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Quasi-static electromagnetic fields created by an electric dipole
in the vicinity of a dielectric sphere: method of images
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We present a quasi-static description of the electromagnetic fields created by an oscillating electric dipole in the vicinity of a dielectric sphere.
In this description: the fields are generated by image sources, a simple physical picture of the electromagnetic response of the dipole nearby
a dielectric sphere is obtained, and the nearfields are calculated from the Green tensor of a bulk medium. This quasi-static description can be
applied to study radiative properties of emitters (molecules, atoms, etc.) placed in the vicinity of a dielectric spherical nanoparticle.
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Se presenta una descripción cuasi-est́atica de los campos electromagnéticos creados por un dipolo eléctrico que oscila en la cercanı́a de
una esfera dieléctrica. En esta descripción, los campos son generados por fuentes imagen, se obtiene una representación f́ısica simple de
la respuesta electromagnética del dipolo cercano a la esfera dieléctrica y los campos cercanos se obtienen a partir del tensor de Green para
un medio ilimitado. Esta descripción cuasi-est́atica puede ser aplicada en el estudio de las propiedades radiativas de emisores (moléculas,
átomos, etc.) localizados en la cercanı́a de una nanopartı́cula esf́erica.

Descriptores:Radiacíon de un dipolo eĺectrico; esfera dieléctrica.

PACS: 03.50.De; 41.20.-q

1. Introduction

We focus on the electromagnetic fields created by an oscillat-
ing electric dipole in the vicinity of a dielectric sphere. Al-
though an exact treatment for the fields created by an electric
dipole placed near a sphere already exists [1], our quasi-static
description will ease the analytical description and provide a
simple physical picture. As might be expected this descrip-
tion approximates well the fields inside the volumeλ3 [λ be-
ing the wavelength of the radiation] that encloses the dipole
and the sphere. In our quasi-static description, the electro-
magnetic fields are generated by image sources. Therefore,
the finding of these sources is our central objective. A static
image description for a single charge in presence of a dielec-
tric sphere has been obtained by Lindell [2]. Based on his
methodology, we derive the image sources for the case of an
electric dipole.

The radiative properties of a emitter (molecule, atom,
quantum dot, nano-antenna, etc.) depend on the environment
in which it is embedded. The study of the influence of nearby
nano-objects on these radiative properties is important. For
example, near-field techniques rely precisely on the optical
response of a sample placed in the vicinity of subwavelength
apertures and sharp tips [3, 4], the modification of the life-
time and the fluorescence rate of a molecule in presence of
a nano-particle [1, 5–9]. Our approach can be applied to the
study of certain radiative properties of emitters placed in the
vicinity of nanoscale spheres. The reason is that most of such
emitters have a characteristic wavelength lying in the visible
spectrum which is larger than the length of a nanostructure.

The paper is organized as follows. In Sec. 2, we de-
rive the image charge and current densities arising from the

electric dipole oriented in the radial and tangential directions.
Sec. 3 establishes the expressions to obtain the electric field
created by the image distributions that are found in previous
section. Next, Sec. 4 is devoted to the discussion of the quasi-
static picture. Also, this section shows plots of the electric
field generated by a dipole for particular cases. Finally, the
conclusions are presented in Sec. 5.

2. Image sources

We consider a sphere with radiusa and dielectric constantεa

that is centered at the origin. Outside the sphere, the medium
has a dielectric constantεb and an electric dipole with mo-
mentp is located atrd = zonz [nz is the unit vector in the
z-direction]. Due to the geometry, the electromagnetic re-
sponse of an arbitrarily oriented dipole can be reduced as the
superposition of the responses of the dipole for the tangential
(nx) and radial (nz) directions [nx is the unit vector in the
x-direction].

