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A Monte Carlo framework to simulate the evolution of drop spectra by coalescence and collision-induced breakup is presented. The stochastic
algorithm of Gillespie [1] for chemical reactions in the formulation proposed by Laurenzi and Diamond [2] was used to simulate the kinetic
behavior of the drop population. Within Gillespie’s framework, the collision-induced breakup process is modeled as a new “chemical
reaction”. The results of the Monte Carlo simulations were compared with the analytical solution to the collection-breakup equation obtained
by Feingoldet al. [3], for an exponential distribution of satellite drops, and a constant collection and breakup kernels. A good correspondence
between the analytical and the stochastic algorithm was found for this case.

Keywords: Cloud microphysics; Monte Carlo simulation; breakup process.

Se presenta un algoritmo de Monte Carlo para simular la evisiude! espectro de gotas por coalescencia y rompimiento inducido por
colisiones. El algoritmo estastico de Gillespie [1] para las reaccionesngjgas en la formuladin propuesta por Laurenzi y Diamond [2]
fue utilizado para simular la catica de la pobladin de gotas. El rompimiento inducido por colisiones es modelado en el formalismo
de Gillespie [1] como una nueva “rea6ni qumica”. Los resultados fueron comparados con la solucnaitica para la ecuach de
rompimiento encontrada por Feinga@tal. [3] para una distribuéin exponencial de las gotas@&lies, y kernels de coleda y rompimiento
constantes. Se encodtuna buena correspondencia entre la séluanaitica y el algoritmo estdastico para este caso.

Descriptores: Microfisica de nubes; simuldm de Monte Carlo; proceso de rompimiento.

PACS: 92.60.N; 92.60.Nv

1. Introduction of = droplets due to their coalescences with other droplets.
Nevertheless, as was pointed out by Gillespie [4], the KCE

The kinetic collection equation (KCE) and the stochas-is only an approximate time-evolution equation fotz, t)

tic collision-breakup (SBE) equations describe the temporabecause the number of droplets of different masses is statis-

change of the mean number of particles of mashese tjcally correlated, and the KCE equation contains no definite

equations give a deterministic description of the kinetics ofinformation concerning the size of the fluctuations about the

the drop population averaged over some volume of fluid. Fogyerage, which would be observed in independent realiza-

the collection process the KCE has the form;: tions of the coalescence stochastic process.
The combined equation for the evolution of droplet spec-
af (z,t) /j 21,0 f (@ — 21, DK (2,7 — 21)dz tra through stochastic collection and breakup can be written
1t b ! in the form [5]:
o0 Of(x,1)
——— 2~ =(C(z,t) + B(z,t 2
/f x1,0) K (x,21)dxy Q) ot (z,8) + Bz, 1) 2)
0

The first term in this equation describes the evolution of
This equation, for a given initial spectrufi(z, 0) may be ~ an average spectrum of drops due to the collision-collision
solved forf (z,t) for all t > 0. In (1), the collection kernel coalescence process, and is calculated according to (1). The
K (z,z,) contains the probability of collision-coalescence of second term represents the time evolution of a spectrum of
two drops of masses, z;. drops due to collision-induced breakup and is calculated with
The KCE gives the time rate of change of the average=d. (3):
number ofz droplets as the difference of two terms: the first - -
term describes the average rate of production: afroplets
due to coalescence between pairs of drops whose masses sum B /f (z1,) dy /f (w2,t) B (21, 72)
x, and the second term describes the average rate of depletion 0 0
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i speciegS1,5. ..., Sn),
XP(I;xl,xZ)de_f(x’t)/f(xz,t)B(z,:rg)de peciegS1,5z, ..., Sn)
J T+ T2 N (N +1)
we ———=.
x+x2 2
~ 21 P (21; 2, 2) day (3)  The set{n} defines the total collision space, and is equal to

the total number of possible interactions. With this set the
collision probability density functior® (7, ;1) can be deter-

In Eg. (2) and (3)f (z,1) is the drop size distribution mined. This quantity is defined by:
with respect to mass at timet. The collection and breakup

