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An isothermal endoreversible chemical engine operating between a finite high-chemical- potential reservoir and an infinite low-chemical-
potential reservoir in which the mass transfer between the working fluid and the mass reservoirs obeys the linear mass-transfer law [g ∝ ∆µ],
is put forward in this paper. Optimal control theory is applied to determine the optimal cycle configuration corresponding to the maximum
work output for the fixed total cycle time. The optimal cycle configuration is an isothermal endoreversible chemical engine cycle in which
the chemical potential (concentration) of the key component in the finite high-chemical- potential mass reservoir and that in the working fluid
change nonlinearly with time. The difference in chemical potentials (ratio of the concentrations) between the key component in the finite
mass reservoir and the working fluid is a constant, and the chemical potential (concentration) of the key component in the working fluid at
the low chemical potential side is also a constant. A numerical example is provided, and the effects of the concentration changes in the key
component in the finite high-chemical-potential reservoir on the optimal configuration of the chemical engine are analyzed. The obtained
results are compared with those obtained for an endoreversible heat engine operating between a finite heat source and an infinite heat sink
with Newton’s heat transfer law [q ∝ ∆T ] in the heat transfer processes. The object studied in this paper is general, and the results could
provide some guidelines for the optimal design and operation of real chemical engines.

Keywords: Finite high-chemical-potential reservoir; isothermal endoreversible chemical engine; maximum work output; optimal control;
generalized thermodynamic optimization.

En el presente trabajo se presenta un motor quı́mico endoreversible isotérmico trabajando entre un recipiente finito de alto potencial quı́mico
y un recipiente infinito de bajo potencial quı́mico, en el cual, la transferencia de masa entre el fluido de trabajo y la masa contenida obedece
a la ley lineal de transferencia de masa [g ∝ ∆µ]. Se aplica la teorı́a del controlóptimo para determinar la configuración óptima del ciclo,
correspondiente al ḿaximo trabajo de salida para el tiempo total del ciclo. La configuración del cicloóptimo es el de un motor quı́mico
endoreversible isotérmico en el cual, el potencial quı́mico (concentración) de la componente clave en el recipiente finito masivo de alto
potencial qúımico y el del fluido de trabajo cambian de forma no lineal con el tiempo. La diferencia en los potenciales quı́micos (cociente
de las concentraciones) entre el componente clave del recipiente finito masivo y el fluido de trabajo es una constante, y el potencial quı́mico
(concentracíon) del componente clave en el fluido de trabajo del lado del potencial quı́mico bajo es también una constante. Se proporciona
un ejemplo nuḿerico donde se analizan los efectos del cambio en la concentración en la componente clave del recipiente finito con alto
potencial qúımico respecto de la configuración óptima del motor qúımico. Los resultados obtenidos se comparan con los obtenidos para un
motor t́ermico endoreversible que trabaja entre una fuente de calor finita y un disipador de calor infinito, que obedece a la ley de Newton
de transferencia de calor (q ∝ ∆T ) en los procesos de tranferencia de calor. El objeto de estudio en el presente trabajo es general y los
resultados podrı́an proporcionar algunas pautas para el diseño óptimo y funcionamiento de motores quı́micos reales.

Descriptores: Recipiente finito de alto potencial quı́mico; motor qúımico isot́ermico endoreversible; ḿaximo trabajo de salida; control
óptimo; optimizacíon termodińamica generalizada.

PACS: 05.70.-a; 05.30-d

1. Introduction
Determining the optimal thermodynamic process for the
given optimization objectives is one of the standard prob-
lems in finite-time thermodynamics [1-17]. Curzon and
Ahlborn [18] showed that the efficiency of an endoreversible
heat engine with Newton’s heat transfer law [q ∝ ∆T ] at
maximum power point isηCA = 1 −

√
TL/TH . Cutowicz-

Krusin et al. [19] proved that, in all acceptable cycles, an
endoreversible Carnot cycle with larger compression ratio
can produce maximum power,i.e. the Curzon-Ahlborn cy-
cle [18] is the optimal configuration with only First and Sec-
ond Law constraints. Ondrechenet al. first investigated the
problem of maximizing work output from a finite reservoir
by sequential Carnot cycles [20], and further investigated the
optimal configuration of an endoreversible heat engine with
finite heat reservoirs and Newton’s heat transfer law [21].

Amelkin et al. [22,23] investigated the optimal configuration
of a multi-heat-reservoir heat engine with stationary temper-
ature reservoirs for maximum power output. Sieniutycz and
von Sparkovsky [24] obtained the extremal work and optimal
temperature profile of multistage endoreversible continuous
heat engine systems with one reservoir of finite thermal ca-
pacity. Sieniutycz [25] further obtained those of multistage
endoreversible discrete heat engine systems with one reser-
voir of finite thermal capacity.