2.1. Tangential orientation

2.1.1. Outside the sphere

The electrostatic potentialoutsidethe sphere created by the
dipole is

Φout‖(r, θ, φ) = Φf(r) + Φ‖1(r, θ, φ). (1)

Here,Φf is the potential created by the dipole in the absence
of sphere,

Φf(r) =
1

4πεoεb

p ·R
|R|3 , (2)
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andΦ‖1 is the potential arising from the induced charge dis-
tribution in the sphere which is explicitly expressed as [10]

Φ‖1(r, θ, φ) = −p
cosφ

4πεoεb

×
∞∑

n=1

(εa − εb)n
(εa + εb)n + εb

bn a

z2
o

P 1
n(cos θ)
rn+1

. (3)

Here,εo is the vacuum permittivity,R = r− rd, (r, θ, φ) are
the spherical coordinates,

b ≡ a2/zo,

and P 1
n is the associated Legendre polynomial of ordern

[see Eq. (A.5)]. Our aim is to find an image charge distri-
bution embedded in mediumεb that generates the same po-
tential as in Eq. (3). We assume that the image charge density
has the form

ρ‖1(x, y, z) =
[

d

dx
δ(x)

]
δ(y)g‖1(z), (4)

whereδ(. . .) is the Dirac-δ function, andg‖1(z) is the func-
tion to be determined. Since the charge density of a point
dipole is proportional to the spatial derivative of a Dirac-δ
function, the charge densityρ‖1(x, y, z) [Eq. (4)] can be seen
as a line of dipoles along thez-axis that are oriented in thex-
direction. Moreover, the charged line extends from the center
of the sphere toz = a. From these assumptions, the potential
created byρ‖1 is

Φ‖1(r, θ, φ) =
∫

V ′

ρ(x′, y′, z′)
4πεoεb|r− r′|dV ′

= −r sin θ cos φ

4πεoεb

a∫

0

g‖1(z′)
(r2 − 2rz′ cos θ + z′2)3/2

dz′. (5)

By using the fact that [11]

1
(1− 2uv + v2)3/2

=
∞∑

n=1

vn−1

√
1− u2

P 1
n(u), |v| < 1, (6)

and settingu = cos θ andv = z′/r, Eq. (5) becomes

Φ‖1(r, θ, φ) = − cosφ

4πεoεb

∞∑
n=1

bn−1 P 1
n(cos θ)
rn+1

×
a∫

0

g‖1(z′)
[
z′

b

]n−1

dz′. (7)

By comparing Eqs. (3) and (7), we obtain thatg‖1(z) must
fulfill

a∫

0

g‖1(z′)
[
z′

b

]n−1

dz′ = p
a3

z3
o

εa − εb

εa + εb

n

n + α
,

n = 1, 2, . . . , (8)

whereα is

α ≡ εb/(εa + εb). (9)

It turns out that

g‖1(z) = p
a3

z3
o

εa − εb

εa + εb
δ(z − b)

− p
a

z2
o

εb(εa − εb)
(εa + εb)2

(z

b

)α

Θ(b− z) (10)

satisfies Eq. (8), whereΘ(. . .) is the step function.g‖1(z)
given by Eq. (10) is valid for1 + α > 0.

If the electric dipole oscillates with angular frequencyω
asp = pnx exp(−iωt), then it induces a density current in
the x-direction, that is,j‖1(r, ω) = j‖1(r, ω)nx. By using
the continuity equation [∂j‖1(r, ω)/∂x = iωρ‖1(r, ω)] and
Eq. (4), the density current in the quasi-static approximation
becomes

j‖1(r, ω) = iωδ(x)δ(y)g‖1(z). (11)

We notice that the current density [Eq. (11)] is constituted
by: (1) a single dipole that is located atbnz and is oriented
in thex-direction, and (2) a set of dipoles that are placed in
the line fromz = 0 to z = b and oriented in thex-direction
[see Fig. 1].

