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Spectral line broadening by electron collisions in plasmas
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In this work we compute the broadening of the spectral line shape in a plasma. Precisely we focus our study on the broadening of the spectral
line shape by the electrons collisions with the ions of the plasma. During the collision, the electron moves in the effective potential created
by all the plasma components (ions and free electrons). Whereas the interaction between the colliding electron and the ion (assumed at the
rest) is those of Deutsch. The latter takes into account the quantum effect at short distance. The corresponding broadening is computed for
the case of the spectral line for Lyman-alpha of Li+2 (Hydrogen-like of Lithium) and compared with the case where the interaction is that of
Coulomb.
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1. Introduction

The analysis of the spectral line shapes allows us to discover
the effects of particles surrounding the emitter (atom or ion)
in a plasma. These effects are the result of the interactions
between the charged particles of the plasma with the emit-
ter. Qualifying the surrounding particles as the perturbers,
the Stark broadening of the spectral line can be derived by
the so-called dipolar approximation using the semi-classical
treatment. In fact, the Stark effect occurs when an ion or an
atom of the plasma, is perturbed by its interaction with the
local electric field prevaling at all points of the plasma.

The theoretical studies of the broadening of the spectral
line allow us to compare the predicted theoretical results with
the experimental results, like the temperature, the density and
the different species composing the plasma. In the present
work, we are concerned by the broadening of the spectral
line by the electrons by using the following approximations:
a) the classic path [1], which requires that the perturber (elec-
tron) movement must be described by a classical mechanics,
the perturber path was a straight line both for a neutral and
charged emitter; however, it has been observed that the elec-
tron perturber has a hyperbola path when it collides with an
ion in the plasma in the binary interaction model. b) the im-
pact approximation [2] that means that the interactions are
separated in time: in other words, the atom interacts with
the perturber only at a given time: the mean duration, of an
interaction must be much smaller than the mean time inter-
val between two collisions, c) the semi-classical approxima-
tion [3–5] that consists to treat the emitter as a quantum ob-
ject whereas the surrounding is a classic perturber.

The authors [6,7], taking in consideration the paper of [4],
have developed the basic quantum formalism for the spectral
line shape, and showed that the width and the shift of the
spectral lines emitted fromα level to aβ level, can be ex-

pressed simply by computing the scattering matrix elements
Sαα andSββ between the emitter atom and the electron. For
the isolated lines, Baranger has shown that the width is ex-
pressed as a sum of collision cross sections. So the calcu-
lation of the collision operator for the electrons, for these
lines, has seen a great step while [7, 8], have used with suc-
cess the theoretical results for [6] in the framework of the
semi-classical approximation. However, in the above refer-
ences, no discussion about the effect of energy interaction
between the colliding electron and emitter in the formulation
of the broadening by electron of the line shape, was evoked.
In our work, we investigate the collision (electron with ion)
by considering the interaction between the colliding electron
and the emitter (a target), to be that of Deutsch potential en-
ergy [9]. Furthermore, the colliding electron moves in the
effective potential created at any locality by all the plasma.
We have computed, by using the mean field approximation,
the effective potential of the plasma in Sec. 2.

This paper is organized in six sections: in the following
section, we give the theoretical derivation of the effective po-
tential of the plasma. We find that it obeys an integral equa-
tion. In Sec. 3 we derive the collision operator amplitude for
any central potential. We show that the collision operator can
be expressed simply by the scattering cross section. Section 4
is devoted to computing the cross section of scattering by us-
ing the integral equation for the effective potential stated in
Sec. 2. Section 5 addresses to give results and contains a
comparison between Lyman-α lines obtained from each po-
tential: Coulomb and the effective one and some discussions.
The comparison was made for astrophysical plasmas like the
one we find in hot stars, in plasma fusion and in supernova ex-
plosions where the extreme conditions of high temperatures
and densities are present [10]. We close this paper by a con-
clusion in Sec. 6.
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2. The effective plasma potential

Consider a plasma at the thermodynamical equilibrium at a
temperature T and electron densityNe. The velocities of the
electrons are considered to obey the distribution function

f(−→r ,−→v ) = Ne

(
m

2πkBT

)3/2

· exp
(
−m−→v 2

2kBT
− Φ(r)

kBT

)
(1)

wherekB is the Boltzmann constant.
The effective potential energy of one electron located at

the distancer is equal to a sum of three contributions

Φ(r) = UDeut(r) + Φ(r)e−e + Φ(r)e−f (2)

where: - UDeut(r) is interaction energy of the pair (ion
emitter-electron).

- Φ(r)e−e is interaction energy of the pair (electron-
electron).

- Φ(r)e−f is interaction energy of the electron with a
continuous background of positive charge representing
the ions.