The idea and method of finite time thermodynamic op-
timization for heat engines can be extended to generalized
thermodynamic processes and devices. De Vos [26-29] has
extended the definition of the endoreversible heat engine to a
generalized endoreversible engine by generalizing heat reser-
voirs to heat and mass reservoirs and heat exchangers to heat
and mass exchangers. Gordon [30] investigated the problem
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of maximizing work output from a finite chemical potential
reservoir by sequential isothermal chemical engines. Gor-
don and Orlov [31] further investigated the optimal config-
uration of an isothermal endoreversible chemical engine op-
erating between two infinite chemical-potential reservoirs for
maximizing power output. The optimal cycle configuration
of endoreversible chemical engine with finite reservoirs was
also discussed qualitatively in Ref. 31. Chenet al. [32-34]
derived the optimal relation between the power output and
the second law efficiency of the isothermal endoreversible
chemical engine and the combined-cycle isothermal endore-
versible chemical engines with the sole irreversibility of mass
transfer, and analyzed the effect of mass leakage on the per-
formance of isothermal chemical engines [35]. Linet al. [36]
established a model of a generalized irreversible isothermal
chemical engine with irreversibility of mass transfer, mass
leakage and internal loss, and derived the optimal relation be-
tween the power output and the first law efficiency of the ir-
reversible isothermal chemical engine. Tsirlinet al. [37] de-
rived the minimum entropy generation rate and the maximum
power output of a class of isothermal endoreversible chemi-
cal engines. Tsirlinet al. [38] also analyzed the performance
of chemical reactors. Chenet al. [39] further investigated
the optimal performance of an endoreversible chemical en-
gine with the diffusive mass transfer law. Sieniutycz [40-42]
investigated the optimal performance of multistage endore-
versible continuous chemical engine systems with simulta-
neous heat and mass transfer by applying Hamilton-Jacobi-
Bellman equations. Xiaet al. [43] derived the optimal cy-
cle configuration of the multi-reservoir isothermal endore-
versible chemical engine for maximum work output per cy-
cle. Previous works have been focusing on investigating
the optimal performance [26-28,30,33-36,38-43] and optimal
configuration [29,37] of an isothermal chemical engine oper-
ating between infinite reservoirs. The optimal cycle config-
uration of endoreversible chemical engine with finite reser-
voirs was also discussed qualitatively in Ref. 31, but the
model of finite mass reservoir was not described in detail and
the results obtained in Ref. 31 did not reflect the essence of
optimal cycle configuration of the isothermal endoreversible
chemical engine with finite mass reservoirs.

Linetskii and Tsirlin [44], and Andresen and Gordon [45]
investigated the optimal configuration of heat transfer pro-
cesses in heat exchangers with Newton’s heat transfer law for
minimizing entropy generation. Chenet al. [46] investigated
the optimal configuration of heat transfer processes in heat
exchangers with a universal heat transfer law for minimizing
entropy generation. Based on the analogy between heat trans-
fer and mass transfer, Tsirlin [47] and Tsirlinet al. [48,49]
derived the optimal configuration of finite rate mass transfer
processes in mass exchangers for minimizing entropy genera-
tion by using optimal control theory. On the basis of research
into the optimal configuration of heat engines for maximum
power output [21], and with the method of analogy and trans-
planting, this paper will establish a model of an isothermal
endoreversible chemical engine operating between a finite

high-chemical-potential mass reservoir and an infinite low-
chemical-potential mass reservoir in which the mass transfer
between the working fluid of the chemical engine and mass
reservoirs obeys the linear mass-transfer law [g ∝ ∆µ]. The
optimal cycle configuration of the isothermal endoreversible
chemical engine for maximum work output will be derived
for the fixed total cycle time by using optimal control theory.

2. Isothermal chemical engine model

The isothermal endoreversible chemical engine to be consid-
ered in this paper is shown in Fig. 1. It operates between
a finite high-chemical-potential mass reservoir and an infi-
nite low- chemical-potential reservoir. The total mass of the
material in the high-chemical-potential reservoir is given by
G1(t), and its initial mass is given byG1(0) = G10. The
high-chemical- potential reservoir is finite in size, so the
chemical potential of the key componentB1 in it will change
with the mass transfer between the high-chemical-potential
reservoir and the working fluid of the chemical engine. Let
the concentration (mole fraction) and the chemical poten-
tial of the key componentB1 in the high-chemical-potential
reservoir bec1(t) and µ1(c1), respectively. The chemical
reaction in the chemical engine is assumed to be a single
isomerization reactionB1 ⇔ B2 [40-42]. The heat absorbed
or released due to the chemical reaction is very small and
can be neglected, so the temperature over the cycle time is a

