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Monte carlo simulations of drop growth by coalescence
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A Monte Carlo framework to simulate the evolution of drop spectra by coalescence and collision-induced breakup is presented. The stochastic
algorithm of Gillespie [1] for chemical reactions in the formulation proposed by Laurenzi and Diamond [2] was used to simulate the kinetic
behavior of the drop population. Within Gillespie’s framework, the collision-induced breakup process is modeled as a new “chemical
reaction”. The results of the Monte Carlo simulations were compared with the analytical solution to the collection-breakup equation obtained
by Feingoldet al. [3], for an exponential distribution of satellite drops, and a constant collection and breakup kernels. A good correspondence
between the analytical and the stochastic algorithm was found for this case.
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Se presenta un algoritmo de Monte Carlo para simular la evolución del espectro de gotas por coalescencia y rompimiento inducido por
colisiones. El algoritmo estocástico de Gillespie [1] para las reacciones quı́micas en la formulación propuesta por Laurenzi y Diamond [2]
fue utilizado para simular la cinética de la población de gotas. El rompimiento inducido por colisiones es modelado en el formalismo
de Gillespie [1] como una nueva “reacción qúımica”. Los resultados fueron comparados con la solución anaĺıtica para la ecuación de
rompimiento encontrada por Feingoldet al. [3] para una distribución exponencial de las gotas satélites, y kernels de colección y rompimiento
constantes. Se encontró una buena correspondencia entre la solución anaĺıtica y el algoritmo estoćastico para este caso.

Descriptores: Microfı́sica de nubes; simulación de Monte Carlo; proceso de rompimiento.

PACS: 92.60.N; 92.60.Nv

1. Introduction

The kinetic collection equation (KCE) and the stochas-
tic collision-breakup (SBE) equations describe the temporal
change of the mean number of particles of massx. These
equations give a deterministic description of the kinetics of
the drop population averaged over some volume of fluid. For
the collection process the KCE has the form;:

∂f(x, t)
∂t

=
1
2

x∫

0

f(x1, t)f(x− x1, t)K(x, x− x1)dx

− f(x, t)

∞∫

0

f(x1, t)K(x, x1)dx1 (1)

This equation, for a given initial spectrumf (x, 0) may be
solved forf (x, t) for all t > 0. In (1), the collection kernel
K (x, x1) contains the probability of collision-coalescence of
two drops of massesx, x1.

The KCE gives the time rate of change of the average
number ofx droplets as the difference of two terms: the first
term describes the average rate of production ofx droplets
due to coalescence between pairs of drops whose masses sum
x, and the second term describes the average rate of depletion

of x droplets due to their coalescences with other droplets.
Nevertheless, as was pointed out by Gillespie [4], the KCE
is only an approximate time-evolution equation forf (x, t)
because the number of droplets of different masses is statis-
tically correlated, and the KCE equation contains no definite
information concerning the size of the fluctuations about the
average, which would be observed in independent realiza-
tions of the coalescence stochastic process.

The combined equation for the evolution of droplet spec-
tra through stochastic collection and breakup can be written
in the form [5]:

∂f(x, t)
∂t

= C(x, t) + B(x, t) (2)

The first term in this equation describes the evolution of
an average spectrum of drops due to the collision-collision
coalescence process, and is calculated according to (1). The
second term represents the time evolution of a spectrum of
drops due to collision-induced breakup and is calculated with
Eq. (3):

B (x, t) =
1
2

∞∫

0

f (x1, t) dx1

∞∫

0

f (x2, t) B (x1, x2)
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×P (x; x1, x2) dx2 − f (x, t)

∞∫

0

f (x2, t)B (x, x2)
x + x2

dx2

×
x+x2∫

0

x1P (x1; x, x2) dx1 (3)

In Eq. (2) and (3)f (x, t) is the drop size distribution
with respect to massx at timet. The collection and breakup
kernels,C (x, y) andB (x, y) are calculated according to:

C (x, y) = K (x, y)E (x, y) (4)

B (x, y) = K (x, y) [1− E (x, y)] (5)

whereK (x, y) is the collision kernel for a drop of massx
and one of massy, E(x, y) is the coalescence efficiency for
x andy. FunctionP (x; x1, x2) characterizes the distribution
of fragments resulting from a collision between drops of mass
x1 and x2.