0

kernels,C (x,y) and B (x,y) are calculated according to: P(r,n)dr = Probability that at time the next colli-
sionin volumel” will occur in the infinitesimal interval
C(z,y) =K (z,y) E(z,y) (4) (t + 7,t + 7 + dr) and will be ay collision.
B(z,y) = K (z,9) [l - E(z,y)] () Gillespie [1] derives this probability density function for

where K (z,y) is the collision kernel for a drop of mass a system ofV species as

and one of masg, E(z,y) is the coalescence efficiency for N(N+1)
z andy. FunctionP(z; x1, z2) characterizes the distribution _ :
of fragments resulting from a collision between drops of mass P (7, p) dr = ay, exp Z 4T ©)
j=1
X1 and %.
As in the collision-coalescence case, the SBE describes The functionss, are calculated according to
the evolution of an average drop spectrum. But actually,

i i iatri i i Probabilit tha
when ramdrops cqlllde, a distribution qf f_ragr_nents is pro- o il part-
duced. While solving the SBE these distributions are com- clesi and j with

monly parameterized using the quasi-stochastic assumptiona(i, j) = V'K (i, j)nin;dt = Pr Bg?“'gf“?;tﬁzﬁa”g) 7

isi i i in- n; and n; wi
_Th_e results of collisions are parameterized using a det_e_rmln callide within the
istic formula based on the average of a series of collisions. imminent  time

t
Interva
The use of this approximation is appropriate when there are ni (ni—1)
) (A

sufficient raindrop interactions to justify the use of such an a(i, )=V "' K(i,1) dt
average. N

_Amore realistic approach will be based on the generation o oarteles of
of independent realizations of the collision-induced breakup the same speci

Il
)
S

process. By doing this, after a collision, a distribution of frag- %ionv_v't(ﬂumpﬁfr”f%} (8)
ments is generated randomly. Within this framework, the particles)ni will

distribution of fragments can be interpreted as a probabil- imminent— time

ity density function, and the average number concentration

is obtained after the averaging process for a sufficiently Iargeh 'I';;m colgsmln p:obe_tt;:llty IcienS't{ fulnc_t|0n r']s the ll)a_5|s Off
number of realizations of the stochastic process. the Monte Carlo algorithm. For calculating the evolution o

In our report, the stochastic algorithm of Gillespie [1] for the system, two random numbersindy. must be generated.

chemical reactions was adopted instead of the algorithm pr‘;quatmp (4) Iead; directly to th(_a.ansyve.rs OT following ques-
viously elaborated for droplet populations [4]. This algorithmt!ons' First, v_vhat Is the prpbablllty distribution for the next
was reformulated to simulate the kinetic behavior of aggre:u_meforqgolllsmn? Sur_nmmg) (7, ) dr over ally (all pos-
gating systems by Laurenet al. [6,7]. sible collisions) results in

N(N+1)
2
2. The Monte Carlo algorithm Pi(r)dr= Y P(r,p)
p=1
In this study the stochastic algorithm developed in Ref. 1 for o o
chemical reactions was used. This algorithm was reformu- 2 2

lated to simulate the kinetic behavior of aggregating systems = Z a, exp | — Z a,T
by Laurenziet al. [6,7], by defining a species as a type of n=1 v=1
aggregate with a specific size and composition. In our case,

species represent droplets of different sizes. A detailed de- = aexp(—ar)dr ©)
scription of the stochastic algorithm for multicomponent ag-yyith
gregation of particles can be found in Ref. 1 and 7. We sum-
marize these results very briefly. M
Within this framework, there is a unique indgXor each o= Z ay
pair of dropletsi, j that may collide. For a system with’ v=1
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The probability function for reactions can be obtained in3.  Treatment of the collision-induced breakup
a similar way, by integrating the probability density function and simulation results
(pdf) P (7, p) d over allT from 0 toco results in