FIGURE 1. Model of the isothermal endoreversible chemical en-
gine.
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constant. The concentration and the chemical potential of
the key componentB1 in the working fluid of chemical en-
gine on the high- chemical-potential side are given byc1′ (t)
and µ1′(c1′), respectively, while those of the key compo-
nentB2 corresponding to the low-chemical-potential side are
given byc2′(t) andµ2′(c2′), respectively. The low-chemical-
potential reservoir is assumed, for simplicity, to be infinite in
size and therefore both the concentration and the chemical
potential of the key componentB2 in it are constants and are
given byc2 andµ2(c2), respectively. The chemical engine
receives its massN1 from the high-chemical-potential reser-
voir, and rejects its massN2 to the low-chemical-potential
reservoir over the cycle time. The chemical engine operates
in a cyclic fashion with a fixed timeτ allotted for each cy-
cle. It is assumed that the mass exchanges between the mass
reservoirs and the working fluid of the chemical engine obey
the mass transfer law of linear irreversible thermodynamics
[g ∝ ∆µ]. Then:

N1 =

τ∫

0

g1(c1(t), c1′ (t))dt

=

τ∫

0

h1(t)[µ1(c1)− µ1′ (c1′ )]dt (1)

N2 =

τ∫

0

g2(c2′(t), c2(t))dt

=

τ∫

0

h2(t)[µ2′(c2′)− µ2(c2)]dt (2)

whereg1(c1(t), c1′(t)) and g2(c2′(t), c2(t)) are mass flow
rates corresponding to the high- and the low-chemical-
potential sides, respectively, andh1(t) andh2(t) are the cor-
responding mass- transfer coefficients, respectively. It is as-
sumed that att = 0 the working fluid is in contact with the
high-chemical-potential reservoir and is separated from the
low-chemical-potential reservoir by an instantaneous con-
stant mass-flux branch. At a later timet1(0 < t1 < τ), con-
tact with the high-chemical-potential reservoir is broken and
the working fluid is placed in contact with the low-chemical-
potential reservoir. Therefore, one has the following relation-
ships:

h1(t) =
{

h1, 0 ≤ t ≤ t1
0, t1 ≤ t ≤ τ

(3)

h2(t) =
{

0, 0 ≤ t ≤ t1
h2, t1 ≤ t ≤ τ

(4)

whereh1 andh2 are constants. The law of mass conserva-
tions givesN1 = N2, i.e.

τ∫

0

h1(t)[µ1(c1)− µ1′(c1′)]dt

−
τ∫

0

h2(t)[µ2′(c2′)− µ2(c2)]dt = 0. (5)

From the first law of thermodynamics, the equation of en-
ergy conservation over the total cycle is:

τ∫

0

[U1(t)− U2(t)]dt−
τ∫

0

P (t)dt = 0, (6)

whereU1(t) andU2(t) are the total energy flow rates between
the two chemical potential reservoirs and the working fluid of
the chemical engine, respectively, andP (t) is the power out-
put of the chemical engine. In terms of the second law of
thermodynamics, the entropy change of the working fluid of
the isothermal endoreversible chemical engine for the whole
cycle is zero,i.e. the entropy flux input is equal to the entropy
flux output:

{ τ∫

0

[U1(t)− g1(c1, c1′)µ1′(c1′)]dt

−
τ∫

0

[U2(t)− g2(c2′ , c2)µ2′(c2′)]dt

}
/T = 0, (7)

whereT is the temperature during the mass transfer process,
which is a constant. Using Eqs. (6) and (7), the work output
per cycleW is

W =

τ∫

0

P (t)dt

=

τ∫

0

[g1(c1, c1′)µ1′(c1′)− g2(c2′ , c2)µ2′(c2′)]dt. (8)

For the high-chemical-potential reservoir, the total mass
(G1(t)) of the material in it versus time obeys the following
differential equation:

dG1

dt
= −g1(c1, c1′), G1(0) = G10. (9)

Consider that there is a transfer of the key componentB1

only between the high-chemical- potential reservoir and the
working fluid of the chemical engine; then

d(G1c1)
dt

=
dG1

dt
. (10)

From Eqs. (9) and (10), it follows that:

dc1

dt
= − (1− c1)

G1
g(c1, c1′). (11)
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The total mass of the inert component in the high-
chemical-potential reservoir is a constant during the finite
rate mass transfer process,i.e.

G1(1− c1) = G̃, (12)

whereĜ = G10(1− c10) is a constant. Substituting Eq. (12)
into Eq. (11) yields:

ċ1 = − (1− c1)2

Ĝ
g(c1, c1′), (13)

whereċ1 = dc1/dt.

3. Optimization

The problem now is to maximize the work output of the
isothermal endoreversible chemical engine for the fixed dura-
tion τ , i.e. to determine the optimal time paths of parameters
c1(t), c1′(t) andc2′(t) for the maximumW of Eq. (8) sub-
jected to the constraints of Eqs. (5) and (13). Apparently,
it is a typical optimal control problem. Correspondingly, the
modified Lagrangian L is given by

L = g1(c1, c1′)µ1′(c1′)− g2(c2′ , c2)µ2′(c2′)

+ λ{g1(c1, c1′)− g2(c2′ , c2)}

+ u(t)
{

ċ1 +
(1− c1)2

Ĝ
g1(c1, c1′)