As in the collision-coalescence case, the SBE describes
the evolution of an average drop spectrum. But actually,
when raindrops collide, a distribution of fragments is pro-
duced. While solving the SBE these distributions are com-
monly parameterized using the quasi-stochastic assumption.
The results of collisions are parameterized using a determin-
istic formula based on the average of a series of collisions.
The use of this approximation is appropriate when there are
sufficient raindrop interactions to justify the use of such an
average.

A more realistic approach will be based on the generation
of independent realizations of the collision-induced breakup
process. By doing this, after a collision, a distribution of frag-
ments is generated randomly. Within this framework, the
distribution of fragments can be interpreted as a probabil-
ity density function, and the average number concentration
is obtained after the averaging process for a sufficiently large
number of realizations of the stochastic process.

In our report, the stochastic algorithm of Gillespie [1] for
chemical reactions was adopted instead of the algorithm pre-
viously elaborated for droplet populations [4]. This algorithm
was reformulated to simulate the kinetic behavior of aggre-
gating systems by Laurenziet al. [6,7].

2. The Monte Carlo algorithm

In this study the stochastic algorithm developed in Ref. 1 for
chemical reactions was used. This algorithm was reformu-
lated to simulate the kinetic behavior of aggregating systems
by Laurenziet al. [6,7], by defining a species as a type of
aggregate with a specific size and composition. In our case,
species represent droplets of different sizes. A detailed de-
scription of the stochastic algorithm for multicomponent ag-
gregation of particles can be found in Ref. 1 and 7. We sum-
marize these results very briefly.

Within this framework, there is a unique indexµ for each
pair of dropletsi, j that may collide. For a system withN

species(S1,S2,..., SN ),

µ ∈ N (N + 1)
2

.

The set{µ} defines the total collision space, and is equal to
the total number of possible interactions. With this set the
collision probability density functionP (τ, µ) can be deter-
mined. This quantity is defined by:

P (τ, µ)dτ ≡ Probability that at timet the next colli-
sion in volumeV will occur in the infinitesimal interval
(t + τ, t + τ + dτ) and will be aµ collision.

Gillespie [1] derives this probability density function for
a system ofN species as

P (τ, µ) dτ = aµ exp


−

N(N+1)
2∑

j=1

ajτ


 (6)

The functionsaµare calculated according to

a(i, j) = V −1K(i, j)ninjdt ≡ Pr





Probability that
two unlike parti-
cles i and j with
populations (num-
ber of particles)
ni and nj will
collide within the
imminent time
interval





(7)

a(i, i)=V −1K(i, i)
ni (ni−1)

2
dt

≡ Pr





Probability that
two particles of
the same species
i with popula-
tion (number of
particles) ni will
collide within the
imminent time
interval





(8)

The collision probability density function is the basis of
the Monte Carlo algorithm. For calculating the evolution of
the system, two random numbersτ andµ must be generated.
Equation (4) leads directly to the answers of following ques-
tions. First, what is the probability distribution for the next
time for a collision? SummingP (τ, µ) dτ over allµ (all pos-
sible collisions) results in

P1 (τ) dτ =

N(N+1)
2∑

µ=1

P (τ, µ)

=

N(N+1)
2∑

µ=1

aµ exp


−

N(N+1)
2∑

ν=1

aντ




= α exp (−ατ) dτ (9)

with

α =

N(N+1)
2∑

ν=1

aν
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The probability function for reactions can be obtained in
a similar way, by integrating the probability density function
(pdf) P (τ, µ) dτ over allτ from 0 to∞ results in

P2 (µ) =
aµ

α
. (10)