The interaction electron-electron is assumed to be the
Coulomb potential, whereas the interaction ion emitter with
an electron is that of the Deutsch interaction that takes into
account the quantum effect at short distances:

UDeut(r) = −Ze2

r

(
1− e−r/λT

)
(3)

whereλT = ~/
√

(2πmkBT ) is the thermal wavelength.
Then the effective potential energy of the electron located at
r from the frame origin is

Φ(r) = UDeut(r) +
∫

f(−→r ,−→v ) e2

∣∣∣−→r −−→r′
∣∣∣

d−→p 3d
−→
r′ 3

−
∫

Nee
2

∣∣∣−→r −−→r′
∣∣∣

d
−→
r′ (4)

When we integrate over the velocity in the above equa-
tion we find the integral equation that governs the effective
potential energy as

Φ(r) = −Ze2

r
(1− e−r/λT )

+ Nee
2

∫
(e−βΦ(r′) − 1)∣∣∣−→r −−→r′

∣∣∣
d−→r ′ (5)

whereβ = (kBT )−1. We easily read from the last integral
equation that, if we putλT = 0 (neglecting the quantum ef-
fects at short distance) and putβ = 0 (neglecting the collec-
tive interaction and keeping the binary interaction during the
collision), we get the purely Coulomb potential (−Ze2/r). In
section four, we shall see how to solve this integral equation
to get the effective potentialΦ(r).

3. Collision operator of the electronsWe

In the case of the impact approximation, and we do not take
into account the fine structure of the radiator [11], the colli-
sion operator is given by

We = −Nee
2

(
~
m

)2 ∫ ∫
2πρvf(v)d−→v dρ

×
{ +∞∫

−∞
dt1 ~Rb. ~E(t1)

t1∫

−∞
dt2 ~Rb. ~E(t2)

+

+∞∫

−∞
dt1 ~Ra. ~E(t1)

t1∫

−∞
dt2 ~Ra. ~E(t2)

−
+∞∫

−∞
dt1 ~Ra. ~E(t1)

+∞∫

−∞
dt1 ~Rb. ~E(t1) + · · ·

}
(6)

wherev is the colliding electron velocity,Ne the electron
density,ρ is the impact parameter and~Ra,b is the position
operator of the bounded electron for the lower stateb and
the upper statea corresponding to the line under considera-
tion in our study. We note here that~E(t) is the electric field
due to the scattered electron at the emitter ion. It is natural
that this electric field depends on the trajectory of the scat-
tered electron that itself depends on the potential in which
this electron moves. We have to choose four potentials as in-
dicated above in the introduction. By using Newton’s equa-
tion describing the electron movement around the ion emitter
(located at the origin of the spatial frame of coordinates), and
submitted only to the electric micro-field due to the local po-
tential, we have

m~̈r(t) = −e ~E(t) (7)

If we substitute−e ~E(t) by m~̈r(t) in the formula (6), we can
integrate it by part ont1 andt2 and we immediately find

We = −Ne(
~
e2

)2
∫ ∫

2πρvf(v)d−→v dρ

{
1
2

[−→
Ra

(
d−→r
dt

(+∞)− d−→r
dt

(−∞)
)]2

+
1
2

[−→
R b

(
d−→r
dt

(+∞)− d−→r
dt

(−∞)
)]2

−−→R b

[
d−→r
dt

(+∞)− d−→r
dt

(−∞)
]

−→
Ra

[
d−→r
dt

(+∞)− d−→r
dt

(−∞)
]

+ · · ·
}

(8)
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The in-velocity and the out-velocity (before and after the
electron-ion collision) are related to the scattering angleθ and
the impact parameterρ by:

d−→r
dt

(+∞) = −→v (+∞) = −→v (−∞) +
(

υ

ρ

)
−→ρ sin θ (9)

where

v (−∞) = v (+∞) = υ (10)

The formula (9-10) are due to the fact that we deal in our in-
vestigation with conservative potentials. Then the collision
operatorWe becomes as

We = ((
−→
Ra)2 + (

−→
R b)2 − 2

−→
Ra
−→
R b)φ, (11)

where

φ = −4
3
πNe

(
~
e2

)2 ∫ ∫
v3g(v)dvρdρ sin2

(
θ

2

)
, (12)

is the amplitude of the collision operator andg(v) is Maxwell
equilibrium velocities distribution given by

g(v) = 4π

(
m

2πkBT

) 3
2

v2 exp
(−mv2

2kBT

)
, (13)

then the amplitude of the collision operator becomes

φ =
−16
3

π2Ne

(
~
e2

)2 ( m

2πkT

) 3
2

×
∫

dvv5 exp
(−mv2

2kT

) ∫
sin2

(
θ

2

)
ρdρ (14)