}
, (14)

whereλ is the Lagrangian constant andu(t) is a function
of time. The paths for the concentration of two key compo-
nents in the working fluid which result in the maximum work
for a given time interval{0, τ} may now be obtained from
the solutions of the Euler–Lagrange equations. The Euler–
Lagrange equations are given by

∂L

∂c1
− d

dt

(
∂L

∂ċ1

)
= 0,

∂L

∂c1′
− d

dt

(
∂L

∂ċ1′

)
= 0,

∂L

∂c2′
− d

dt

(
∂L

∂ċ2′

)
= 0. (15)

Substituting Eq. (14) into Eq. (15) yields

∂g1

∂c1

(
µ1′ + λ + u(t)

(1− c1)2

Ĝ

)

− 2u(t)g1
(1− c1)

Ĝ
− u̇(t) = 0, 0 ≤ t ≤ t1 (16)

∂g1

∂c1′

(
µ1′ + λ + u(t)

(1− c1)2

Ĝ

)

+ g1
∂µ1′

∂c1′
= 0, 0 ≤ t ≤ t1 (17)

∂g2

∂c2′
(µ2′ + λ) + g2

∂µ2′

∂c2′
= 0, t1 ≤ t ≤ τ (18)

u̇(t) = 0, t1 ≤ t ≤ τ . (19)

Sinceg2=h2(µ2′ − µ2), one obtains

(∂g2/∂c2′)(∂µ2′/∂c2′) = h2,

from which Eq. (18) leads to

µ2′ =
µ2 − λ

2
, t1 ≤ t ≤ τ , (20)

where bothµ2 and λ are constants. From Eq. (20), one
can see that the chemical potential (µ2′) of the key com-
ponentB2 in the working fluid is also a constant when the
chemical engine is in contact with the infinite low-chemical-
potential reservoir. Sinceg1 = h1(µ1−µ1′), one also obtains
(∂g1/∂c1′)/(∂µ1′/∂c1′) = −h1, from which Eq. (18) leads
to

u(t) =
Ĝ

(1− c1)2
(µ1 − 2µ1′ − λ), 0 ≤ t ≤ t1 (21)

Differentiating Eq. (21) with respect to timet yields:

u̇(t) =
2Ĝċ1

(1− c1)3
(µ1 − 2µ1′ − λ)

+
Ĝ

(1− c1)2
(µ̇1 − 2µ̇1′), 0 ≤ t ≤ t1. (22)

From Eq. (13), one can obtain

Ĝ

(1− c1)2
= −g(c1, c1′)

ċ1
. (23)

Substituting Eq. (23) into Eq. (22) yields:

u̇(t) = −2Ĝg1(c1, c1′)
(1− c1)

(µ1 − 2µ1′ − λ)

− g1(c1, c1′)
ċ1

(µ̇1 − 2µ̇1′), 0 ≤ t ≤ t1. (24)

Substituting Eqs. (21) and (24) into Eq. (16) yields:

∂g1

∂c1
(µ1 − µ1′) +

g(c1, c1′)
ċ1

(µ̇1 − 2µ̇1′) = 0,

0 ≤ t ≤ t1. (25)

From g1 = h1(u1 − u1′), one can further obtain
∂g1/∂c1 = h1∂µ1/∂c1. Substituting it into Eq. (25) yields:

µ1 − µ1′ = const = Cµ, 0 ≤ t ≤ t1, (26)

whereCµ is an integration constant. Eq. (26) shows that the
difference between the chemical potential of the key compo-
nentB1 in the high-chemical-potential reservoir and that in
the working fluid is a constant when the chemical engine is
in contact with the high-chemical-potential reservoir.
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Then the entropy generation (∆S1) due to the finite rate
mass transfer between the high- chemical-potential reservoir
and the working fluid of the chemical engine is given by

∆S1 =

τ∫

0

{g1(c1, c1′)[µ1(c1)− µ1′(c1′)]}dt/T

= h1C
2
µt1/T. (27)

The entropy generation (∆S2) due to the finite rate mass
transfer between the working fluid of the chemical engine and
the low-chemical-potential reservoir is given by

∆S2 =

τ∫

0

{g2(c2′ , c2)[µ2′(c2′)− µ2(c2)]}dt/T

= h2
1C

2
µt21/[h2(τ − t1)T ] (28)

The total entropy generation per cycle∆S is given by

∆S = ∆S1 + ∆S2

= h1C
2
µt1/T + h2

1C
2
µt21/[h2(τ − t1)T ] (29)

According to Refs. 37, 47 to 49, the chemical potential
(µi) of thei-th component in a mixture that is similar in prop-
erties to ideal gases or ideal solutions can be expressed as

µi(ci) = µ0i(P, T ) + RT ln ci, i = 1, 1′, 2′, 2, (30)

whereci is the concentration of thei-th component,P and
T are the mixture’s absolute temperature and pressure,R is
the universal gas constant, andµ0(P, T ) is the chemical po-
tential of the purei-th component (known for most of sub-
stances). Substituting Eq. (30) into Eqs. (1) and (2), respec-
tively, yields:

c1(t)/c1′(t) = exp(Cµ/RT ). (31)