Equation (6) shows that the probability of a collision with
respect to time follows an exponential distribution. In order
to obtain a random pair (τ , µ), according to the probability
density functionP (τ, µ) we first generate a random num-
ber r1 distributed uniformly over the interval [0,1]. Then
the inversion method for obtaining random numbers is ap-
plied. In the inversion method this random number is taken
as the probability of a collision in the time periodτ according
to P1 (τ). This probability is obtained by integratingP1 (τ)
from 0 toτ :

r1 =

τ∫

0

P 1 (z) dx =

τ∫

0

α exp (−αz) dz

= 1− exp (−ατ) (11)

Considering that 1-r1 = r∗1 is also a uniformly distributed
random number in the interval [0,1], the timeτ can be calcu-
lated from (9) in the form:

τ =
1
α

ln
(

1
r∗1

)
(12)

The collision numberµ is calculated similarly. A ran-
dom numberr2 uniformly distributed over the interval [0,1]
is generated. Then the pdfP2 (ν) (8) must be integrated over
ν until the sum of theµ probability exceeds the random num-
berr2. The inequality for obtaining the collision indexµ is
of the form [1]:

µ−1∑
ν=1

aν < r2α ≤
µ∑

ν=1

aν (13)

The former results lead to Gillespie’s direct algorithm:

a) Initialize (set initial numbers of species, sett=0, set
stopping criteria).

b) Calculate the functionaµ for all µ. Chooseτ according
to the exponential distribution

P1 (τ) = α exp (−ατ) dτ

c) Calculateµ according to the distribution

P2 (µ) = aµ/α.

d) Change the numbers of species to reflect the execution
of a collision.

e) If stopping criteria are not met, return to step 2.

3. Treatment of the collision-induced breakup
and simulation results

3.1. Stochastic treatment of the collision-induced
breakup

In expressions (7) and (8),K(i, j) is the collision ker-
nel and V is the cloud volume. It is assumed that the
two events, denoted byC (collision-coalescence) andB
(collision-breakup), are mutually exclusive,i.e., that what-
ever does not coalesce results in breakup. Cases of bounce
are not taken into account. Then the probability of “C” or
“B” is just the sum of the individual probabilities:

P (C ∪B) = P (C) + P (B). (14)

The probability that two unlike particlesi andj will col-
lide within the imminent time interval can be decomposed in
the sum [2]:

a(i, j) = V −1C(i, j)ninjdt + V −1B (i, j)ninj (15)

where the first term is the probability of collection and the
second the breakup probability. The collection and breakup
kernels are calculated according to (4) and (5). In general,
the coalescence efficiencyE (i, j) is based on the sizes of
the colliding drops and the collisional kinetic energy [8]. The
choice between coalescence and breakup can be defined from
expression (13), by noting that [2]:

aµ = αµ + βµ

with

αµ = V −1C(i, j)ninjdt

and

βµ = V −1B(i, j)ninjdt

Then if βµ causesr2α to be exceeded in Eq. (13) then
the event to come will be breakup; otherwise, the event will
be coalescence. If the event to come is a breakup, it is cal-
culated by randomly generating the distribution of fragments
with the aid of the functionP (m,x, x1).

Within the stochastic framework, the fragment distribu-
tion P (m,x, x1) can be interpreted as a probability density
function. In our approach, after a collision of droplets with
massesx andx1, the satellite drops are generated as random
numbers. The random generation process stops when the to-
tal mass of satellite drops exceeds the total mass of the collid-
ing droplets. The final distribution is updated by relocating
the fragments in the bins according to their mass.

Feingoldet al. [3] found an analytical solution to the SBE
equation with a constant breakup kernel and by choosing a
fragment distribution of the form:

P (m;x, x1) = γ2(x + x1) exp(−γm) (16)
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with γ = n(N0/M0), whereN0 andM0 are the drop number
concentration and liquid water content of the initial distribu-
tion, andn is a positive integer that characterizes the frag-
ment distribution. For the drop number concentration they
found the time evolution:

N(t) =
N0e

αt

(
1 + N0

γM0
(eαt − 1)

) (17)

whereα = BγM0, andB is the constant breakup kernel.
In this case, the fragment distribution can be interpreted

as an exponential probability density function. After a colli-
sion of droplets with massesx andx1, the satellite drops are
generated as exponentially distributed random numbers.

