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Spectral line broadening by electron collisions in plasmas
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In this work we compute the broadening of the spectral line shape in a plasma. Precisely we focus our study on the broadening of the spectra
line shape by the electrons collisions with the ions of the plasma. During the collision, the electron moves in the effective potential created
by all the plasma components (ions and free electrons). Whereas the interaction between the colliding electron and the ion (assumed at th
rest) is those of Deutsch. The latter takes into account the quantum effect at short distance. The corresponding broadening is computed fo
the case of the spectral line for Lyman-alpha of . {Hydrogen-like of Lithium) and compared with the case where the interaction is that of
Coulomb.
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1. Introduction pressed simply by computing the scattering matrix elements
Saa andSgg between the emitter atom and the electron. For
The analysis of the spectral line shapes allows us to discovehe isolated lines, Baranger has shown that the width is ex-
the effects of particles surrounding the emitter (atom or ionlyressed as a sum of collision cross sections. So the calcu-
in a plasma. These effects are the result of the interactiongtion of the collision operator for the electrons, for these
between the charged particles of the plasma with the emitines, has seen a great step while [7, 8], have used with suc-
ter. Qualifying the surrounding particles as the perturbersgess the theoretical results for [6] in the framework of the
the Stark broadening of the spectral line can be derived bkemi-classical approximation. However, in the above refer-
the so-called dipolar approximation using the semi-classicances, no discussion about the effect of energy interaction
treatment. In fact, the Stark effect occurs when an ion or alpetween the colliding electron and emitter in the formulation
atom of the plasma, is perturbed by its interaction with theof the broadening by electron of the line shape, was evoked.
local electric field prevaling at all points of the plasma. In our work, we investigate the collision (electron with ion)
The theoretical studies of the broadening of the spectrghy considering the interaction between the colliding electron
line allow us to compare the predicted theoretical results witiynd the emitter (a target), to be that of Deutsch potential en-
the experimental results, like the temperature, the density ané#gy [9]. Furthermore, the colliding electron moves in the
the different species composing the plasma. In the preseifective potential created at any locality by all the plasma.
work, we are concerned by the broadening of the spectraje have computed, by using the mean field approximation,
line by the electrons by using the following approximations:the effective potential of the plasma in Sec. 2.
a) the classic path [1], which requires that the perturber (elec-
tron) movement must be described by a classical mechanics, This paper is organized in six sections: in the following
the perturber path was a straight line both for a neutral andection, we give the theoretical derivation of the effective po-
charged emitter; however, it has been observed that the eletential of the plasma. We find that it obeys an integral equa-
tron perturber has a hyperbola path when it collides with artion. In Sec. 3 we derive the collision operator amplitude for
ion in the plasma in the binary interaction model. b) the im-any central potential. We show that the collision operator can
pact approximation [2] that means that the interactions ar&e expressed simply by the scattering cross section. Section 4
separated in time: in other words, the atom interacts withs devoted to computing the cross section of scattering by us-
the perturber only at a given time: the mean duration, of anng the integral equation for the effective potential stated in
interaction must be much smaller than the mean time interSec. 2. Section 5 addresses to give results and contains a
val between two collisions, c) the semi-classical approximacomparison between Lymamdines obtained from each po-
tion [3-5] that consists to treat the emitter as a quantum obtential: Coulomb and the effective one and some discussions.
ject whereas the surrounding is a classic perturber. The comparison was made for astrophysical plasmas like the
The authors [6,7], taking in consideration the paper of [4],one we find in hot stars, in plasma fusion and in supernova ex-
have developed the basic quantum formalism for the spectrallosions where the extreme conditions of high temperatures
line shape, and showed that the width and the shift of thend densities are present [10]. We close this paper by a con-
spectral lines emitted from level to af level, can be ex- clusion in Sec. 6.
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2. The effective plasma potential 3. Collision operator of the electronsiV,

Consider a plasma at the thermodynamical equilibrium at
temperature T and electron densify. The velocities of the
electrons are considered to obey the distribution function