a 3.1. Stochastic treatment of the collision-induced
Py () = (10) breakup

Equation (6) shows that the probability of a collision with In expressions (7) and (8)K(i,j) is the collision ker-
respect to time follows an exponential distribution. In ordernel andV is the cloud volume. It is assumed that the
to obtain a random pairr( 1), according to the probability two events, denoted by’ (collision-coalescence) and
density functionP (7, ) we first generate a random num- (collision-breakup), are mutually exclusivee., that what-
ber r; distributed uniformly over the interval [0,1]. Then ever does not coalesce results in breakup. Cases of bounce
the inversion method for obtaining random numbers is apare not taken into account. Then the probability 6f “or
plied. In the inversion method this random number is takeri B” is just the sum of the individual probabilities:
as the probability of a collision in the time periecgccording

to P, (7). This probability is obtained by integrating (7) P(CUB) = P(C)+ P(B). (14)
fromOtor:
- . The probability that two unlike particlesand; will col-
lide within the imminent time interval can be decomposed in
r= /P1 (2)dx = /aexp (—az)dz the sum [2]:
0 0
=1—exp(—ar) (12) a(i,j) = V=1C(i, jynin;dt + VB (i, j)nin;  (15)

Considering that 4 = r} is also a uniformly distributed where the first term is the probability of collection and the
random number in the interval [0,1], the timesan be calcu- second the breakup probability. The collection and breakup

lated from (9) in the form: kernels are calculated according to (4) and (5). In general,
the coalescence efficiendy (i, j) is based on the sizes of
r= 1 In (1) (12)  the colliding drops and the collisional kinetic energy [8]. The
o 1 choice between coalescence and breakup can be defined from

The collision number is calculated similarly. A ran- expression (13), by noting that [2]

dom number-, uniformly distributed over the interval [0,1]
is generated. Then the p#% (v) (8) must be integrated over
v until the sum of the: probability exceeds the random num-

ap = au + By

berr,. The inequality for obtaining the collision index is with i

of the form [1]: a, =V 7O, j)nn;dt
p—1 W and
Z a, < reax < ay (13) B = V_lB(Lj)nmjdt
v=1 v=1

Then if 3,, causes,« to be exceeded in Eq. (13) then
the event to come will be breakup; otherwise, the event will
a) Initialize (set initial numbers of species, set0, set Pe coalescence. If the event to come is a breakup, it is cal-

The former results lead to Gillespie’s direct algorithm:

stopping criteria). culated by randomly generating the distribution of fragments
with the aid of the functioP(m, z, x1).
b) Calculate the function,, for all .. Chooser according Within the stochastic framework, the fragment distribu-
to the exponential distribution tion P(m,z,x1) can be interpreted as a probability density
function. In our approach, after a collision of droplets with
Py (1) = aexp(—ar)dr masses andzy, the satellite drops are generated as random
numbers. The random generation process stops when the to-
¢) Calculatey according to the distribution tal mass of satellite drops exceeds the total mass of the collid-
ing droplets. The final distribution is updated by relocating
Py (p) = au/a. the fragments in the bins according to their mass.

Feingoldet al. [3] found an analytical solution to the SBE
d) Change the numbers of species to reflect the executioaguation with a constant breakup kernel and by choosing a
of a collision. fragment distribution of the form:

e) If stopping criteria are not met, return to step 2. P(m;z,21) = v*(x + 21) exp(—ym) (16)
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with v = n(Ny/M,), whereNy andM, are the drop number
concentration and liquid water content of the initial distribu- TaeLE I. Average rate of collision-coalescence events for a coales-
tion, andn is a positive integer that characterizes the frag-cence efficiency (z, y)=0.8.

ment distribution. For the drop number concentration they

. . Average rate Number of realizations
found the time evolution:
0.840 10
N, at
N() = - 0¢ (17) 0.784 100
(1 + o (et — 1)) 0.798 1000
wherea = BvyMy, andB is the constant breakup kernel. =
In this case, the fragment distribution can be interpreted

as an exponential probability density function. After a colli- J I
sion of droplets with massesandz, the satellite drops are B e St
generated as exponentially distributed random numbers. 06 = Analytical solution

