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The qubit-qubit dipolar interaction arises with the very presence of the nuclear qubits in an all–silicon quantum computer (ASQC). Since
such interaction depends on the qubit spatial separation noise is induced on entanglement through a damping contribution to the density
matrix. A closed condition of “robustness” against decoherence is found. The term “robustness” is define unambiguosly. The existence of
at least two exceptional coherent states is infered. The preparation of such states is within the range of present technological capabilities.
Thus, the harmful effects of decoherence coming from the dipolar interaction can be diminished considerably. An approximate condition
against decoherence, to leading order in 1/(qubit separation)[3], is derived. By expanding the time evolution operator in a series of Chebyshev
polynomials an approximated expression for the density matrix, whose precision is of order 10−4, is also found. From this expression, a
next-to-leading order approximation for the condition of robustness against decoherence is derived.
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La interacción dipolar qubit-qubit surge con la sola presencia de los qubits nucleares en una computadora cuántica de silicio (ASQC). Como
dicha interacción depende de la separación espacial de los qubits, se induce cierto ruido en entrelazamiento a través de una contribución
amortiguante a la matriz de densidad. Hallamos una condición exacta de “robustez” contra decoherencia. Eso nos permite defini claramente
el término “robustez”. De dicha condición, inferimos la existencia de al menos dos estados coherentes exepcionales. La preparación de tales
estados es posible usando las capacidades tecnológicas actuales. Ası́, los efectos dañinos de la decoherencia provenientes de la interacción
dipolar pueden ser disminuidos considerablemente. Por otra parte, derivamos una condición contra la decoherencia a primer orden en
1/(separación entre qubits)[3]. Mediante una expansión del operador de evolución temporal en una serie de polinomios de Chebyshev, se
halla también una expresión aproximada para la matrix de densidad cuya precisión es del orden 10−4. De tal expresión derivamos una
aproximación para la condición exacta de “robustez” contra decoherencia.

Descriptores:Computadora cuántica hecha completamente de silicio; decoherencia; robusta.

PACS: 03.67.Lx; 03.65.Yz; 03.67.-a

1. Introduction

To build an operative solid state quantum computer one needs
to preserve the fragile states of qubits and, at the same time,
allow for initialization, control and measurement. The envi-
ronment disturbs the qubits causing them to decohere. The
more intense the interaction with the enviroment is the less
the nuclear qubits remain coherent. The longer a qubit re-
mains coherent, the more operations a quantum computer is
able to carry out. So far one of the most successful experi-
mental applications of a multi-qubit, many-gate NMR quan-
tum computer, is that discussed in Ref. 1. The main advan-
tages of such computers would be the following:

(i) they remain isolated from control and measurement
circuitry by employing weak measurements on a large
(1018) arrays of uncoupled identical molecules;

(ii) they behave non-classically [2]. However, as it already
has been remarked in Ref. 3, their principal limitation
is that they have a very small initial nuclear polariza-
tion.

As a consequence, the method cannot exceed the 10-qubit
level without substantial modification [3,4]. There is still an-
other NMR quantum computer which was proposed by Kane

and others [5]. Through the use of single nuclear spins in a
low-temperature solid, the so-called Kane quantum computer
solves the scalability problem. The reason is that the quan-
tum computer of Ref. 5 is highly susceptible to measure-
ments with which the respective states have relatively short
decoherence times.