Rather than to compute the trajectory of the scattered
electron (ρ, θ), we shall use the scattering amplitude and the
associated cross section for each potential. To do this, we
replaceθ appearing in the last integral by its expression as
function of the impact parameterρ. The expression can be
found easily by using the amplitude diffusion and the scatter-
ing cross section formula. In one hand the differential cross
section is defined as:

dσ = 2πρ
dρ

dθ
dθ. (15)

In the other hand, it is related to the scattering amplitude
F (θ), in the Born approximation, by

dσ = |F (θ)|2 dω (16)

wheredω = 2π sin θdθ is the element of solid angle, and

F (q) =
−m

2π~2

∫
Φ(r) exp(−i−→q .−→r )d−→r (17)

where (q = 2k sin(θ/2)).

4. Calculation of the the effective potential

This concerns the collective effect, which consists of taking
into account the interaction of a free electron of the plasma
with all other particles (ions and electrons). The effective po-
tential energy at the electron is given by [12]:

Φ(r) = UDeut(r) + Nee
2

∫
exp(−βΦ(r′))− 1

|r− r′| d~r′ (18)

whereUDeut(r) is the Deutsch potential described above. In
the case of weakly coupled plasma, or in the case of high
temperature, it is a good approximation if we replaceexp(x)
by (1 + x) asx << 1. Then the integral equation becomes

Φ(r) = UDeut(r)−Neβe2

∫
Φ(r′)
|r− r′|dr

′ (19)

Now we need the Fourier transform of the effective poten-
tial energyΦ(r) since it is related to the scattering amplitude
F (θ) via Eq. (17). It suffices then to take the Fourier trans-
form of Eq. (19) in both sides.

F (q) = FDeut(q)− 4π(Neβe2/q2)F (q), (20)

or

F (q) =
q2FDeut(q)
(q2 + λ′′2)

, (21)

where

FDeut(q) =
−m

2π~2

∫
UDeut(r) exp(−i−→q .−→r )d−→r

=
2mα

~2

(
1
q2

+
1

λ′2 + q2

)
(22)

and

λ′2 = 2πmkbT/h2 ∼ 1
λ2

T

;

λ′′2 = 4πNee
2/(kBT ) ∼ 1

λ2
D

(23)

It is worth to mention here ifβ=0 andλT =0 in Eq. (20),
we recover the scattering amplitude of the Coulomb case
(F (q) ' 1/q2). Using formulae (15-16)

ρdρ = 2 sin
(

θ

2

)
· cos

(
θ

2

)
|F (θ)|2 dθ (24)

or

ρdρ =
q

k2

[
q2FDeut(q)
(q2 + λ′′2)

]2

dq (25)

we find the amplitude of the collision operator (14) as the
following expression

φ =
−16
3

π2Ne

(
~
e2

)2 ( m

2πkT

) 3
2

+∞∫

0

dvv5

× exp
(−mv2

2kT

) qmax∫

qmin

(
q3

4k4

)[
q2FDeut(q)
(q2 + λ′′2)

]2

dq. (26)
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By replacingk = mv/~ and FDeut(q) by its expres-
sion (22) in the last formula, we find

φ =
−16
3

π2Ne

(
Z~
m

)2 ( m

2πkT

) 3
2

×
+∞∫

0

vdv exp
(−mv2

2kT

)
(G(qmax)−G(qmin)), (27)

where

G(x) =
∫ [

1
x2 + 1

λ′2+x2

λ′′2 + x2

]2

x7dx. (28)

The last integral is easy to perform and it is equal to

G(x) = x2 +
1
4
x4

− a6 − 2a8 − 3a4b2 − 2a4b4 + 4a6b2

2b6 − 2a6 − 6a2b4 + 6a4b2
ln

(
a2 + x2

)

− 2b8 − b6 + 3a2b4 − 4a2b6 + 2a4b4

2b6 − 2a6 − 6a2b4 + 6a4b2
ln

(
b2 + x2

)

+
a2b6 + a6b2 + a6x2 + b6x2

D
, (29)

where we have consideredλ′ = a, λ′′ = b and

D = 2a2b6 − 4a4b4 + 2a6b2 + 2a4x4 + 2a6x2 + 2b4x4

+ 2b6x2 − 4a2b2x4 − 2a2b4x2 − 2a4b2x2. (30)

So we need the limitsqmin andqmax in the Eq. (27). From
Eq. (25) we can extractqmin andqmax from ρmin andρmax

in the following way

λ2
D

2
= ρ2

max/2 =

2k∫

qmax

q

k2

[
q2FDeut(q)
(q2 + λ′′2)

]2

dq

= Λ(2k)− Λ(qmax) (31)

and

λ2
T

2
= ρ2

min/2 =

2k∫

qmin

q

k2

[
q2FDeut(q)
(q2 + λ′′2)