From Eq. (31), one can see that the ratio of the concentra-
tion of the key componentB1 in the high-chemical-potential
reservoir to that in the working fluid of the chemical engine
is a constant for the optimal cycle configuration. Substituting
Eq. (30) into Eqs. (1) and (2), respectively, yields:

N1 =

τ∫

0

g1(c1, c1′)dt =h1RT ln(c1/c1′)t1

= h1Cµt1 (32)

N2 =

τ∫

0

g2(c2′ , c2)dt =h2RT ln(c2′/c2)(τ − t1). (33)

Combining Eqs. (9) with (32), one can obtain the total
mass (G1(t)) of the material in the high-chemical-potential
reservoir versus time, which is given by

G1(t) = G1(0)− h1Cµt (34)

Substituting Eq. (34) into Eq. (11) yields

dc1

dt
= − (1− c1)

G10 − h1Cµt
h1Cµ, c1(0) = c10. (35)

From Eq. (35), one can obtain the concentration (c1(t))
of the key componentB1 in the high- chemical-potential
reservoir versus time, which is given by

c1(t) = 1− (1− c10)
G10

G10 − h1Cµt
. (36)

Substituting Eq. (36) into Eq. (31), one can obtain the
concentration of the key componentB1 in the working fluid
of the chemical engine versus time during the mass absorbed
process, which is give by

c1′(t) =
[1−G10(1− c10)/(G10 − h1Cµt)]

exp(Cµ/RT )
. (37)

Combining Eqs. (5), (32) with (33), one can get the con-
centration of the key componentB2 in the working fluid of
the chemical engine during the mass released process, which
is given by

c2′ = c2 exp{h1Cµt1/[h2RT (τ − t1)]}. (38)

From Eq. (8), one can further obtain the work output per
cycle, which is given by

W = h1Cµ

[ t1∫

0

µ1′dt−t1(

τ∫

t1

µ2′dt)/(τ − t1)
]
. (39)

Combining Eqs. (30) and (37)-(39) yields

W = h1Cµ

{ t1∫

0

{
µ01 − Cµ + RT ln[1−G10(1− c10)/(G10 − h1Cµt)]

}
dt− µ2t1 − h1Cµt21/[h2(τ − t1)]

}
. (40)

Equation (40) further gives

Rev. Mex. F́ıs. 55 (5) (2009) 399–408
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W = h1CµRT

t1∫

0

{
ln [1− G10(1− c10)

G10 − h1Cµt
]
}

dt− h1C
2
µt1

h2(τ − t1) + h1t1
h2(τ − t1)

+ h1Cµt1(∆µ0 −RT ln c2) (41)

where∆µ0 = µ01 − µ02. Integrating the first term of Eq. (41) yields

W = RT

[
h1Cµt1 ln

(
G10c10 − h1Cµt1
G10 − h1Cµt1

)
+ G10 ln

(
G10 − h1Cµt1

G10

)
−G10c10 ln

(
G10c10 − h1Cµt1

G10c10

)]

+ h1Cµt1(∆µ0 −RT ln c2)− h1C
2
µt1

h2(τ − t1) + h1t1
h2(τ − t1)

. (42)

The reversible work per cycle is given by

Wrev = h1Cµ

[ t1∫

0

µ1dt−t1(

τ∫

t1

µ2dt)/(τ − t1)

]
. (43)

Combining Eqs. (30), (36) with (43) yields

Wrev = RT

[
h1Cµt1 ln

(
G10c10 − h1Cµt1
G10 − h1Cµt1

)
+ G10 ln

(
G10 − h1Cµt1

G10

)
−G10c10 ln

(
G10c10 − h1Cµt1

G10c10

)]

+ h1Cµt1(∆µ0 −RT ln c2). (44)

From Eqs. (29), (42) and (44), one can obtain

W = Wrev − T∆S. (45)

From Eq. (45), one can see that the work output per cy-
cle of the isothermal endoreversible chemical engine with the
finite high-chemical-potential reservoir is equal to the dif-
ference between the reversible work per cycle and the ex-
ergy lost. This result proves that the performance limits im-
plied by the finite time thermodynamics are more realistic,
stronger than those implied by classical thermodynamics. For
the given values of parametersG10, c10, h2, ∆µ0 andT , the
work output (W ) per cycle is a function of the integration
constantCµ and the timet1. One cannot obtain the analyti-
cal solutions from the extreme conditions∂W/∂t1 = 0 and
∂W/∂Cµ = 0, which could only be solved numerically.

