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The majority of human diseases are related with the dynamic interaction of many genes and their products as well as environmental con-
straints. Cancer (and breast cancer in particular) is a paradigmatic example of such complex behavior. Since gene regulation is a non-
equilibrium process, the inference and analysis of such phenomena could be done following the tenets of non-equilibrium physics. The
traditional programmein statistical mechanics consists in inferring the joint probability distribution for either microscopic states (equi-
librium) or mesoscopic-states (non-equilibrium), given a model forpidicle interactions €.g. the potentials). Arinverse problemin

statistical mechanics, in the other hand, is based on consider@adjzationof the probability distribution of micro- or meso-states and used

it to infer the interaction potentials between particles. This is the approach taken in what follows. We analyzed 261 whole-genome gene
expression experiments in breast cancer patients, and by means of an information-theoretical analysis, we deconvolute the associated set of
transcriptional interactiong.e. we discover a set of fundamental biochemical reactions related to this pathology. By doing this, we showed
how to apply the tools of non-linear statistical physics to generate hypothesis to be tested on clinical and biochemical settings in relation to
cancer phenomenology.

Keywords:Cancer genomics; information theory; molecular networks.

La mayoia de las enfermedades humana&m®selacionadas con la interaggide muchos genes, y con condicionantes ambientales, lo que
las hace feamenos complejos. El afisis de las interacciones bidguicas relacionadas se basa frecuentemente en la consitfedecias
relaciones de regulaim gerética. Puesto que la reguléoi gerética es un proceso fuera del equilibrio, la inferencia y @liais deésta
puede hacerse siguiendo los principios de la tern@odioa irreversible y la mémica estaidtica fuera del equilibrio. El enfoque tradicional
de la meénica estaidtica es inferir la distribuéin de probabilidad conjunta para los estados del sistemarerinbs de un modelo para
las interacciones. Un problema inverso en améca estaidtica consiste en considerar una realiaadie la distribuén de probabilidad y
emplearla para inferir las interacciones entre lad@ales. Tomamos este enfoque para analizar 261 experimentos de @xpieesiRNA de
genoma completo, en pacientes cancer de mamay, a trés de una medida basada en laf@de la informadn descubrir el conjunto de
interacciones transcripcionales asociadas. Mostrao® @plicar las herramientas de lasia estatstica no-lineal para generar Bigsis
(es decir, el conjunto de interacciones inferidas) que pueden ser probadas en efs@pssydbioqimicos con reladin a la fenomenoldg
del cancer.

Descriptores:Gerbmica del @ncer; tedia de la informadn; redes moleculares.

PACS: 87.10.Vg; 87.16.Yc; 87.18.Cf; 89.75.Hc; 89.70.Cf

1. Introduction sue is that the process of gene expression by itself is a com-
plex one, both from the biochemical and thermodynamical

The forms and functions of living cells, also calleellular  points of view [1, 2]

phenotypesire known to be determined by the interplay of - . . .

many genes and their products such as proteins, enzymes and The complex de\f,cr_lpnor) given by the set O.f Interactions

so on. Given this fact, the identification of rules of behaviorconS'StS’ generally, in identifying gene correlations from ex-

at the genome-wide level is essential to elucidate both norperlmental data through the use of theoretical models and

mal cell function and pathological phenotypic conditions atcomputatlonal analysis. The discovery of such an interac-

whole-system scale. A usual tool to track down this pheno:uons set involves the solution of an inverse problem (a de-

typic diversity is gene expression analysis. Since the proce (‘Sonvolutlon) that basically tries to uncover the interactions

of gene expression by itself is often regulated by differen?rom the properties and dynamics of pb;ervable pehawor n
e form of, for example, RNA transcription levels in a char-

genes and their products, statistical associations abound be-~ """ . .
tween genetic transcripts abundanegy( messenger RNA actenistic gene expression profile.

segments [MRNAS]). These associations could be behind the Genome-wide transcriptional profiling, also called Gene
mechanisms of cell function. However, one hard-to-grasp isExpression Analysis (GEA) has permit us to go far ahead of
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studying gene expression at the individual-level, by providingthe original (primary) tumor and entering the bloodstream or
global information about functional inter-relations betweenlymphatic system. The cells invade other organs and form
genes, mMRNAs and the associated regulatory proteins. GEAew tumors that damage these organs. The spread of cancer
have increased our understanding of the dynamics and intein this form is what we calinetastasis

play between different processes involved in gene regulation Cancer neoplasms correspond to malignant cells origi-
and have pointed out to previously unappreciated biologicahated in glandular or epithelial lineages due to states of disor-
functional relations, such as the coupling between nucleadered genetic behavior. One particular point of focal interest
and cytoplasmic transcription and metabolic processes [2]s the de-regulation in the mechanisms that control the tran-
GEA also revealed extensive communication within regula-scription of mRNA under normal conditions. A usual sce-
tory units, for example in the organization of transcription nario is given by the so calleianscriptional burstswhich
factors into regulatory motifs. It is these kinds of regulatory are stages of unusually high levels of mMRNA synthesis within
interactions what one is ultimately looking for in GEAs. affected cells.