2.1.2. Inside the sphere

Now, we turn to the case for the potential inside the sphere
that originated from the presence of the dipole. This potential
is (see Appendix A)

Φ‖2(r, θ, φ) = p
cos φ

4πεoεa

×
∞∑

n=1

εa(2n + 1)
(εa + εb)n + εb

rn

zn+2
o

P 1
n(cos θ). (12)

Similarly to the previous case, we look for a charge distri-
bution ρ‖2 now embedded in mediumεa which creates the
same potential as Eq. (12). Also, we consider that the image
charge distributionρ‖2 is a line of dipoles which are oriented
in thex-direction, but the charged line extends fromz = a
to z → ∞. Thus,ρ‖2 takes the same form as in Eq. (4), but
g‖2(z) replacesg‖1(z) and the integral runs along the afore-
mentioned line. It follows that the potential created byρ‖2
is

Φ‖2(r, θ, φ) = −r sin θ cos φ

4πεoεa

×
∞∫

a

g‖2(z′)
(r2 − 2rz′ cos θ + z′2)3/2

dz′. (13)
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FIGURE 1. (a) An electric dipolep is oriented along thex-axis
and located a distancezo from the center of the sphere with radius
a and dielectric constantεa. (b) The image distribution (embed-
ded in mediumεb) for the field outside the sphere is composed of
a dipole and a line of dipoles. (c) The image distribution (embed-
ded in mediumεa) for the field inside the sphere is composed of a
dipole and a line of dipoles.

By using Eq. (6) withu = cos θ and v = r/z′, Eq. (13)
becomes

Φ‖2(r, θ, φ) = − cosφ

4πεoεa

∞∑
n=1

P 1
n(cos θ)

rn

zn+2
o

×
∞∫

a

g‖2(z′)
[zo

z′

]n+2

dz′. (14)

A comparison of Eqs. (12) and (14) shows thatg‖2(z) must
fullfill

∞∫

a

g‖2(z′)
[zo

z′

]n+2

dz′

=−p
2εa

εa+εb

n+1/2
n+α

, n=1, 2, . . . (15)

Then, it is found that the solution of Eq. (15) is

g‖2(z) = −p
2εa

εa + εb
δ(z − zo)

− p
εa(εa − εb)
(εa + εb)2

Θ(z − zo)
z

z2
o

(zo

z

)α

. (16)

Also, g‖2(z) given in Eq. (16) is valid for1 + α > 0.

As the dipole oscillates with angular frequencyω, the in-
duced current density that is oriented in thex-direction be-
comes

j‖2(r, ω) = iωδ(x)δ(y)g‖2(z). (17)

As can be seen, the current density [Eq. (17)] arises from: (1)
a single dipole that is located atzonz, and (2) a set of dipoles
that are placed at the line fromz = zo to z → ∞. All of
them are oriented in thex-direction [see Fig. 1c].

2.2. Radial orientation

2.2.1. Outside the sphere

Similarly to Eq. (1), the potential outside the sphere for the
radial orientation is

Φout⊥(r, θ, φ) = Φf(r) + Φ⊥1(r, θ), (18)

namely, the addition of the potential in absence of the sphere
and the potential created by the induced charge distribution
in the sphere. The latter is [10]

Φ⊥1(r, θ) =
p

4πεoεb

×
∞∑

n=0

(εa − εb)n(n + 1)
(εa + εb)n + εb

bn a

z2
o

Pn(cos θ)
rn+1

, (19)

wherePn(. . .) is the Legendre polynomial of ordern. Now,
we assume that the image charge density has the form

ρ⊥1(x, y, z) = δ(x)δ(y)h⊥1(z). (20)

Also, we consider that the charge extends fromz = 0 to
z = a. Thus, the potential created byρ⊥1 is

Φ⊥1(r, θ) =
1

4πεoεb

×
a∫

0

h⊥1(z′)
(r2 − 2rz′ cos θ + z′2)1/2

dz′. (21)

By the fact that

1
(1− 2uv + v2)1/2

=
∞∑

n=0

vnPn(u), |v| < 1, (22)

with u = cos θ andv = z′/r, Eq. (21) can be expressed as

Φ⊥1(r, θ) =
1

4πεoεb

×
∞∑

n=0

bn Pn(cos θ)
rn+1

a∫

0

h⊥1(z′)
[
z′

b

]n

dz′. (23)

By comparing Eqs. (19) and (23),h⊥1(z) must fulfill
a∫

0

h⊥1(z′)
[
z′

b

]n

dz′

= p
a

z2
o

εa − εb

εa + εb

n(n + 1)
n + α

, n = 0, 1, 2, . . . (24)