77y =N (=)
’ ’ ¢ 27TI{?BT

?n the case of the impact approximation, and we do not take
into account the fine structure of the radiator [11], the colli-
sion operator is given by

h 2
o W, = —N.e? [ — //27rpvf(v)d7dp
oxpy [ Y _ @(r) ) m
P 2kgT kT 400 ty
wherekp is the Boltzmann constant. X { / dtlﬁb.E(tl) / dtgﬁb.ﬁ(tg)
The effective potential energy of one electron located at e e
the distance is equal to a sum of three contributions N ,
O(r) = Upeulr) + B(r)e_c + B(r)o_; ©) n / dt B B(th) / dts B F(t)
where: - Upeu(r) is interaction energy of the pair (ion o —o0
emitter-electron). oo too
- ®(r)e_. Is interaction energy of the pair (electron- - / dt1 R,.E(t) / dty Ry .E(ty) +} (6)
electron). e e

- ®(r)e—ys Is interaction energy of the electron with a

continuous background of positive charge representingvherev is the colliding electron velocity)N. the electron

the ions. density, p is the impact parameter anfd, ; is the position
operator of the bounded electron for the lower statnd
fhe upper state corresponding to the line under considera-
Rtion in our study. We note here thal(t) is the electric field
Que to the scattered electron at the emitter ion. It is natural
that this electric field depends on the trajectory of the scat-
Ubeu(r) = _Z7€2 (1 _ e‘T/AT) 3) tered electron that itself depends on the potential .in whiqh

eut r this electron moves. We have to choose four potentials as in-

where \; = h/\f(%kaT) is the thermal wavelength. dicated above in the introduction. By using Newton’s equa-

Then the effective potential energy of the electron located aiio" describing the electron movement around the ion emitter
» from the frame origin is (located at the origin of the spatial frame of coordinates), and

submitted only to the electric micro-field due to the local po-

The interaction electron-electron is assumed to be th
Coulomb potential, whereas the interaction ion emitter wit
an electron is that of the Deutsch interaction that takes in
account the quantum effect at short distances:

O(r) = Upeu(r) + / M dp3dr? tential, we have
'7’ -7
N — mi(t) = —eE(t) (7)
— / 7‘? = dr (4)

If we substitute—e £ (t) by m#(t) in the formula (6), we can
When we integrate over the velocity in the above equaintegrate it by part om; and¢, and we immediately find
tion we find the integral equation that governs the effective

potential energy as

2
d(r) = —Z—e(l — e T/AT)
" , L[ (d7 dv 2
+N662/ (6*5‘1’(’“)_7 1) 5) 2{ “< g o)~ ))}
= — — 2
1|= [dr dr
where3 = (kgT)~!. We easily read from the last integral A [Rb<t(+oo) B ﬁ(_ )ﬂ
equation that, if we puhy = 0 (neglecting the quantum ef- N N
fects at short distance) and péit= 0 (neglecting the collec- _ﬁb [dr( ) dr(_oo)]
tive interaction and keeping the binary interaction during the dt dt

collision), we get the purely Coulomb potential Ze? /7). In — [d7 a7
section four, we shall see how to solve this integral equation R, [(Jroo) — (—oo)} + - } (8)
to get the effective potentid(r).
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The in-velocity and the out-velocity (before and after the4. Calculation of the the effective potential

electron-ion collision) are related to the scattering adglad . ] . ) .
the impact parameterby: This concerns the collective effect, which consists of taking

into account the interaction of a free electron of the plasma

dr N N U\ —ng (9 with all other particles (ions and electrons). The effective po-
g (+00) = (400) = v (~00) + o) P () tential energy at the electron is given by [12]:
—Be(r')) -1
where ®(r) = Upeulr) + Nee” / e |f(:/|)) i’ (18)

v(—0) =v(4+00) =v (10)  whereUpey(r) is the Deutsch potential described above. In
the case of weakly coupled plasma, or in the case of high
The formula (9-10) are due to the fact that we deal in our intemperature, it is a good approximation if we replagp(x)
vestigation with conservative potentials. Then the collisionby (1 + x) asz << 1. Then the integral equation becomes
operatoiV, becomes as o()
dr’ (19)
v — /|

