “

E+m
This is just a “plug and play” formula, where one just fixes %e can e\llelj mdove to cfalculate the sgatter:cng Igross secjucl)n.
the geometrical factorel and B for the specific vector po- . i ug%ofarllét_a spattermg c;r(.)ss section of a Dirac particle
tential present, and then gets the spin sector of the matri{’ 1€ leld is given as [5-7]:

element immediately. The following two examples illustrate do 262 1
this explicitly. =5 . |(BrissSalps ) (42)
do  2mp3sin®§ 2 Wippuitt
4. Examples where the summation is over the initial and final particles’

) i _ helicities. As a consequence of Egs. (41) we have
In this section we consider two concrete examples of vector

potentials whose field configurations conserve helicity, and (Be: — s S.4ps; —) = 7<f(. Jr|75|l;. +)
we bring the first order transition matrix elements of Dirac ’ ’ ’ ’
particles in these potentials to the form given by Eq. (34). = —(Pr; +|7:X2.4[ps; +)-

Consider first the Ahronov-Bohm (AB) potential [3] which _ _ o
gives rise to a-function mgnetic field extended along the SO, using Eq. (33), and taking the normalization constant
z-axis. This vector potential is given as:

R R N — [E+m
A(r) = gfyx+xy _ iA (37) 4m

o a4y 277;)6“0’

we get
wherep = /z? + y?, &, is the unit vector in the-direction, do _ e2®? (43)
and ® is the flux through the AB tube. Since the magnetic df  8mpsin®§

field is along thez—axis; thez—component of the incident L . .
momentum doe not change during the scattering procesg\{_h'Ch IS t_he weII_—known AB scatttering cross section of a
Therefore, we consider normal scattering, take the in- Dirac particle at first order 51 , i
cident, and consequently, the outgoing momenta to be in the The second example is the vector potential of a magnetic

= — y plane. In such a geometryjs justz. Pluggingb this dipole, and is less symmetric as the resulting_ field is not, con-
vector potential into Eq. (7), we get : trary to the AB one, axial. The vector potential of the dipole

is given by [8]
S = —2me| N28(Ep — E)ul (pf, s7) A(r) = “;; r (44)
% <(_e©)a1qz—2a2q1> w; (pi;s;).  (38) Wherey is the magnetic moment. The Fourier transform
q of the above vector potential is (up to a numerical factor)
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A(q) = (ux q/q?). Thus, the first order matrix element the conservation of helicity can be formulated as the invari-

reads ance of thek component of the spin of the particle and the
1 flipping of its @ component. An intuitive physical picture of
Sﬁ) = —2me|N?| (2) 5(Es — Ei)u} (ps,s¢) the transition, similar to that of a ball bouncing off a wall
q was suggested. The scattering matrix element was written,
X q for any static field configuration, as the matrix element of
X Yo—— ) u; (pi, 84) (45) i ; . ; i i
5 Tpxdal) DPi, Si) - the~sY in X basis, multiplied by kinematical/geometrical
factors which carry the only reference to the initial and final
Therefore momenta.
~ WUXq
a = .
lux gl A gi
The kinematical factors of Eq. (33) are just ppendix
< A.
A=1124
< ql We show here how to derive Egs. (22) in the text. We start
and with
el
I x q (Pr; £l 2u|Ps; £) = (Pr; £ 292 2.5i[Pis £) (A1)

which are straight forward to calculate; just spegifgndp;.

.. X Look at:
Therefore, the transition matrix element reads now:

@ e 3PN X.pi|pi; +) = T.peX
%i¢%dNH<¥)&EfE)

0 0
X <cos iEkfsin ZEq) |ps; ) (A.2)
(k,uxq qusm)
lux g luxal 2 Using Egs. (11), this can be written as:
x ks £l £) (46) S.5e0 Bl £) = iS50
The cross section can be calculated straight forwardly from 0 6 R
the above amplitude. x | cos 5 Bg+sin o B | |Bi; £) (A.3)
) Egs. (14) and (15) allow us to re-introdud2p; and thus
5. Conclusions bring this into the form
The spin interaction in the first ordéi—matrix of a Dirac >.5: 5.5 [P +)
particle in a static magnetic field was investigated. Noting ’
_ . - 0 0
that the total momentum vectlr= p; + p; and the momen _ <_ cos 3,5 5 + sin Ek2~ﬁi> Bit)  (Ad)
tum transfer vectoy = pr — p; are always perpendicular, 2 2

we suggested that the three unit vectdrsg andl = k x g Allowing th {0B.5: to act on its ei at "
defined an “intrinsic” coordinate system, where the transi- owing the operatot:.p; to act on its eigenstates, we get.

tion, and particularly, the conservation of helicity, could be = 5555 i +)

described in an alternative, more symmetric formalism. The P BHPS

three generators;, = Xk, ¥, = ¥.4, andX; = .1 were

shown to close th&U (2) algebra. When the spin interaction

operatorys 3.4 was written in terms of these generators, we . ) _

have been able to reduce the transition in the spin space to &Hr result, now, follows immediately;

expression proportional to the matrix element of the operator , | . o

5 S (Be: £lvs X [Ps; +) = £i(Pes £
Expressing®.p; andX.pr and their eigenstates in terms 0 .0 .

of X, ¥,, and their eigenstates, we have demonstrated that x | —cos 52 +sin 5% Bi;£)  (A-6)

=4 (— cos gzq —l—sinzzk) |pi; £)  (A.5)
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