3.2. Simulation results

3.2.1. Coalescence efficiencyE(x,y)=1.

The results of Monte Carlo simulations with a constant col-
lection kernelK(x, y), and consequently, constant collection
and breakup kernels (expressions 4 and 5) are presented in
this section by varying the coalescence efficiencyE(x, y).
For E(x, y) =1, every collision results in coalescence; for
E(x, y) =0, every collision between cloud droplets leads to
a breakup with fragments that follow the exponential distri-
bution (16). When0 < E(x, y) < 1, whatever does not
coalesce results in breakup. As was remarked in Sec. 3.1,
cases of bounce are not taken in account. Constant collision
kernel and collection efficiencies are not realistic, but will
make possible a comparison with the analytical solutions of
the SCE and SBE Eqs. (1) and (3).

FIGURE 1. The normalized number of particles averaged over 1000
simulation runs and normalized to the initial number of particles
(N0=100) versus time is shown by the dashed line with crosses.
The results from the analytical solution to the kinetic collection
equation are shown by the continuous line.

TABLE I. Average rate of collision-coalescence events for a coales-
cence efficiencyE(x, y)=0.8.

Average rate Number of realizations

0.840 10

0.784 100

0.798 1000

FIGURE 2. The number of particles, averaged over 1000 simula-
tions and normalized to initial number of particles (crosses), versus
the analytical solution to the kinetic collection equation (KCE) at
t=700 sec. as a function of size. The initial number of particles is
N0=100.

For pure coalescence (E(x, y)=1), the results from
the Monte Carlo algorithm are the averages over
1000 realizations of the stochastic process. In this
case, every collision results in coalescence [1,7]. For
monodisperse initial conditions, we consider a cloud
of 1 cm3 volume, initially containingN0 droplets of 10µm.
These droplets were placed in bin 1 of the size distri-
bution. We have tested our code by comparing the true
stochastic averages from 1000 realizations of the stochas-
tic algorithm and droplet concentration from the analyt-
ical solution to the KCE for the constant collection ker-
nel (K(x,y)=A=1.8×10−5cm3s−1) with monodisperse initial
conditions derived by Scott [9] (see Fig. 1):

N(t) =
2N0

T + 2
with T = AN0t. (18)

In this simulation, the initial droplet concentration was set
equal toN0=100 cm−3. As can be observed, Monte Carlo
simulations yielded the same results as the analytical solu-
tions to the KCE.

For E(x, y)=1, the numerical code has also been tested
against the analytical solution to the KCE obtained by
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Golovin [10] for the sum kernel (K(x, y)=B(x + y),
B=8.82×102 cm3g−1 sec−1) with monodisperse initial con-
ditions:

N(i, t) = N0(1− φ)
(iφ)i−1

Γ(i + 1)
exp(−iφ) (19a)

with

φ = 1− exp(−BN0v0t). (19b)

In Eq. (19 a,b),Γ is the gamma function,N0 the initial
droplet concentration,B is the constant for the Golovin ker-
nel, v0 is the mass of the monomer droplet (4.188×10−9 g)
and t is the time in seconds. The comparison was made
for the same monodisperse initial distribution (100 droplets
of 10 µm). Figure 2 depicts the size distribution for t=700 s.
Again, an excellent agreement was founded between the sim-
ulated and analytical size distributions (see Fig. 2).

3.2.2. Coalescence efficiency0 ≤ E(x, y) < 1

The proportion of droplets that will coalesce or break up de-
pends on the coalescence efficiencyE(x, y). For example, if
E(x, y) =0.8, this means that on average 80% of the total
number of collisions lead to coalescence, and 20% result in
breakup. Table I displays the results of the average rate of
coalescence-breakup events by varying the number of real-
izations of the stochastic process.

This average rate can be calculated as the ratio of the
number of collision-coalescence events and the total number
of collisions. As can be observed, the average tends to the
value of 0.8 for the coalescence rate as the number of realiza-
tions is increased.