When the high-chemical-potential reservoir is a finite
mass reservoir, the initial massG10 is also a finite value.
From Eq. (36), the concentration (c1(t)) of the key com-
ponentB1 in the high-chemical-potential reservoir changes
non-linearly with timet. Becauseµ1 = µ01 + RT ln c1, the
chemical potentialµ1 also changes non-linearly with timet.
From Eq. (26), one can see that the chemical potential (µ1′)
of the key componentB1 in the working fluid of the chemi-
cal engine changes non-linearly with timet during the mass
absorbed process also. Bothµ1 andµ1′ change non-linearly
with time, but the difference between them is a constant,i.e.
the mass transfer rateg1 is a constant. The optimal cycle con-
figuration of the isothermal endoreversible chemical engine
operating between a finite high-chemical-potential and an in-
finite low-chemical-potential reservoir for maximum work
output consists of two constant mass transfer rate branches

and two instantaneous constant mass-flux branches. By
defining

µ∗1 =
1
t1

t∫

0

µ1(t)dt

and

µ∗1′ =
1
t1

t∫

0

µ1′(t)dt,

the average power output (P̄ ) per cycle and the second law
efficiencyη are

P̄ = W/τ = (µ∗1′ − µ2′)N1/τ (46)

η =
W

Wrev
=

(µ∗1′ − µ2′)N1

(µ∗1 − µ2)N1
=

(µ∗1′ − µ2′)
(µ∗1 − µ2)

, (47)

respectively. From Eqs. (1), (2) and (47) , one can obtain

µ∗1′ = µ∗1 −N1/(h1t1) (48)

µ2′ = µ2 + N1/[h2(τ − t1)] (49)

(µ∗1′ − µ2′) = η(µ∗1 − µ2) (50)

Combining Eqs. (1), (2) and (47) yields

P̄ =
η(1− η)(µ∗1 − µ2)2

τ{(h1t1)−1 + [h2(τ − t1)]−1} (51)
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For the finite high-chemical-potential reservoir,µ∗1 is a
function of timet1. Comparing Eqs. (41) with (42), one ob-
tainsµ∗1, which is given by

µ∗1 = µ01 + RT

[
ln

(
G10c10 − h1Cµt1
G10 − h1Cµt1

)

+
G10

h1Cµt1
ln

(
G10 − h1Cµt1

G10

)

− G10c10

h1Cµt1
ln

(
G10c10 − h1Cµt1

G10c10

)]
(52)

From Eq. (52), one can see that there is no closed-form
solution for the extreme condition∂P̄/∂t1 = 0. However,
from Eq. (51), one can see that there are two zero points for
the average power output̄P , i.e. P̄ = 0 whenη = ηmin = 0
and η = ηmax = 1. The optimal relationship between
the power output and the efficiency of the isothermal en-
doreversible chemical engine with the finite high-chemical-
potential reservoir is a parabolic-like curve, which is analo-
gous to that for the endoreversible heat engine with the finite
heat source [21].

When the high-chemical-potential reservoir is an infinite
mass reservoir, the initial massG10 → ∞. From Eq. (36),
the concentration (c1(t)) of the key componentB1 in the
high- chemical-potential reservoir is equal to its initial con-
centrationc10. Fromµ1 = µ01 + RT ln c1, one can see that
the chemical potentialµ1 is a constant. From Eq. (26), one
can also see that the chemical potential (µ1′) of the key com-
ponentB1 in the working fluid of the chemical engine is also
a constant. The optimal cycle configuration of the isother-
mal endoreversible chemical engine operating between two
infinite mass reservoirs for maximum work output consists
of two constant chemical potential branches and two instan-
taneous constant mass-flux branches, which is analogous to
the CA cycle for the endoreversible heat engine [18]. This
is the same result as that obtained in Refs. 31 and 37. The
corresponding average power outputP̄ and the second law
efficiencyη are

P̄ = W/τ = (µ1′ − µ2′)N1/τ (53)

η =
W

Wrev
=

(µ1′ − µ2′)N1

(µ1 − µ2)N1
=

µ1′ − µ2′

µ1 − µ2
. (54)

Combining Eqs. (1), (2), (46) with (47) yields

P̄ =
η(1− η)(µ1 − µ2)2

τ{(h1t1)−1 + [h2(τ − t1)]−1} . (55)

From the extreme condition∂P̄/∂t1 = 0, one can obtain

t1 =
τ

[1 + (h1/h2)0.5]

and the optimal power versus efficiency,i.e.

P̄ =
h1η(1− η)(µ1 − µ2)2

[1 + (h1/h2)0.5]2
. (56)

This is the same result as that obtained in Ref. 32. Equa-
tion (56) shows that the optimal relationship between the
power and the efficiency for the isothermal endoreversible
chemical engine operating between two infinite mass reser-
voirs is a parabolic-like curve, which is analogous to that for
the endoreversible heat engine operating between two infinite
heat reservoirs [18]. From Eq. (56), one can see thatP̄ = 0
whenη = ηmin = 0 andη = ηmax = 1, and

P̄=P̄max =
h1(µ1 − µ2)2

4[1 + (h1/h2)0.5]2

whenη = ηP = 0.5 = ηmax/2.

4. Numerical examples and discussions

For the convenience of calculation and analysis,h1 = h2 is
set and the following dimensionless variables and constants

FIGURE 2. The average power output of the chemical engine˜̄P

versus the parameters̃Cµ andt̃1 (c10 = 0.8).