B(r) = Upeu(r) — N.fe? /

Now we need the Fourier transform of the effective poten-
where tial energy®(r) since it is related to the scattering amplitude
F(0) via Eq. (17). It suffices then to take the Fourier trans-

2 h .
o= —%TFNe (;) //Ugg(v)dvpdpsiHQ (Z) . (12) form of Eq. (19) in both sides.
F(q) = Fpeu(q) — 4m(Nefe?/q*)F(q),  (20)

W, = (Ra)®+ (Ro)> —2R.Ry)é,  (11)

is the amplitude of the collision operator ap@) is Maxwell 5,
equilibrium velocities distribution given by

2
9" I'peulq
3 F(g) = Loeule). @)
m : — 2 (g% + \"?)
g(v) = 4rn (W) v° exp <2kBT> , (13)  Wwhere
- - R -2 v 77T
then the amplitude of the collision operator becomes Deut (¢) = onh2 Deut(r) exp(—i'q.7)d T
-16 AN?/ m \% :2mo‘<1+ 1 ) 22
o= 5T N (e2> (27rk:T> AN (22)
C? 0 and
dov® in* ( =) pd 14
X/ ve eXp( T )/Sm (2)’0 po (4 X2:27rmka/h2~/\i2;
T

Rather than to compute the trajectory of the scattered 1
electron p, #), we shall use the scattering amplitude and the N = 4N [ (kpT) ~ T (23)
associated cross section for each potential. To do this, we ) . b
replaced appearing in the last integral by its expression adt IS worth to mention here ifi=0 and A7=0 in Eq. (20),
function of the impact parametgr The expression can be W€ recover the scattering amplitude of the Coulomb case

found easily by using the amplitude diffusion and the scatter{ (¢) ~ 1/¢). Using formulae (15-16)

ing cross section formula. In one hand the differential cross . [0 0 2
section is defined as: pdp = 2sin (2> cos <2) [F(0)" db (24)
or
do = 27Tp@d0. (15) ) 2
0 9149 FDeut(Q)
o . . pdp = -5 [2//2] (25)
In the other hand, it is related to the scattering amplitude k2 L(g® + A7)
F(6), in the Born approximation, by we find the amplitude of the collision operator (14) as the
following expression
do = |F ()| dw (16)
—16 , . (h)° 3 5
wheredw = 27 sin 0d0 is the element of solid angle, and ¢=—7mNe <e2> (gﬂkT) / dvv
0
Flg) = o5 [ O —iq.T)d7T 17 e 2
q 512 ryexp(—iq.7)dr a7 . —m? P 42 Foeu(q) ; o6
P < okT ) / ) @+ amy| W 29
where ¢ = 2ksin(6/2)). min
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By replacingk = muv/h and Fpeu(q) by its expres-
sion (22) in the last formula, we find

= _716”2]\]6 (if)z (2:111“)%

“+oo

« / vdvexp( ‘Q’Zf)m(qmax)—cz(qmm)), (27)

0

where
1 1
=+ e
Glz) = / e (28)
The last integral is easy to perform and it is equal to
1
G(z) = 2% + Zm‘*
a® — 2a® — 3a*b? — 2a*b* + 4a°p? 9 9
— In (a +x )
206 — 2a8 — 6a2b* + 6atb?
268 _ b() 2b4 —_4 2b6 2 4b4
_ + 3a a“b® + 2a In (b2+1:2)
206 — 2a8 — 6a2b* + 6a4b?
a?bb + a®b? + a®x? + 622 29)

D b
where we have considered = a, \” = b and
D = 24?5 — 4a*b* + 2a50? + 2a*z* + 24522 4 2b%2*
(30)

So we need the limitg,,;, andg.x in the Eq. (27). From
Eq. (25) we can extract,i, andgmax from ppin and ppax
in the following way