Several stages are involved in the regulation of gene In the case of breast cancer, it forms in tissues of the
expression-transcription: such as mRNA processing, nucleasreast, usually the ducts (tubes that carry milk to the nip-
export, translation and degradation. These steps were uspte) and lobules (glands that make milk). It occurs in both
ally analyzedin isolation by using conventional biochemi- men and women, although male breast cancer is rare. When
cal techniques like the PCR reaction and electrophoresis [1breast cancer cells spread, the cancer cells are often found in
This point of view has left the impression that such stagesymph nodes near the breast. Also, breast cancer can spread
are independent. In the past molecular biology research was almost any other part of the body. The most common are
focused on the mechanisms underlying individual gene exthe bones, liver, lungs, and brain. When metastatic processes
pression or in the best scenario the behavior of a small set efrise, the new tumor has the same kind of abnormal cells as
genes, rather than exploring regulatory mechanisms that cafie primary tumor. For example, if breast cancer spreads to
influence many genes at one time. the bones, the cancer cells in the bones are actually breast

Systematic studies of genome-wide binding patterngancer cells. The disease is metastatic breast cancer, not bone
made evident the existence of a great deal of coordinate reggancer. For that reason, it is treated as breast cancer, not bone
lation among transcription factorsd. genes that catalyze or cancer.
inhibit the expression of other genes, either by themselves or Gijyen the large evidence of the genetic origins of cancer,
by means of their produced proteins). Factors that combinag usual experimental tool to its study is the use of genome-
torialy regulate (on a concomitant way) a particular gene alsvide high-thoughput gene expression analysis. In the follow-
often coordinately regulate the expression of other genes, pegng, we will demonstrate how to apply the tools of statistical

tentially even themselves or each other. For an introductiofphysics to extract relevant information for such kind of ex-
to gene expression phenomena and transcriptional regulatigierimental studies.

from a physicochemical point of view in Ref 3.

1.1. Cancer 2. Gene expression data analysis

Cancer is the random, uncontrolled and accelerated prolifetn recent times, the use of high density oligonucleotide arrays
ation of cells due to genetic abnormality. This genetic ab-has become widely used in several instances in the molecular
normality usually starts with sets of mutated genes that eithepiomedical research community. The system, also known as
suppress or stimulate the cell’s cycle continuity. GeneChi®-technology made use of oligonucleotides, usu-
Normally, cells grow and divide to form new cells as the ally of 25 base-pairs in longitude that are used to probe genes.
body needs them. When cells grow old, they die, and nevwEach gene is generally represented by a set of 16-20 pairs
cells take their place. Sometimes, this process goes wrongf those oligonucleotides known as probe sets. One of each
New cells form when the body does not need them, and olghair of these oligos is known as the perfect match (PM) probe
cells do not die when they should. These extra cells can forrand correspond to an exact segment of the complementary se-
a mass of tissue called a growth or tumor. Tumors (or neoguence of the associated gene, whereas the other one, known
plasms) can be benign or malignant. Benign tumors are nds the mismatch probe (MM) is made by changing the middle
considered cancer, because they are rarely life-threateningl3th) base in order to look up for the effects of non-specific
can be removed and usually do not grow back. Also, celldinding [4].
from benign tumors do not invade the tissues around them mMRNA experimental samples are prepared, labeled with
nor spread to other parts of the body. In the other hand, maa fluorescent dye (see Fig. 1) and hybridized to the arrays
lignant neoplasms are cancer, may be life-threatening. An¢chips) (Fig. 2). Then the chips are scanned with a laser and
although they often can be removed, in many cases they grounages are produced (Fig. 3) and analyzed to obtain an inten-
back. Also carcinomas are able to invade and damage nearlsjty value asociated to each probe. The intensity of the fluo-
tissues and organs and to spreatt{astasizeto other parts rescent signal of a probe is related to the concentration of the
of the body. Cancer cells spread by breaking away fromomRNA molecule corresponding (tagged) by this probe [3].
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Of particular interest results the question of how to com- %
bine the data for the set of 16-20 PM-MM pairs to define
a measure oéxpressiorthat represent in an optimal way the
amount of the associated mMRNA species [5]. This is not a§
trivial issue since, as one could see for the physicochemical
procedures just sketched, there are a lot of variables involveog
in the analysis (several orders of magnitude more than th
number of experimental samples) and the resulting signals
are very noisy. These facts imply that the usliatjuentist \
approach to probability and statistics has to be modified to#
deal with GEA data.