3.2. Simulation results

3.2.1. Coalescence efficiengyx,y)=1.

0.4 =

The results of Monte Carlo simulations with a constant col-
lection kernelK (x, y), and consequently, constant collection
and breakup kernels (expressions 4 and 5) are presented i
this section by varying the coalescence efficied®fr, y).
For E(x,y) =1, every collision results in coalescence; for
E(z,y) =0, every collision between cloud droplets leads to
a breakup with fragments that follow the exponential distri-
bution (16). Whern0) < E(x,y) < 1, whatever does not 1 1 T T T
coalesce results in breakup. As was remarked in Sec. 3.1 0 2 — & 10
cases of bounce are not taken in account. Constant colIisioE . . i
kernel and collection efficiencies are not realistic, but will ICURE 2. The r_lumber_ o_f_partlcles, averaggd over 1000 simuila

' tions and normalized to initial number of particles (crosses), versus

make possible a comparison with the analytical solutions ofe anaiytical solution to the kinetic collection equation (KCE) at

RELATIVE CONCENTRATION (N(i)/N,)

the SCE and SBE Egs. (1) and (3). =700 sec. as a function of size. The initial number of particles is
1 e—t N0=1OO

- For pure coalescenceE(z,y)=1), the results from
p——— the Monte Carlo algorithm are the averages over
0.8 = . . . .
(Kexy)=1 8x107 ems* 1000 realizations of the stochastic process. In this
J 4= = == =} Mortte Carlo case, every collision results in coalescence [1,7]. For
caial monodisperse initial conditions, we consider a cloud

of 1 cn?® volume, initially containingVy droplets of 10.:m.
These droplets were placed in bin 1 of the size distri-
bution. We have tested our code by comparing the true
stochastic averages from 1000 realizations of the stochas-
tic algorithm and droplet concentration from the analyt-
ical solution to the KCE for the constant collection ker-
nel (K(x,y)=A=1.8x10-°cm?s~!) with monodisperse initial
conditions derived by Scott [9] (see Fig. 1):

RELATIVE NUMBER OF PARTICLES Nt} /NO

---- an s PNRREEER 2N, _
B N(t) = =—2 with T = ANyt. (18)
0 T | T I T T T | T | T+2
’ o ™ e o e In this simulation, the initial droplet concentration was set

— 3
FIGURE 1. The normalized number of particles averaged over 1000egual t(_)NO_l_OO cnT”. As can be observed, Monte_ Carlo
simulation runs and normalized to the initial number of particles Simulations yielded the same results as the analytical solu-

(No=100) versus time is shown by the dashed line with crossestions to the KCE. .
The results from the analytical solution to the kinetic collection For E(z,y)=1, the numerical code has also been tested
equation are shown by the continuous line. against the analytical solution to the KCE obtained by

Rev. Mex. . 55 (6) (2009) 437-442



MONTE CARLO SIMULATIONS OF DROP GROWTH BY COALESCENCE AND COLLISION-INDUCED BREAKUP 441

Golovin [10] for the sum kernel K (z,y)=B(z + y), of the initial distribution. In that case there is no evolution
B=8.82x10* cm*g~! sec™!) with monodisperse initial con-  with respect taV(t) [3]. By integrating (16) with respect to

ditions: m we obtain:
N =N -0 epie)  asa) [ . (@) »
(i+1) J v (r +y)e m*mfﬁ?(%%y) (22)
with

In (22), z + y is the mass of the colliding drops and
¢ =1 — exp(=BNouvot). (19Db) e(v,z,y) is a few orders of magnitude less than unity if the
number of fragments from a collision is 10 [3]. The nu-
merator in the first term in the rhs of (22) is the total mass
of the colliding droplets, and the denominaldp /n N, is the

In Eq. (19 a,b)I" is the gamma functionVy the initial
droplet concentration? is the constant for the Golovin ker-
nel, vy is the mass of the monomer droplet (4.38%° g)
andt is the time in seconds. The comparison was made
for the same monodisperse initial distribution (100 droplets g,
of 10 um). Figure 2 depicts the size distribution for t=700 s. —
Again, an excellent agreement was founded between the sim- 309 .
ulated and analytical size distributions (see Fig. 2).

DISTRIBUTION OF SATELLITE DROPS

250 b
3.2.2. Coalescence efficien@¥ E(z,y) <1 > —
Z 200 1
The proportion of droplets that will coalesce or break up de- &
pends on the coalescence efficiedyr, y). For example, if & 45 — .