The all silicon solid-state NMR quantum computer pro-
posed in Ref. 3 is a good attempt to solve the difficultie
mentioned. In Ref. 3 electron-mediated cooling is intro-
duced. At the same time the weak ensemble measurements
proper to a successful NMR quantum computer are main-
tained. With this the authors of this type of work intend to
have long enough decoherence times. However, in the ap-
proach of Ref. 3 the way in which large decoherence times
can be obtained is not clear. Besides, the all silicon qubits are
very sensitive to thermal motion. The purpose of the present
paper is to study decoherence in an all silicon quantum com-
puter free of the difficultie mentioned above. In order to do
this an all silicon quantum computer different from the one
employed in Ref. 3 is proposed. The qubits of the present
device overcome the decoherence. Furthermore, the constant
magnetic fiel gradient in the active region is more reliable.
Another of its advantages is that the system of qubits remains
isolated from thermal motion. Finally, from the device pre-
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sented here it is possible to implement coherent states. For
the ASQC introduced here, there are several sources for de-
coherence, namely: magnetic fluctuation in the active re-
gion, fluctuation of paramagnetic impurities in the silicon,
thermal motion on the active region, and uncontrolled dipo-
lar couplings between nuclei. We consider that the last one
as the most important. For this reason a closed expression
for the density matrix elements corresponding to the uncon-
trolled dipolar interactions between qubits in the proposed
ASQC is derived. Through the use of such a expression an
exact general “robustness” condition against decoherence is
derived. We prove that this condition. is always satisfie by
at least two states. A definitio of the term “robustness”, in
terms of the size of interval of times where unitarity (coher-
ence) prevails, will be given. From the leading order con-
tribution in 1/r3

aa′ (raa′ is the distance between the active
qubits a and a′) to the density matrix, a condition against de-
coherence is found. In order to fin higher order corrections
to the density matrix, the time evolution operator in a series
of Chebyshev polynomials is decomposed. The series is trun-
cated up to the third term; for this reason the next to leading
order approximation for the density matrix has a precision of
order 10−4. This assures a high accuracy in the associated
condition against decoherence.

Our paper is organized as follows. In Sec. 2 a short
account of the main characteristics of the all silicon quan-
tum computer proposed here is given and the conditions
against decoherence, coming from the dipolar interactions,
are found. In Sec. 3 we comment our proposal, specially,
the improvements introduced. We conclude the paper with a
discussion of our results.

2. Decoherence in an ASQC

In Fig. 1 a typical chain of silicon spin-1/2 nuclei contained
in the active region is shown. The distance in the z−direction
between two consecutive 29Si nuclei in an atomic chain is
d ∼ 1.9 °A. The lateral sizes of the active region are 100 T/µm
and 0.2 T/µm respectively. On the other hand, Fig. 2 illus-
trates two parallel planes in the active region containing each
one, sets of quasi isolated silicon atomic chains. In Fig. 3 the
quantum computer proposed in this work for the creation of
coherent states is depicted. This device is completely made of
silicon, without electrical gates or impurities. The respective
qubits are spin-1/2 nuclei of silicon arranged in such a way
that they defin quasi isolated atomic chains. The solenoid
carrying a current I produces a large magnetic fiel gradient
on each of the nuclei in the chains. Each nucleus has about
105 ensemble copies in a plane orthogonal to its chain. In
Ref. 3 a detailed account of the advantages of using 29Si as a
material for a quantum computer is given.

The magnetic fiel gradient due to the solenoid is

δB/δρ =
96πnIb2

cL4
= 1.4T/µm

where ρ is the radial coordinate, L is its length, n the linear

density of spires, I the carried current, and b the radius. This
gradient acts over all of the thickness of the active region and
is superposed with a large homogeneous fiel

Bo =
µ0I0

2a
∼ 3T

pointing in the z−direction which is produced at the center
by a circular spire of current I0 and radius a. The gradient
leads to a qubit-qubit frecuency difference of

∆ω = dγδB/δρ = 2π × 2 kHz,

being γ the corresponding 29Si gyromagnetic ratio. The ac-
tive region is 100 µm by 0.2 µm in area, containingN = 105

chains persisting over the thickness. This active region is suf-
ficientl small and the magnetic fiel sufficientl homoge-
neous that all equivalent qubits in an atomic plane lie within
a band width of 0.6 kHz.

The secular component of the dipolar Hamiltonian cou-
pling the ath to the a′th spin within one chain is written as [6]

Ĥaa′ =
µo

4π
γ2~2 1− 3 cos θaa′

r3
aa′

σ(a)
z σ(a′)

z

≡− ~δωaa′σ
(a)
z σ(a′)

z , (1)

where raa′ is the relative distance between the spins, θaa′ is
the angle with the applied field For a nearest neighbor qubits
cos2 θa,a+1 = 2/3 which leads to

δω ≡ δωa,a+1 = 2π × 0.4 kHz.