In this work we analyzed genome wide expresion dat
obtained with Affymetrix HGU133Plus2 human gene ex-
pression chip under procedure GPL570 for 261 Microarray:
(MAs) of Breast Cancer (BRCA) and Normal tissue samples §
from several independent experiments (from the following = —— : T —_—
NIH-NCBI/GEO accession keys: GSE7904 (62 samples)FiGurE 3. Scanning photograph of an actual GeneGbigs read
GSE5460 (129 samples), GSE5764 (30 samples), GSE374% an Affymetrix unit.

(40 samples). All arrays were processed within the same

protocol (GPL570) and in all cases unnormalized fluores-
cence raw data files (.CEL files) were used. The pre-
processing was done according to the RMA [6] algorithm
implemented in R/BioConductor [8] (see Sec. 2.2) and sta-
tistical tests for differential expression profiles were done in
the FlexArray/Nanuq platform [9] (see Sec. 2.3).

2.1. Across laboratories comparisons

In this work (and in many other GEA-related works whose
goal is to infer relationships under an integrative approach -
the so-calledSystems Biologparadigm-) we made use not
just of a single experimental data source but of many. We did
S0, because in order to obtain the statistical power to make a
reasonable deconvolution of the great information amount as
given by high-througput technologies, one needs the biggest
possible number of experimental samples. As is the case the

Derechos Reservados ® INMEGEN México

FIGURE 1. mRNA from the samples is marked with a fluorescent nymber ofin-houseexperiments that an individual facility
dye molecule [red spots] in solution and then put in contact to thequId run is often limited by financial and technical mat-

surface of the GeneChip .

Derechos Reservados ® INMEGEN México

ters [10].

Of course given the complex nature of the experimental
setups for GEA [3], a question raises on the validity of using
data from multiple sources (the so-calladross-labsprob-
lem). Eventhough experimental settings may be very similar,
each laboratory will usually end up with different results in
the form of p-value distributions or gene lists. Under this con-
ditions many people take these results and perform a statisti-
cal meta-analysis of the different data [10,11] to combine in a
somehow systematic manner information from different labs.
Of course, in order to be combined across studies, quantitita-
tive estimates should refer to the same measure or quantity,
should be standarized to the same scale and should possess
some inherent measure of variability.

FIGURE 2. Tagged mRNA molecules (gene probes) hybridize in A usual approach to this kind of meta-analysis is the per-
the chip’s surface to complementary probes in localized regionsforming of hierarchical Bayesian partitions and permutation
(probe-sets) that now shine (in red here for pedagogical purposespf processed data [12]. A somehow better alternative in-

under the scanner’s laser.