It follows that Eq. (24) is satisfied if

h⊥1(z) =
d

dz
g⊥1(z), (25)

g⊥1(z) ≡ −p
a3

z3
o

εa − εb

εa + εb
r1(z)δ(z − b)

− p
a

z2
o

εa(εa − εb)
(εa + εb)2

(z

b

)α

Θ(b− z), (26)

r1(z) = (z/b)α+1. (27)
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FIGURE 2. (a) An electric dipolep is oriented along thez-axis and
located at a distancezo from the center of the sphere having radius
a and dielectric constantεa. (b) The image distribution (embed-
ded in mediumεb) for the field outside the sphere is composed of a
dipole and a charged line. (c) The image distribution (embedded in
mediumεa) for the field inside the sphere is composed of a dipole
and a charged line.

The above solutionh⊥1(z) [Eq. (25)] is valid forα > 0.

The induced image density current by the oscillating
dipole is oriented in thez-direction [j⊥i(r, ω)nz]. This den-
sity current in the quasi-static approximation is

j⊥1(r, ω) = iωδ(x)δ(y)g⊥1(z). (28)

As seen from Eqs. (28) and (26) the image distribution is: a
point dipole that is located atz = b, and (2) a line of dipoles
extending fromz = 0 to z = b. Both distributions being
oriented in thez-direction.

2.2.2. Inside the sphere

The static potential inside the sphere is (see Appendix A)

Φ⊥2(r, θ) = − p

4πεoεa

×
∞∑

n=0

εa(2n + 1)(n + 1)
(εa + εb)n + εb

rn

zn+2
o

Pn(cos θ). (29)

We assume the same form for the image charge distribution
as in Eq. (20), but the charge is located outside the sphere
andh⊥2 replacesh⊥1. The potential created is obtained as in
Eq. (21) withh⊥1 replaced byh⊥2 and the integration goes
from z = a to z → ∞. Then, by using Eq. (22) with the
substitutionu = cos θ andv = r/z′, the potential produced
by the image charge distribution turns out to be

Φ⊥2(r, θ) =
1

4πεoεa

∞∑
n=0

Pn(cos θ)
rn

zn+2
o

×
∞∫

a

zoh⊥2(z′)
[zo

z′

]n+1

dz′. (30)

Again, by comparing Eqs. (29) and (30), we obtain that
h⊥2(z) must fulfill

∞∫

a

h⊥2(z′)
[zo

z′

]n+1

dz′ = − p

zo

2εa

εa + εb

× (n + 1/2)(n + 1)
n + α

, n = 0, 1, 2, . . . (31)

We found that the solution of Eq. (31) takes the form:

h⊥2(z) =
d

dz
g⊥2(z), (32)

g⊥2(z) = −p
2εa

εa + εb
r2(z)δ(z − zo)

− p
εa(εa − εb)
(εa + εb)2

z

z2
o

(zo

z

)α

Θ(z − zo), (33)

r2 =
(zo

z

)α−2

. (34)

Also, h⊥2(z) is defined forα > 0.
As the dipole oscillates, it induces the density current dis-

tribution, along thez-direction, given by

j⊥2(r, ω) = iωδ(x)δ(y)g⊥2(z). (35)

The image charge density is constituted by: (1) an image
dipole that is located atz = zo, and (2) a line [fromz = zo

to z → ∞] of dipoles that are oriented in thez-direction.
This is depicted in Fig. 1c.

3. Electric Field

If a currentj(r, ω) is embedded in a nonmagnetic medium
then the electric field produced by this current is given by

E(r, ω) = iµoω

∫ ←→
G (r, r′, ω)j(r′, ω)d3r′. (36)

Here,µo is the vacuum permeability and
←→
G (r, r′, ω) is the

Green tensor that characterizes the electromagnetic response
of an electric dipole embedded in an arbitrary environment.