According to Eq. (1), the total hamiltonian for a given chain
can be decomposed as a sum of the consecutive neighbors,
that is

Hdip =− i
∑

a6=a′
Ĥaa′ = −i

{N−1∑
a=1

Ĥa,a+1 +
N−2∑
a=1

Ĥa,a+2

+
N−3∑
a=1

Ĥa,a+3 + · · ·+
2∑

a=1

Ĥa,a+N−2

}

=H(1) + H(2) + H(3) + · · ·+ H(N−1). (2)

In order to study the density matrix elements we will con-
sider only the leading order contribution in 1/r3

aa′ to Eq. (2),
coming from H(1). Let us note that for the device in Fig. 1,
the distance between pair of each consecutive neighbors is
the same (e.g. ra,a+1 = d for each a = 0, 1, 2, · · ·N − 1).
Consequently,

H(1) = −i~δω
N−1∑
a=1

σ(a)
z σ(a+1)

z . (3)
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FIGURE 1. View from the top of a typical silicon chain of nuclear
spins inside the active region. The values of the background mag-
netic fiel and the magnetic fiel gradient are: B0 = 3T/µm and
δBz/δz = 1.4T/µm respectively.

FIGURE 2. Two different planes of the silicon active region con-
taining quasi isolated chains of nuclear spins. The values of the
background magnetic fiel B0 and the magnetic fiel gradient
δBz/δz are the same as in Fig. 1.

The respective density matrix associated with the dipolar
qubit-qubit coupling to leading order in 1/r3

a,a′ , is derived
from the Liouville-von Neumann equation in the interaction
picture: i~dR̃/dt = [H̃(1)(t), R̃] whose respective solution
is

R̃ = e−iH(1)(R(0))t/~R(0)eiH(1)(R(0))t/~.

By using the notation |n〉 = |n0, n1, n2, · · · , nN 〉 with
σ

(a)
z |n〉 = (−1)na |n〉 being na = 0, 1, the following is ob-

tained:

ρ(1)
mn(t)

= e−{δωt
∑N−1

a=0 [(−1)ma+ma+1−(−1)na+na+1 ]}ρmn(0), (4)

where ρ =trR̃ and δω ≡ δωa,a+1 = 2π × 0.4 kHz.

FIGURE 3. The ASQC proposed here. The background mag-
netic field acting on the active region at the center of the circu-
lar spire of current, is B0 = µ0I0/2a = 3 T, where i is the
current in the spire and a is its radius. The magnetic fiel gra-
dient acting on the active region is produced by the radial mag-
netic fiel of a solenoid at z = L/2. The value of this gradient is
δB/δρ = 96πnIb2/cL = 1.4 T/µm , where L is the length of
the solenoid, b its radius, n the linear density of spires, and I the
carried current. The active region remains isolated from thermal
field which might introduce harmful fluctuation in the operating
magnetic fields

The interesting feature which emerges from the leading
order result of Eq. (4) is that the qubit-qubit dipolar coupling
means that at finit times, the states m and n are decoherent
if

N−1∑
a=0

[
(−1)ma+ma+1 − (−1)na+na+1

]
> 0.

By decoherence time is understood the value of t for which
the off diagonal elements of the density matrix vanish [7].
With the above condition the decoherence times are very
small due that ρ

(1)
mn(t) ∼ e−1000t. Another notable, leading

order result, which can be extracted from Eq. (4) is that there
exists a condition of coherence for the qubit states, namely

N−1∑
a=0

[
(−1)ma+ma+1 − (−1)na+na+1

] ≤ 0. (5)

Indeed, the above condition together with Eq. (4) implies that
ρ
(1)
mn(t)/ρmn(0) > 0 for 0 < t < ∞ which means that to
leading order the ASQC might have very large decoherence
times even in the presence of dipolar noise.