volves gatheringaw experimental data (.CEL files in the

Rev. Mex. . 55 (6) (2009) 456-466



INFORMATION-THEORETICAL ANALYSIS OF GENE EXPRESSION DATA TO INFER TRANSCRIPTIONAL INTERACTIONS 459

case of Affymetrix GeneChips) from several sources and thethat, as stated above, consists on adjusting the background
pre-process them and normalize them together [11]. This ofioise via the conditional expectation of the signals on the
course implies a bigger amount of computational and humaPM values. The usual way to do so is by considering expo-
resources but is in our view a mucleanerand better alter- nentially distributed signals and normally distributed back-
native. Also Bayesian or information theoretical estimates ofyround noises [5].
the joint probability distributions inferred from thegpeols Also, in the vast majority of the applications of
of data are more sound, because systematic and fixed effed@eneChips one wishes to learn how mRNA concentration
tend to cancel [12]. We then decided to proceed accordinglprofiles differ in response to genetic, cellular and environ-
and thus we only included in this paper, raw data of chips promental differences. One important instance is when large (or
cessed under the very same protocol in different laboratoriesmall) expression of a given gene or set of genes may cause
We then did all the pre-processing and array normalizatioran ilines (such as cancer), thus resulting in variation between
ourselves. diseased and normal tissue (a so called case-control compari-
son). However, observed intensity levels also depend on sam-
2.2. Pre-processing: Background correction and nor- Ple preparation, manufacture of the arrays, and lab process-
malization ing of such arrays (dye labeling, hybridization and scanning).
These are called sourcesalfscuring variatior{5].
By analyzing the statistical behavior of the PM and the MM  Due to these facts, unless arrays are correulynalized
probes under controlled experimental conditions [5] somecomparing data from different arrays can lead to misleading
facts are revealed. For example, for large values of genetiesults. For example, in Fig. 4 we present a scatter plot of in-
abundance the differences between PM and MM probes havensity of two different chips one from a breast cancer patient
a bimodal distribution with the second mode occurring forand the other from normal tissue. As we can see, it shows
negative differences. This effect has been related with het-
eroscedasticity (unequal variances in the distributions) [6].
Another strong challenge in GEA is related to how to ef-
fectively dissociate actual gene expression values from exper- of L
. . . . . 8,182 i o k v Idertity line
imental noise. The hybridization noise has been found [14] 4'098 ] ?
to have very strong dependence on the expression level, witt
different characteristics for the low and high expression val- A
ues. The hybridization noise characteristics at the high ex-
pression regime are mostly Poisson-like, whereas its charac:
teristics for the small expression levels are more complex,
probably due to cross-hybridization. Thus, in order to cor-
rectly assess the statistical relevance of the measured gen
expression differences between two experiments, it is crucial ~ *2
to characterize the fluctuation caused purely by experimental o, B R 1.0242'048 4@53-1 =
measurement. It is known that noise depends strongly on the ) _ )
expression level. Therefore, an expression-dependent distrf URE 4. Scatter plot of intensity of a breast cancer patient (y-
bution function is needed to characterize the variability be-2XIS) Versus normal tissue (x-axis) mRNA intensity levels.
tween replicates [14].

Scatter Plot of Intensity
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A related source of undesired variation is that, on increas- @@ Plt of Expression
ing mRNA concentration levels, the distance of the average 14 =% T
PM intensity to the background noise increases. The levels 13 4 V| Idertity ine

of background intensity could thus mask the effects of some 2
mean-valued expression levei®. the averageshining ef- "
fect could hide a relatively important signal. In order to op-
timize thesignal-to-noise-ratiqSNR) a background correc-
tion has been proposed [5]. We will consider a model for
the PM probes including bottrue signal and background
noise in the following formPM,;, = bgijn + Sijn. If we
assume that each array has a common average backgrour
level E(bg;;»,) = 0, it is possible (but very rige) to con-
sider removal of the background effect by substracting the
Bi, PM;ff,{Tected = PM;;, — (B;. A better alternative for im- 2 4 6 & 10 12 14

proving the SNR is to consider the background correction agcure 5. QQ-plot for the quantile normalized distributions from
B(PM;j;n) = E(sijn|PM,;n). This background correcting the same data as in Fig. 4. Deviations from the identity line are
procedure is based on the consideration ofBheansform  over- or under- expressed genes.

-
L . R = - TS R = Y = I e |
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a very noisy pattern, mostly because the data is not properfgils of the distribution. However, in practice, given the
normalized. Nevertheless, since we are looking for statistifact that probeset expression measures are usually computed
cally significant deviations from the identity line (no expres- using multiple probes, this problem is highly diminished.
sion change) unnormalized data may lead to wrong concluAlso after analyzing the error distributions, some researchers
sions. Several methods have been proposed to normalize thave proposed expression measures based only on the PM
arrays and it has been found [6] theptantile normalization  probes [13].

(QN) performs best. The goal of QN is to make the distri- A general scheme has been proposed, called the Robust
bution of probe intensities the same for arrays within a giverMulti-array Average (RMA) algorithm [6] which

category (quantile), in such case a quantile-quantile plot (QQ

plot) will be given as an identity line (see Fig. 5). 1) background-corrects the arrays usingexpectation-
A generalization for the usual QQ-plot fardata vectors of-the-signatransformationIg-transform),

could be given in terms of projection operatorformalism, i

as follows: if alln data vectors (in this caseis the number 2) normalizes the arrays by a QN and

of arrays) have the same distribution, then plotting the quan-
tiles inn dimensions gives a straight line along the direction
given by the unit vector

3) Fits a linear model to summarize the probe intensities
for each probeset.