The electric field created by the dipole in the vicinity of
the sphere in the quasi-static approximation is

Eβi(r, ω) = Eβo(r, ω)δ1i + Escaβi(r, ω), (37)

whereβ =‖,⊥, i = 1 (outside), 2 (inside), andδ is the Kro-
necker tensor.Eβo(r, ω) is the electric field created by the
dipole in the absence of the sphere which is

Eβo(r, ω) =
k2

o

εo

←→
G 1(r, zonz, ω) pnβ , (38)

andEscaβi(r, ω) is the electric field created by the image cur-
rentsjβinβ defined as

Escaβi(r, ω) = −k2
o

εo

∫ ←→
G i(r, z′nz, ω)nβ gβi(z′)dz′.

(39)
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Here,n‖(⊥) ≡ nx(z), ko ≡ ω2/c2 [c is the velocity of light

in a vacuum], and
←→
G 1(2) is the Green’s tensor for an un-

bounded, isotropic and nonmagnetic medium with dielectric
constantεb(εa). The explicit expression of this tensor is en-
countered in Appendix B.

4. Discussion of the quasi-static description

Independently of the dipole orientation, the electric field (in-
side or outside) arises from a point dipole and a line-current
distribution. The electric field created by the point dipole re-
sembles the quasi-static field created for a dipole in the vicin-
ity of a planar interface. For the case of the field outside
the sphere, the solution differs by a geometric weight factor
(a3/z3

o) and the location of the image dipole.
If the radiusa is large (a → ∞), then we could expect

that the image solution for the planar interface must be re-
covered. This is indeed the case. Straightforwardly, the im-
age line contributions vanish. For the image point dipole that
creates the field outside the sphere, by definingzo ≡ a+∆s,
the geometric factora3/z3

o → 1 andb → a−∆s, namely the
dipole and its image are equidistant from the interface. As a
consequence, the image sources are the same as those for a
planar interface in this limita →∞.

As seen in the previous section, the Green tensor has
retardation. Therefore, our solution fulfills the dynamic
Maxwell equations. However, the boundary conditions of the
electromagnetic at the surface of the sphere are not exactly
matched, since our solution comes from a static assumption.
Nevertheless, the electromagnetic fields should be well ap-
proximated by using quasi-static approach in the vicinity of
a small sphere (a ¿ λ).

We can consider a dielectric sphere with absorption
(Im[α] > 0), but the validity of the method is assured if
Re[α] + 1 > 0 (Re[α] > 0) for the tangential (radial) ori-
entation.

Finally, merely as an illustration of our quasi-static
method, we plot the electric field intensity|E(r, ω)|2 gen-
erated by the dipole in the presence of a dielectric sphere
for particular cases. We consider a sphere with radiusa =
30 nm, and a dipole located atzo = 75 nm and oscillating
with a frequencyω corresponding to the free-space wave-
lengthλo = 477 nm. We treat the cases for the sphere made
of glass (εgl = 2.25), silicon (εsi = 19.72 + 0.8i), and gold
(εau = −1.7 + 4.46i). The spheres are embedded in a vac-
uum (εb = 1) with the exception of the gold sphere which is
embedded in glass. In Fig. 3, we show the contour curves
of the electric field intensity|E(r, ω)|2 at thexz-plane for a
dipole oriented in the radial direction and spheres made of
glass, silicon, and gold. We note that the intensity contour
curves suffer a small distortion from the presence of the glass
sphere, whereas these curves are strongly distorted for the
silicon and gold spheres. This is due to the fact that the scat-
tered field by the silicon and gold particles is greater than by
the glass sphere. As seen in Figs. 3b and 3c for the silicon

and gold particles, the scattered field is concentrated at the
left and right edges of the sphere. Since gold absorbs more
energy than silicon and glass atλo, the gradient of the in-
tensity|E(r, ω)|2 inside the gold sphere is larger than in the
other cases. Last, we consider the case of the dipole oriented
tangentially. The contour curves of the electric field inten-
sity |E(r, ω)|2 at thexz-plane for this orientation are plotted
in Fig. 4. Similarly to the dipole oriented radially, the dis-
tortion of intensity contour lines is more noticeable for the
silicon and gold sphere than for the glass sphere. The in-
tensity |E(r, ω)|2 inside the sphere for the glass and silicon
particles is almost homogeneous, while the opposite happens
for the gold sphere (see Fig. 4). The scattered field near the
sphere is concentratted predominantly on the right hand side
of the sphere. Indeed, interference between the field com-
ing directly from the dipole and the scattered electric field is
appreciable in this region.