The closed expression for the density matrix associated
with the hamiltonian Hdip of Eq. (2) can be written as

ρmn(t) = e−Ωtρmn(0), (6)
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where

Ω =

{
δωa,a+1

N−1∑
a=0

[
(−1)ma+ma+1 − (−1)na+na+1

]

+ δωa,a+2

N−2∑
a=0

[
(−1)ma+ma+2 − (−1)na+na+2

]

+ · · ·+ δωa,a+N

[
(−1)m0+mN − (−1)n0+nN

]
}

, (7)

From Eqs. (6) and (7), it is easily seen that it is not a simple
task to evaluate the density matrix associated with the exact
qubit-qubit dipolar interaction. However, from these equa-
tions the following general condition of “robustness” against
decoherence is extracted:

Ω ≤ 0. (8)

With Eqs. (6) and (8) we obtain ρmn(t)/ρmn(0) > 0 for
0 < t < ∞ which means very large decoherence times (i.e.
large roots of ρmn(t) [7]). The term “robustness” employed
above, means resistence to loose coherence or unitarity. That
is, the length of the longest possible quantum computation
is roughly given by the ratio of τQ, the time for which the
system remains quantum mechanically coherent, to τop, the
time it takes to perform elementary unitary operation [8]. The
quantity τQ, is called decoherence time and it is the time for
which the off diagonal elements of the density matrix become
zero: ρmn(t = τQ) = 0 [7]. The condition (8) together
with (6) implies that τQ/τop → ∞, providing ρmn(0) 6= 0.
Consequently, for states |m〉, |n〉 satisfying condition (8), the
system remains coherent all the time, allowing for the exe-
cution of a huge number of elementary unitary operations.
This is the reason why we call (8) the condition of “robust-
ness” against decoherence. On the other hand, by following
Ref. 9, it is also possible to argue for Eq. (8) as a condition of
“robustness” against decoherence, in an alternative and com-
pletely equivalent way. In Ref. 9, the coherence parameter is
define as

C(t) = e−{δωt
∑N−1

a=0 [(−1)ma+ma+1−(−1)na+na+1 ]}

being the decoherence time, the firs root of C(t). With
Eq. (8) this is τQ →∞.

Let us observe that there exist at least a couple of priv-
ileged, coherent states, which satisfy the most general con-
dition of “robustness” against decoherence of (8), Indeed,
consider for instance the states | 1〉 =| 1, 1, 1, · · · , 1〉
and | 0〉 =| 0, 0, 0, · · · , 0〉 which make Ω = 0. It is
worth noting here that these states are within present tech-
nological capabilities. In fact, the preparation of these
ferromagnetic-like states can be engineered through gradient-
diffusion methods [10-12] applied to the experimental device
of Fig. 3 as follows. A weak initial magnetic fiel gradient
δB/δρ ' 1.4 T/µm parallel to the background static quan-
tizing fiel B0 ' 3T causes all of the spins in the active

region of the silicon sample to precess around positive z-axis
with a z-dependent Zeeman rate, thereby acquiring a phase
in the silicon nuclei that varies linearly with z [10]. Due
to the fact that the size of the active region is very small
(z ¿ 100 µm), all of the phases are almost negligible lead-
ing to a common phase factor whose value is approximately
one. In this way, the state |0〉 where all of the spins are
approximately pointing out in the direction +z is obtained.
By suddenly inverting the direction of the weak magnetic
field to the opposite directioni, the process is inverted and
the precession of the silicon nuclei will be instead around
the negative z-axis obtaining the transition to the fina state
|1〉. In this way, it is concluded that it is possible to neutral-
ize the destructive effects of dipolar decoherence experimen-
tally. Refering to the small errors in the Zeeman phases, it
is worth remarking that if the initial magnetic fiel gradient
is weak δB/δρ ' 1.4 T/µm, then to a good approximation, a
restricted set of errors dominates the information loss. There-
fore, an active quantum error correction of the type developed
in Ref. 13 can be successfully implemented. This is a task
for subsequent research.