1 1 1 RMA is less noisy than all other measures at lower mRNA
D= (\/ﬁa ﬁ’ R \/ﬁ> : concentrations, h_as a smaller spread (and thus is better tai-
_ lored to detect differentially expressed probe-sets) and has
This suggests thus that we could make a set of datasets hayreater sensitivity. For all the reasons above we decided to
ing the same distribution if weroject the points of our:  perform RMA correction and pre-processing of the raw gene

dimensional quantile plot onto the diagoiial expression data before performing any additional analyses.
If we denote byg, = (gx.1,- - - qx,) the vector of the k-

guantiles fom arrays and the unit-diagonal, the associated 2.3. Statistical tests for differential expression
projection that make all quantiles lying in the diagonal is thus

written as: As we have seen whole-genome GEA has turned out to be
Lo Lo Lo a technology that now is capable of providing genome-wide

proj [D|g, ] = |~ Z Qhjs — Z Qhj. - — Z ai| @ patterns'of gene expression across many different g:onqmons.
e ni4 nia The basic level of analysis of these patterns consists in cat-

) ) egorize whether observed differences in expression (see for
In other words, weguantile-normalizethe arrays to the  example, Fig. 6) are significant or not. Traditional statisti-
same distribution by taking the mean quantile and substitutca| methods are unsatisfactory due to the lack of a systematic

ing itinstead of the data item in the original dataset. This QNframework that can accommodate noise, variability, and low
process could be computationally implemented in the followeplication often typical of microarray data.

ing form [7] :

1. Given a dataset consisting ofarrays of lenghp, form Eomparieonat Tiskoorans

the matrixX of dimensionp x n where each array is a 5,000 »
column ss00 ] L
2. Sort each column af to getX ... 4,000 u
3,500 L
3. Take the means across rows Xf,,» and assign this — N
means to each element in the row to gét ., g - -
2 2,500
4. getX normalized by rearranging each colummif, ., ¢ 2000 - 1%
to have the same ordering as the origi®al §.500
We could rephrase Eg. 1 and the above algorithm interms 1,000
of non-linear transforms of the original distributions. QN is 500
a special case of a transformatimh = F~1(G(x;)) where 0 1m
estimates oty are given by the empirical distribution of each 2 4 B 8 10 12 14
array and estimates df followed the empirical distribution kR

of the averaged sample quantiles (G and F are the standarg; rc 6. Histogram of gene expression after RMA pre-
ize normal Gaussian and Fisher density distributions, respegocessing: dark-pink bars corresponds to breast cancer and
tively) [7]. translucent baby-blue bars to normal tissue. We are interested in

A minor drawback of the bitransformed QN scheme justsingle-colored regions, that exhibit differential expression between
sketched is that it could fail to represent appropriately thethese two conditions.
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Number of Statistical significant differentially

expressed probes
20000 -

T N N

% 18000 1 Hyen == > _@i(g:) = > i (9i, 95)

g i ij

E‘g 12000 N

£ =D (90 95, 9) — - - @)

= ik

D

E 1 H . .y

g = Here N is the number of geneg,is a the patrtition func-
0 tion, the®'s are empiricainteraction potentials A trunca-

2 4 6 & 10 12 14 15 10 tion procedure in Eq. (3) will be used to define an approx-
Hogpyalue imate coarse-grained hamiltoniadf *?™°* that aims to de-
FIGURE 7. Number of statistically significant dif- scribe statistical properties of the system. A sepafticles

ferentially expressed gene probes (NGP) vs p-value.(genes)?, interacts with each other when the potentig
Parametric  t-tests were done to asses significancepetween such set is non-zero. The relative contribution of
NGP = 29381 x ¢~ 218 [Zlomopmvatuely B2 = 0.9906. dg, is taken as proportional to the strength of the interaction
between this set.
A closer look of Eq. (3) reminds us of the typical problem

Due to this fact, Baldi and Long [15] developed aof the BBGKY hierarchy in statistical mechanics. Unfortu-

Bayesian probabilistic framework for MA data analysis.