]2

dq

= Λ(2k)− Λ(qmin) (32)

whereΛ(x) is given by (λ′ = a, λ′′ = b)

Λ(x) =
(

2mα

k~2

)2
[

1
2
x2

− a6 + a2b2 + a2b4 − 2a4b2

b6 − a6 − 3a2b4 + 3a4b2
ln

(
a2 + x2

)

− 2a2b4 − a2b2 − b6 − a4b2

b6 − a6 − 3a2b4 + 3a4b2
ln

(
b2 + x2

)

+
−a2b4 − a4b2 − a4x2 − b4x2

D

]
(33)

When we insert the expression ofΛ(x) in formula (31-32),
we get numericallyqmin,max as function of the velocityv.
When we replace them in the expression ofG(qmin) and
G(qmax) given by (30), we integrate overv in formula (27) to
have the amplitude of the collision operator. The result of this
task, is illustrated in the Figs. 1 and 2 for various densities
and temperatures.

5. Results and discussion

It is easy to read from the Eqs. (31-32) thatqmin andqmax

depend on the velocityv because the presence ofk = mv/~
in those equations. This means that the integral overv in for-
mula (27) must take this fact into account. Then, for a given
ρmax, the Eq. (31) must be solved numerically for all velocity
values. We get thereforeqmax as a function ofv. The same
thing must be done with the Eq. (32) to getqmin as a function

FIGURE 1. Amplitude of collision operator versus the density.

FIGURE 2. Amplitude of the collision operator versus the temper-
ature.
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FIGURE 3. Spectral line shape Lyman alpha for different collision
operators.

of the velocityv. The next step is to insert the obtained re-
sult of qmax andqmin in the Eqs. (29) and (27) and integrate
overv to have the final result of the amplitude of the collision
operatorφ in (27) for the effective interaction potential.

Figure 1 shows the behaviour of the electronic colli-
sion operator versus the electron density in the case of the
Coulomb and the effective potentials of the ion Li2+ (hy-
drogenlike) at a fixed temperatureT = 106K. We note
that the variation of the electronic collision operator is pro-
portional to the electron density for all potentials. This is
because the number of collisions per second is proportional
to the electron density. We note that the electronic colli-
sion operator relative to the effective potential is smaller than
relative to Coulomb. Figure 2 shows the variation of the
electronic collision operator for the different potentials ver-
sus the temperature at a fixed densityNe = 1018 cm−3.
We note that the collision operator decreases slowly for the

Coulomb potential according the temperature, whereas, it de-
creases exponentially for the case of the effective potential.
In Figure 3, we present the spectral line for Lyman-α line,
for Li+2 as hydrogen-like emitter for electron density equal
to (5.5)1019 cm−3 and a temperature equal to106K. To do
this, we have plotted two lines, each of them corresponds to
Coulomb and the effective potential. We mention here, that
only electron broadening are taken into account to plot the
lines (Ionic Stark, Doppler and natural broadening are dis-
carded). Each line corresponds then, to what force guides
the electron during its collision with the emitter ion Li+2.
Then we can say that the line gives also, in addition to the
diagnosis of density and temperature, an idea about the kind
of the interaction between the unbounded electrons and the
plasma. This figure (Fig. 3) illustrates the potential effect
on the spectral line shape of Lyman-α without fine structure
of hydrogen-like Li+2 at the temperatureT = 106K and the
densityNe = (5.5)1019 cm−3. We observe that when we
use the effective potential, the width of the line decreases by
67.2 percent, and the intensity increases about 200 percent
compared to the Coulomb case.

6. Conclusion

Assuming the interaction of the pair ion-electron in plasma
to be generated by the Deutsch potential, that takes into ac-
count the quantum effects at short distance, and the effective
interaction between the electron and all the plasma, we have
presented in this paper a new expression of the collision op-
erator in the framework of the impact approximation. The
collision operator obtained is valid when the fine structure
effect is neglected. We have applied it to compute and plot
the Lyman-α lines for Li+2. The result shows a difference
between the two lines corresponding to the use of Coulomb
and the effective potentials.
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2. S. Sahal-Bŕechot, Milan S. Dimitrijevíc and N. Ben Nessib,
Atoms(2014) 225-252.

3. A.C. Kolb and H.R. Griem,Phys. Rev.111(1958) 514.

4. P.W. Anderson,Phys. Rev.76 (1949) 647.

5. M. Baranger,Phys. Rev.111(1958) 494.

6. M. Baranger,Phys. Rev.112(1958) 855.

7. H.R. Griem, M. Baranger, A.C. Kolb and G. Oertel,Phys. Rev.
125(1962) 177.
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