In order to gain a deeper insight into decoherence in the
presence of the qubit-qubit dipolar interaction, we will make
realistic estimations for higher order corrections to ρmn(t)
which are based on an observation made in Ref. 14 refer-
ing to an expansion of the time evolution operator, e−iHt/~,
in terms of a series of Chebyshev polynomials. The Cheby-
shev polynomials Tk(x) = cos(karc cos x) are define for
−1 < x < 1. Consequently, our relevant hamiltonian Hdip

of Eq. (2), should be rescaled by the factor Eo (the range of
the values of the system’s energy) and shifted by Ec (mean
value of the system’s energy):

Ec =
1
2
(Emax + Emin),

Eo = Emax − Emin,

Emin = min〈Hdip〉 = min
〈Φ|Φ〉=1

〈Φ | Hdip | Φ〉,

Emax = max〈Hdip〉 = max
〈Φ|Φ〉=1

〈Φ | Hdip | Φ〉. (9)

With Eq. (9) it is possible then to defin the rescaled op-
erator G = 2(Hdip − Ec)/Eo which is bounded by −1
and 1: −1 ≤ 〈Φ | G | Φ〉 ≤ 1. Here, we take Ec = 0
and Eo = 2 max(| Emin |, | Emax |), which implies
−Eo/2 ≤ 〈Hdip〉 ≤ Eo/2 and

Eo/2 ≤ Emax =|| Hdip ||≤
∑

a6=a′
| Haa′ |

=
∑

a6=a′
~ | δωaa′ | || σ(a)

z || || σ(a′)
z ||

=
∑

a6=a′

1
4
~ | δωaa′ | (10)
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From the above equation it follows that

Eo ≤ E1 =
∑

a6=a′

1
2
~ | δωaa′ |, (11)

so that the operator G can be define as G = 2H/E1, which
satisfie the inequality −1 ≤ 〈G〉 ≤ 1.

The Chebyshev’s expansion of the evolution operator is
now

exp(−iHdipt/~) =
∞∑

k=0

ckTk(G). (12)

The expansion coefficient ck can be calculated using the or-
thogonal property of the polynomials Tk(x),

ck =
ak

π

1∫

−1

Tk(x)exp(−ixτ)√
1− x2

dx = ak(−i)kJk(τ), (13)

where τ = E1t/(2~), Jk(τ) is the Bessel function of k−th
order, a0 = 2 and ak = 1 for k ≥ 1. The successive terms in
the Chebyshev’s series can be determined through the recur-
sion formula

Tk+1(G) = 2GTk(G) + Tk−1(G), (14)

with the conditions T0(G) = 1 and T1(G) = G.
As has already been pointed out in Ref. 14, the high

precision of this approach comes from the fact that, for
k À τ , the value of the Bessel function decreases super-
exponentially Jk(τ) ∼ (τ/k)k, so that termination of the
series at k = K leads to an error which decreases super-
exponentially with K. In our case, the series is cut off at
K = 2 so that the approximated expression for the respective
density matrix should be

ρnm(t) '
[
2J0(τ)− J2(τ)

(
2G2

n + 1
)− iJ1(τ)Gn

]

[
2J0(τ)− J2(τ)

(
2G2

m + 1
)

+ iJ1(τ)Gm

]
ρnm(0), (15)

where Gx = (2~/E1)
∑

a6=a′
∑

a′ δωaa′(−1)xa+xa′ with
x = m,n. From the above equation there arises a next to
leading order condition of coherence, namely Gm − Gn = 0
which is read as

∑

a6=a′

N∑

a′=0

δωaa′
[
(−1)na+na′ − (−1)ma+ma′

]
= 0. (16)

Eqs. (15) and (16) imply that ρnm(t)/ρnm(0) > 0 for each
t ≥ 0. The latter means that the off diagonal elements of the
density matrix never disappear, consequently at next to lead-
ing order, the quantum system remains coherent indefinitel .

3. Discussion

The ASQC model introduced here improves previous models
in two basic aspects:

(i) a more reliable magnetic fiel gradient is considered,
and

(ii) a better isolation of thermal currents is used.