E(z,y) =0.8, this means that on average 80% of the total &

number of collisions lead to coalescence, and 20% result in 100 .

breakup. Table | displays the results of the average rate of

coalescence-breakup events by varying the number of real-  so -

izations of the stochastic process.
This average rate can be calculated as the ratio of the 05 s ; Y = : = 8

number of collision-coalescence events and the total numbei DROPLET MASS (g) 10"

of collisions. As can be observed, the average tends to the ) o ) )

value of 0.8 for the coalescence rate as the number of realizal GYRE 3 Exponentially distributed satellite droplets obtained af-

tions is increased. ter a rafnt(:]orr(;_s?rgpltl_ng with thtte fragrlnten‘t1r (igglt;utlon. The mean
In our framework, after a collision-breakup event, the mass ofthe distribulion was Set equatto 4. g

satellite drops will follow an exponential distribution. The

masses of the fragments are calculated as a sequence of rai

dom numbers distributed according to the probability den-

sity function P(m;x, x1). In the present casd?}(m;x, x1)

has the exponential form (16). Then, the inversion method Collisional breakup

is again applied in order to obtain the masses of the satellite 5 oA

droplets (see the analogue expressions (11) and (12) used t&

obtain the exponentially distributed times to the next colli-

sion). The exponential distribution is a continuous distribu-

tion having the general form:

——&—— Monte Carlo

1 T .
f@) = 5 exp (—5) with > 0 (20)
with meanE(X) = 6 and variancé/(X) = 62. Then, by
comparing (16) and (20) it can be concluded that the mean
mass of the satellite droplets is calculated as

DROPLET CONCENTRATION

1 M,

= 21 R i ' | ' | - |
v nNy (21) 0 a0 80 120

TIME (SEC)

The average mass of the initial distributioni$,/No,  FicurE 4. The results from the analytical solution (17) are shown
becausei=1 in expression (21) represents the case when they the solid line, versus the Monte Carlo results averaged over 1000
average mass of the satellite droplets equals the average massulation runs.
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average mass of the satellite droplets, so thatrop growth by collision-coalescence and collision induced
(x + y)/(Mo/nNy) is the average number of fragments breakup.  Within this framework, the collision-induced
after a collision. The random sampling stops when the totabreakup is introduced by considering the collision induced
mass of satellite drops exceeds the total mass of the collidingreakup probability as a new reaction channel. The re-
droplets. The final distribution is updated by relocating thesults obtained with the Monte Carlo algorithm were com-
fragments in the bins according to their mass. Figure 3 dispared with the analytical solutions derived by Scott [9] for
plays the exponentially distributed satellite droplets obtainedhe collision-coalescence process for a constant kernel. For
after a random sampling with (16). collision-induced breakup, the Monte Carlo framework was
In order to check the algorithm for the collisional breakup compared with the analytical solutions derived by Feingold
case, the results from the Monte Carlo are compared with thet. al. [3] for an exponential distribution of satellite drops.
analytical solution (17). The Monte Carlo simulation was A very good correspondence between the Monte Carlo and
performed with a constant breakup kernel with the exponenanalytical solutions was found for the two cases.
tial distribution (16) for the formed satellite drops. As the A further study is needed in order to include in the frame-
purpose of the simulation is to check the viability of the al- work the parameterization for fragment size distribution of
gorithm, the coalescence efficiency was set equal to 0. Thsatellite drops developed by Low and List [8]. The advan-
initial concentration was 100 cnd (50-36.8um droplets and  tage to the Monte Carlo approach over the analytical solution
50-37 um droplets). The results obtained with the Monteis that it does not require a specific parameterization of the
Carlo algorithm and the analytical solution are shown infragmentation function. Given that drop breakup can be more
Fig. 4. As can be observed, a good correspondence betweenmplex that can be easily parameterized, the Monte Carlo
the deterministic and the stochastic process is obtained fapproach will allow a more detailed study of how precipita-
this case. tion evolves and the sensitivity to the fragmentation function

. used.
4. Conclusions

The chemical reactions stochastic algorithm developed by
Gillespie [1] was implemented in order to calculate the
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