FIGURE 3. The optimal concentration profile of the key component
B1 in the finite high-chemical-potential reservoir.
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TABLE I. Some operational parameters of the chemical engine corresponding to the optimal cycle configuration for maximum work output.

Case t̃1 C̃µ c1(t̃1) c1′(0) c1′(t̃1) c2′
˜̄P η

c10 = 0.7 0.5970 0.5312 0.6797 0.4115 0.3996 0.2196 0.4290 0.5066

c10 = 0.8 0.5652 0.6206 0.7849 0.4301 0.4220 0.2240 0.5109 0.5052

c10 = 0.9 0.5333 0.7170 0.8917 0.4394 0.4354 0.2269 0.5950 0.5032

are defined:

G̃10 =
G10

h1RTτ
, µ̃01 =

µ01

RT
, µ̃02 =

µ02

RT
,

˜̄P =
P̄

h1R2T 2
, t̃ =

t

τ
, C̃µ =

Cµ

RT
,

µ̃i =
µi

RT
(i = 1, 2), (57)

Then Eqs. (36) and (42) can be rewritten as

c1(t̃) =
1− G̃10(1− c10)

(G̃10 − C̃µt̃)
, 0 ≤ t̃ ≤ t̃1 (58)

˜̄P = C̃µ ln
(

G̃10c10 − C̃µt̃1

G̃10 − C̃µt̃1

)
+ G̃10 ln

(
G̃10 − C̃µt̃1

G̃10

)

− G̃10c10 ln
(

G̃10c10 − C̃µt̃1

G̃10c10

)

+ C̃µt̃1(∆µ̃0 − ln c2)− C̃2
µ

t̃1

1− t̃1
. (59)

The following parameters are used in the calculations:
G̃10 = 5, µ̃01 = 1.5, µ̃02 = 0.5, andc2 = 0.1. In order to an-
alyze the effects of the concentration changes of the key com-
ponentB1 in the high-chemical-potential on the optimal cy-
cle configuration of the chemical engine for maximum work
output, the values of0.7, 0.8 and0.9 are set forc10, respec-
tively. Figure 2 shows the average power output (˜̄P ) of the
chemical engine versus the parametersC̃µ andt̃1 (c10 = 0.8).
From Fig. 2, one can see that there is a maximum value
for ˜̄P as a function ofC̃µ and t̃1. Table I lists some oper-
ational parameters of the chemical engine corresponding to
the optimal cycle configuration for maximum work output
(or maximum average power output). From Table I, one can
see that with the increase of the concentration of the key com-
ponentB1 in the finite high-chemical-potential reservoir, the
optimal time (̃t1) spent on the mass transfer between the fi-
nite high-chemical-potential reservoir and the working fluid
of the chemical engine decreases, the concentrations (c1′(0)
andc1′(t̃1)) of the key componentB1 in the working fluid
increase, and the concentration (c2′) of the key component
B2 in the working fluid increases. Besides, with the increase
of c10, the average power output (˜̄P ) of the chemical engine
increases; however, the efficiencyη decreases. Also from
Table II, the efficiencyη is a bit larger than 0.5 for differ-
ent values ofc10. For the given numerical example herein,
the efficiency of the isothermal endoreversible chemical en-
gine with the finite high-chemical- potential reservoir and the

linear mass transfer law corresponding to the optimal cycle
configuration for maximum work output is larger than that
with infinite mass reservoirs and the same mass transfer law.

Figures 3 and 4 show the optimal concentration and the
optimal chemical potential profiles of the key componentB1

in the finite high-chemical-potential reservoir, respectively.
From Fig. 3, for the cases with different values ofc10, when
the working fluid of the chemical engine absorbs mass from
the high-chemical-potential reservoir, the concentration of
the key componentB1 in the high-chemical-potential reser-
voir decreases with the increase in timet̃. However, the
concentrationc1(t̃) changes non-linearly with timẽt from
Eq. (58). Comparing Fig. 3 with Fig. 4, one can see that the
optimal chemical potential profile of the key componentB1

in the finite high-chemical-potential reservoir is very similar
to its optimal concentration profile, which is due to the fact
that they follow the equationµ1(c1) = µ01(P, T )+RT ln c1.