As Eq. (1) shows, the dipolar qubit-qubit interaction depends
on the qubit spatial separation; due to this, its influenc in
the computing capabilities of the ASQC is definit ve. For in-
stance, for a zero qubit-qubit spatial separation (raa′ → 0) in
Eq. (1), the frequencies of the qubits grow dramatically, i.e.
δωaa′ → ∞; consequently, from (6) and (7), ρmn(t) = 0.
That is, the divergences make the decoherence more ex-
treme; therefore, quantum computation does not make any
sense. On the other hand, the larger the qubit spatial separa-
tion (raa′ → ∞), the smaller the values of the frequencies
ωaa′ → 0 and then the lower the intensity of the dipolar in-
teraction (Ĥaa′ → 0); thus, the more propicious the prepa-
ration of coherence. The latter follows from Eqs. (1), (6),
(7), and (8). The leading order approximation in Eq. (4)
gives a qualitative understanding of decoherence. The rea-
son for this is that the contribution to the total hamiltonian,
Hdip, of the nearest neighbor hamiltonian, H(1), is one or-
der of magnitude greater than the contribution to Hdip com-
ing from the next to leading order Hamiltonian, H(2). The
fact that || H(2) ||∼ 1

10 || H(1) || follows from Eq. (1)
with ra,a+2 ∼ 2ra,a+1 and cosa,a+2 ∼ 2/3. The theoreti-
cal value of the leading order condition of coherence, given
in Eq. (5), lies in the fact that this is a qualitative criterion
which suggests the way the states must be prepared for di-
minishing the undesired effects. An important result of our
work is the closed expressions for the density matrix elements
due to the uncontrolled qubit-qubit dipolar interaction in the
ASQC of Fig. 3 given in Eq. (6). In fact,we can observe
from (6) and (7) that if the states | m〉 and | n〉 are such that
Ω > 0, a finit qubit spatial separation will introduce noise
through a —damping— exponential contribution. This leads
to the strong decoherence regime (τQ ∼ 0). On the other
hand, when Ω ≤ 0, the states are coherent. In this regime
this condition define a robust protocol for the ASQC be-
cause τQ/τop →∞. By protocol we mean transitions among
the qubit states | n〉 and | m〉 of Eqs. (6)-(7). A particular
and suggestive physical realization where the general condi-
tion of “robustness” against decoherence of Eq. (8) is satis-
fied is the completely polarized states |1〉 =| 1, 1, 1, · · · , 1〉
and |0〉 =| 0, 0, 0, · · · , 0〉. As was explained above, with the
ASCQ proposed in this work recurrent transitions between
the two highly coherent states can be experimentally imple-
mented. It is worth observing that for weak magnetic field
and a very small active region in Fig. 3, the errors in the
qubit Zeeman phases are negligible. This would make it pos-
sible to implement quantum error correction codes. In fact,
a novel and interesting new direction of research is search-
ing for quantum error correction codes in the presence of the
dipolar decoherence studied here. This will be investigated
in a future work.
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We conclude this paper by stating that it is possible to
neutralize the harmful effects of decoherence from a dipo-
lar interaction among silicon nuclei. This can be achieved
if the system satisfie condition (8), since in such a case
τQ/τop À 1. The above condition implies a higher capac-
ity of computing. Clearly, | 0〉 and | 1〉 are not the unique
coherent states that satisfy the condition given in Eq. (8),
altough they are very suggestive. The states that satisfy the
coherence condition of Eq. (16), still process a high number

of unitary operations per unit time. The power of the method
(i.e. the fast convergence) is due to the expansion of the evo-
lution operator in a series of Chebyshev polynomials leading
to the coherence condition of Eq. (16). On truncating the se-
ries (11) at K=2 order, the precision in the density matrix,
Eq. (14), would be of the order 10−4. The condition of co-
herence given by Eq. (16) is a natural generalization of the
weaker, leading order condition, of Eq. (5) although this last
result is technologically easier to implement.

∗. e-mail: mavilaa@uaemex.mx
i. This can be accomplished by applying pulses of approximated

frequencies δω = 2π× kHz during an interval of time equiva-
lent to two times the Rabi period [8].
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