FIGURE 3. Contour curves oflog |E(r, ω)|2 at thexz-plane for
a dipole oriented in the radial direction,zo = 75 nm, a = 30 nm,
andλo = 477 nm. Each plot covers an areaλo/2 × λo/2. The
color scale maps the same intensity in the plots. (a) Glass sphere
(dielectric) embedded in vacuum (εb = 1). (b) Silicon sphere
(semiconductor) embedded in vacuum (εb = 1). (c) Gold sphere
(metal) embedded in glassεb = 2.25.
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FIGURE 4. Contour curves oflog |E(r, ω)|2 at the xz-plane
for a dipole oriented in the tangential direction,zo = 75 nm,
a = 30 nm, and λo = 477 nm. Each plot covers an area
λo/2 × λo/2. The color scale maps the same intensity for the
plots. (a) Glass sphere (dielectric) embedded in vacuum (εb = 1).
(b) Silicon sphere (semiconductor) embedded in vacuum (εb = 1).
(c) Gold sphere (metal) embedded in glassεb = 2.25.

5. Conclusions

We presented a quasi-static description in which the electro-
magnetic fields that are created by an oscillating dipole arise
from image sources. We derived the expressions of the image
sources for the principal orientations (tangential and radial).
We found that the current image source for these orientations
is constituted by a point dipole and a line current. A simple
physical picture for the response of the electric dipole in the
vicinity of the sphere was obtained. The quasi-static elec-
tromagnetic fields produced by the dipole are obtained from
the Green tensor for a bulk material. The contribution of the
field arising from the line current is obtained by performing
a single quadrature integral. To illustrate our method, we ob-
tained plots of the electric field created by an electric dipole
for particular cases.

This method can be applied to study the electromagnetic
response of emitters near a dielectric nano-sphere.

Appendix

A. Potential inside sphere

Herein, we derive the potential inΦβ,2 (β =⊥, ‖) from the
potential created by a single chargeq placed outside the
sphere atzonz which is given by [12]

φin(r, θ) =
q

4πεo

×
∞∑

n=0

2n + 1
(εa + εb)n + εb

rn

zn+1
o

Pn(cos θ). (A.1)

The potential inside the sphere can be obtained from
Eq. (A.1) as:

Φ⊥2(r, θ) =
p

q

∂

∂zo
φin(r, θ), (A.2)

Φ‖2(r, θ, φ) =
p

qzo

∂

∂θo
φin(r, ξ)

∣∣∣∣
θo=0

, (A.3)

where

cos ξ = cos θ cos θo + sin θ sin θo cos φ. (A.4)

To obtain the final expression forΦ‖2, we use the fact that

P 1
n(y) = (1− y2)1/2 d

dy
Pn(y). (A.5)

B. Green tensor for a bulk medium

The Green tensor in a bulk material with dielectric constant
ε(ω) can be expressed as

←→
G (r, r′, ω) =

←→
G nf(r, r′, ω)

+
←→
G if (r, r′, ω) +

←→
G ff (r, r′, ω), (B.1)

where
←→
G nf(r, r′, ω),

←→
G if (r, r′, ω), and

←→
G ff (r, r′, ω) are the

nearfield, intermediate-field, and farfield contributions, re-
spectively. These partial contributions are defined as

←→
G nf(r, r′, ω) =

eikR

4πR

1
k2R2

[
−←→I + 3nRnR

]
, (B.2a)

←→
G if (r, r′, ω) =

eikR

4πR

−i
kR

[
−←→I + 3nRnR

]
, (B.2b)

←→
G ff (r, r′, ω) =

eikR

4πR

[←→
I − nRnR

]
. (B.2c)

Here,k = ω
√

ε(ω)/c, R = |r− r′|, nR = (r − r′)/R, and←→
I is the unit dyadic.
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