In our framework, after a collision-breakup event, the
satellite drops will follow an exponential distribution. The
masses of the fragments are calculated as a sequence of ran-
dom numbers distributed according to the probability den-
sity functionP (m; x, x1). In the present case,P (m;x, x1)
has the exponential form (16). Then, the inversion method
is again applied in order to obtain the masses of the satellite
droplets (see the analogue expressions (11) and (12) used to
obtain the exponentially distributed times to the next colli-
sion). The exponential distribution is a continuous distribu-
tion having the general form:

f(x) =
1
θ

exp
(
−x

θ

)
with x > 0 (20)

with meanE(X) = θ and varianceV (X) = θ2. Then, by
comparing (16) and (20) it can be concluded that the mean
mass of the satellite droplets is calculated as

1
γ

=
M0

nN0
. (21)

The average mass of the initial distribution isM0/N0,
becausen=1 in expression (21) represents the case when the
average mass of the satellite droplets equals the average mass

of the initial distribution. In that case there is no evolution
with respect toN(t) [3]. By integrating (16) with respect to
m we obtain:

x+y∫

0

γ2(x + y)e−γmdm =
(x + y)

(M0/nN0)
− ε(γ, x, y) (22)

In (22), x + y is the mass of the colliding drops and
ε(γ, x, y) is a few orders of magnitude less than unity if the
number of fragments from a collision is≥ 10 [3]. The nu-
merator in the first term in the rhs of (22) is the total mass
of the colliding droplets, and the denominatorM0/nN0 is the

FIGURE 3. Exponentially distributed satellite droplets obtained af-
ter a random sampling with the fragment distribution. The mean
mass of the distribution was set equal to 4.188×10−8 g.

FIGURE 4. The results from the analytical solution (17) are shown
by the solid line, versus the Monte Carlo results averaged over 1000
simulation runs.
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average mass of the satellite droplets, so that
(x + y)/(M0/nN0) is the average number of fragments
after a collision. The random sampling stops when the total
mass of satellite drops exceeds the total mass of the colliding
droplets. The final distribution is updated by relocating the
fragments in the bins according to their mass. Figure 3 dis-
plays the exponentially distributed satellite droplets obtained
after a random sampling with (16).

In order to check the algorithm for the collisional breakup
case, the results from the Monte Carlo are compared with the
analytical solution (17). The Monte Carlo simulation was
performed with a constant breakup kernel with the exponen-
tial distribution (16) for the formed satellite drops. As the
purpose of the simulation is to check the viability of the al-
gorithm, the coalescence efficiency was set equal to 0. The
initial concentration was 100 cm−3 (50-36.8µm droplets and
50-37 µm droplets). The results obtained with the Monte
Carlo algorithm and the analytical solution are shown in
Fig. 4. As can be observed, a good correspondence between
the deterministic and the stochastic process is obtained for
this case.

4. Conclusions

The chemical reactions stochastic algorithm developed by
Gillespie [1] was implemented in order to calculate the

drop growth by collision-coalescence and collision induced
breakup. Within this framework, the collision-induced
breakup is introduced by considering the collision induced
breakup probability as a new reaction channel. The re-
sults obtained with the Monte Carlo algorithm were com-
pared with the analytical solutions derived by Scott [9] for
the collision-coalescence process for a constant kernel. For
collision-induced breakup, the Monte Carlo framework was
compared with the analytical solutions derived by Feingold
et. al. [3] for an exponential distribution of satellite drops.
A very good correspondence between the Monte Carlo and
analytical solutions was found for the two cases.

A further study is needed in order to include in the frame-
work the parameterization for fragment size distribution of
satellite drops developed by Low and List [8]. The advan-
tage to the Monte Carlo approach over the analytical solution
is that it does not require a specific parameterization of the
fragmentation function. Given that drop breakup can be more
complex that can be easily parameterized, the Monte Carlo
approach will allow a more detailed study of how precipita-
tion evolves and the sensitivity to the fragmentation function
used.
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