Figure 5 shows the optimal concentration configurations
of the two key components in the working fluid of the isother-
mal endoreversible chemical engine for maximum work out-
put. Ondrechenet al. [21] showed that the optimal configu-
ration of endoreversible heat engine operating between a fi-
nite heat source and an infinite heat sink for maximum work
output with Newton’s heat transfer law in the heat transfer
processes is a generalized Carnot heat engine in which the
temperatures of the heat source and the working fluid change
exponentially with time and the ratio of the temperatures of
the working fluid and the heat source is a constant, and the
temperature of the working fluid at the low-temperature side
is also a constant. This paper shows that the optimal con-
figuration of the isothermal endoreversible chemical engine
operating between a finite high-chemical-potential reservoir
and an infinite low-chemical-potential reservoir for maxi-
mum work output with linear mass-transfer law in the mass
transfer processes is an isothermal endoreversible chemical
engine in which the chemical potential (concentration) of
the key component in the finitehigh-chemical-potential mass
reservoir and that in the working fluid change nonlinearly
with time and the difference in chemical potentials (ratio of
the concentrations) between the key component in the finite
mass reservoir and the working fluid is a constant, and the
chemical potential (concentration) of the key component in
the working fluid at the low chemical potential side is also a
constant, as shown in Fig. 5. Refs. 21 and 50 showed that the
optimal configurations of any heat engines were achieved in
a heat engine by operating it so as to keep the entropy gener-
ation rate constant along each heat transfer branch. From
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FIGURE 4. The optimal chemical potential profile of the key com-
ponentB1 in the finite high-chemical-potential reservoir.

FIGURE 5. The optimal concentration configurations of the two
key components in the working fluid of the isothermal endore-
versible chemical engine for maximum work output.

Eqs. (27) and (28), one can see that the entropy generation
rate along each mass transfer branch of the optimal cycle con-
figuration of the chemical engine is also a constant. This is
the similarity between the optimal cycle configuration of the
endoreversible heat engine and that of the isothermal endore-
versible chemical engine.

5. Conclusion

On the basis of the analogies of similar studies for endore-
versible heat engines [21] and with the method of analogy
and transplanting, a model of an isothermal endoreversible
chemical engine operating between a finite high-chemical-

potential reservoir and an infinite low- chemical-potential
reservoir in which the mass transfer between the working
fluid and the mass reservoirs obeys the linear mass-transfer
law [g ∝ ∆µ], is put forward in this paper. Optimal control
theory is applied to determine the optimal cycle configura-
tion corresponding to the maximum work output per cycle for
the fixed total cycle time. The optimal cycle configuration is
an isothermal endoreversible chemical engine cycle in which
the chemical potential (concentration) of the key component
in the finite high-chemical-potential mass reservoir and that
in the working fluid change nonlinearly with time, the differ-
ence in the chemical potentials (ratio of the concentrations) of
the key component between the finite mass reservoir and the
working fluid is a constant, and the chemical potential (the
concentration) of the key component in the working fluid at
the low chemical potential side is also a constant. Numerical
examples are provided, and the effects of the concentration
changes of the key component in the infinite high-chemical-
potential reservoir on the optimal cycle configuration of the
chemical engine are analyzed. The obtained results are com-
pared with those obtained for an endoreversible heat engine
operating between a finite heat source and an infinite heat
sink with Newton’s heat transfer law in the heat transfer pro-
cesses.

The subject studied in this paper is an isothermal chem-
ical engine with finite mass reservoirs, which is more gen-
eral compared to the common isothermal endoreversible
chemical engine with infinite mass reservoirs [26-39].
The idea and method used in this paper could be ex-
tended to research into the optimizing performances of two-
mass-reservoir chemical pump [51-53], three-mass-reservoir
chemical pump [54], three-mass-reservoir chemical trans-
former [55,56], four-mass-reservoir chemical pump [57,58]
and four-mass-reservoir chemical transformer [59,60]. The
results herein can provide some guidelines for optimal de-
sign and operation of real chemical engines, such as mass
exchangers, electrochemical, photochemical and solid state
devices and so on.

Acknowledgements

This paper is supported by the Program for New Century
Excellent Talents in University of P.R. China (Project No.
20041006) and The Foundation for the Author of National
Excellent Doctoral Dissertation of P.R. China (Project No.
200136). The authors wish to thank the reviewer for his care-
ful, unbiased and constructive suggestions, which led to this
revised manuscript.

Rev. Mex. F́ıs. 55 (5) (2009) 399–408



408 SHAOJUN XIA, LINGEN CHEN, AND FENGRUI SUN

∗. To whom all correspondence should be addressed: e-mail ad-
dress:lgchenna@yahoo.com, lingenchen@hotmail.com, Fax:
0086-27-83638709 Tel: 0086-27-83615046.

1. B. Andresen and R.S. Berry,Acc. Chem. Res.17 (1984) 266.

2. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, and A.M.
Tsirlin, Thermodynamic Optimization of Finite Time Processes
(Chichester: Wiley, 1999).

3. S. Sieniutycz,Phys. Reports326(2000) 165.

4. L. Chen, C. Wu, and F. Sun,J. Non-Equilib. Thermodyn.24
(1999) 327.

5. D. Ladino-Luna,Rev. Mex. F́ıs.48 (2002) 575.

6. L. Chen, F. Sun (New York: Nova Science Publishers, 2004).

7. D. Ladino-Luna and R.T. Paez-Hernandez,Rev. Mex. F́ıs. 51
(2005) 54.

8. G. Aragon-Gonzalez, A. Canales-Palma, A. Lenon-Galicia, and
M. Musharrafie-Martinez,Rev. Mex. F́ıs.51 (2005) 32.
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