+ 20822 — 40?2t — 2a%b*2? — 20D 22,

) 2k ) 5
)\7[) _ pz /2 _ 9149 FDeut(Q)
2 max k2 | (g + N72)
qmax
= A(Qk) - A(Qmax) (31)
and
) 2k ) 5
)\l: 2‘/2: /i qFDeut(Q)
2 pmln k2 (q2 + )\112)
gmin
= A(2k) - A(Qmin) (32)
whereA(zx) is given by (' = a, \”’ = b)
2ma\” |1 ,
a® + a?b? + a?b* — 2a*b? 5 9
T B0 — ab — 3a2bt + 3a4b? In (a® +27)
2ab* — a?b* — b5 — at? 9 9
T b6 — 46 — 3a2b + 3002 In (b +2%)
o934 432 4,2 342
. a“b abDaJ: bx] (33)
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When we insert the expression &fz) in formula (31-32),
we get numericallygmin max s function of the velocity.
When we replace them in the expression(®fq,;,) and
G(gmax) given by (30), we integrate overin formula (27) to
have the amplitude of the collision operator. The result of this
task, is illustrated in the Figs. 1 and 2 for various densities
and temperatures.

5. Results and discussion

It is easy to read from the Egs. (31-32) that, and ¢y
depend on the velocity because the presencelot muv/h

in those equations. This means that the integral overfor-
mula (27) must take this fact into account. Then, for a given
Pmax, the Eq. (31) must be solved numerically for all velocity
values. We get thereforg,., as a function o). The same
thing must be done with the Eq. (32) to ggt,, as a function
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FIGURE 1. Amplitude of collision operator versus the density.
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FIGURE 2. Amplitude of the collision operator versus the temper-
ature.
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8000 Coulomb potential according the temperature, whereas, it de-
+oo | Lyman-alpha Li = creases exponentially for the case of the effective potential.
T=10°K In Figure 3, we present the spectral line for Lymarnine,

6000 N =55%10"°cm™ for Li+2 as hydrogen-like emitter for electron density equal
w000 —— Coul. pot. to (5.5)10'% cm~2 and a temperature equal 16°K. To do

eff. pot. this, we have plotted two lines, each of them corresponds to
4000 Coulomb and the effective potential. We mention here, that

only electron broadening are taken into account to plot the
lines (lonic Stark, Doppler and natural broadening are dis-
carded). Each line corresponds then, to what force guides
the electron during its collision with the emitter ion™.
Then we can say that the line gives also, in addition to the
diagnosis of density and temperature, an idea about the kind
of the interaction between the unbounded electrons and the
plasma. This figure (Fig. 3) illustrates the potential effect
FIGURE 3. Spectral line shape Lyman alpha for different collision 0N the spectral line shape of Lymanwithout fine structure
operators. of hydrogen-like Li2 at the temperatur® = 10°K and the
density N, = (5.5)10* cm™3. We observe that when we
of the velocityv. The next step is to insert the obtained re- use the effective potential, the width of the line decreases by
sult of gmax @aNdgmin in the Egs. (29) and (27) and integrate 67.2 percent, and the intensity increases about 200 percent
overwv to have the final result of the amplitude of the collision compared to the Coulomb case.
operatorg in (27) for the effective interaction potential.

Figure 1 shows the behaviour of the electronic colli-g.  Conclusion
sion operator versus the electron density in the case of the
Coulomb and the effective potentials of the iorfLi(hy-  Assuming the interaction of the pair ion-electron in plasma
drogenlike) at a fixed temperatu® = 10°K. We note to be generated by the Deutsch potential, that takes into ac-
that the variation of the electronic collision operator is pro-count the quantum effects at short distance, and the effective
portional to the electron density for all potentials. This isinteraction between the electron and all the plasma, we have
because the number of collisions per second is proportiongdresented in this paper a new expression of the collision op-
to the electron density. We note that the electronic colli-erator in the framework of the impact approximation. The
sion operator relative to the effective potential is smaller tharcollision operator obtained is valid when the fine structure
relative to Coulomb. Figure 2 shows the variation of theeffect is neglected. We have applied it to compute and plot
electronic collision operator for the different potentials ver-the Lymane lines for Lit2. The result shows a difference
sus the temperature at a fixed densNy = 10'® cm=3. between the two lines corresponding to the use of Coulomb
We note that the collision operator decreases slowly for thend the effective potentials.
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