Baldi-Long analysis (also called a cyberT-test) consists irpately, there is not such well defined criteria to truncate the

. ) : : metri ri Xpansion in multiple p-way interaction po-
modeling log-expression values by independent normal disd€OMETNC sefies expansio utip'e p-way P
entials®;, 4,.....i, (9i1s 9in»-- -+ 9i,); Vi asin, for example

tributions, parameterized by corresponding means and var}- : NG .
ances Withphierarchical prior distributions. From this datathe diluted regime in the BBGKY hierarchy (see, for exam-
one derives point estimates for both parameters and hype‘?—Ie [18]). o i
parameters, and regularized expressions for the variance of In 2the current genomics I|'teraturg, sample sizes of or-
each gene by combining the empirical variance with a locaf€" 10~ (the usual maximum size available in most present-
background variance associated wigsighboring(in param- day stud|e_s) are generally taken as _suff|C|er_1t to _estlmate 2 -
eter space) genes. An additional hyperparameter, inverse ay marginals, whereas 3iway marg|na§sg[.tr|plet|ntere_1c-
related to the number of empirical observations, is used to ddionS ®i..k (9, 95, gx)] require about an order of magnitude
termine thestrengthof the background variance. These point MOr€ samples, a sample size unattainable under present cir-
estimates, combined with a statistical t-testedgularizedt- cumstances. Being this the case, one is usually confronted

test), provide a systematic inference algorithm that compare“é’ith a 2-way hamiltonian of the form:

favorably with the more widely used simple t-test or fold N N
methods, and partly compensate for the lack of replication Faproz _ _ ®;(g;) — ®; (gi. 95 4
within the actual GEA framework. zl: (9:) ; 3(9:.93) @

Once we have properly pre-processed data, we are now in
position to use it to look up for regulatory interactions. Todo  Given these facts, the deconvolution of the set of bio-
that we will apply the tools of non-linear statistical physics, in chemical interactions consists in thererse-problenof de-
particular a quasi-Hamiltonian formalism based on the contermining the complete set of relevant 2-way potentials
sideration of information-theoretical measures of correlationd, ;(g;, g;) consistent with the JPD [Egs. (2) and (3)] that
as surrogates for physical interactions as we will show in thelefines all known constrictions,g.the values of the station-
following section. ary expression of genegs as given by the set @b;(g;)’s and
non-committal with every other restriction in the form of a
marginal [17]. A recently developed approach is the use of

3. Non-linear analySlS statistical and information theoretical models to describe the

The deconvolution of the gene regulation interactions sefnteractions [1_9]' . . I

will be based on a information-theoretical optimization of | We consider a 2-way interaction hamiltonian, all gene
the Joint Probability Distribution (JPD) of gene-gene multi- P&irs i.j for which®; ; = 0 are said to be non-interacting.
correlations as given by gene expression experimental datdNis is true for genes that are statistically independent,

This could be implemented as follows. The JPD for the staf’(9i:95) = P(g:) P(g;), butitis also valid for genes that do
tionary expression of all geneB({g;}), i = 1,..., N may not have a direct interaction but are connected via other genes

be written as follows [16]: i.e. &, ; =0 butP(g;,9;) # P(g:;) P(g;). Several metrics
such as Pearson Correlation, Square Correlation and Spear-
P({g:}) = 1 captoen 2) man Ranked coefficients over the sampling universe have
Ji 7 “P been used, but the performance of these methods is usually

Rev. Mex. . 55 (6) (2009) 456-466
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poor as suffers from a big number of false positive predic- Itisin this point that one is to recall that in studies of natu-
tions. To overcome some of the limitations of these methods;al languages it has been observed that authors have different
we inferred gene-gene regulatory interactions by means of word usagei.e. characteristic preferences for the frequency

local pattern-sharing approach [20]. of use of every word, this fact has been reflected on a statisti-
cal linguistic phenomena known as Zipf’s law [22]. This sta-
3.1. Information theoretical measures tistical principle has been applied in a wide variety of systems

from natural language [23] to DNA sequences [24, 25] and
In the nonlinear analysis of highly complex data, special ateven musical structures [26]. In order to apply this concept to
tention should be given to the discovery of hidden informa-symbolic sequences, one should consider the frequency of ev-
tion within the repetitive appearance of certain basic patery m-bit word and then sort them in descending order by fre-
terns embedded in the given signals. In order to detect anguency of occurrence, in this way we are able to write down
somehow quantify such underlying structures several metha probability distribution function in theank-frequencyep-
ods have been developed. A very promising approach igesentation (RF-PDF). This RF-PDF represents the statistical
based on the consideration of the linguistic properties of thdierarchy of symbolic words of the original time series [20].
symbolic dynamics associated with the time series under corin the theory of stochastic processes, two given symbolic se-
sideration. This approach based on the quantification of thquences (chains or strings) are said tstaistically equiva-
so called Information-Based Similarity Index (IBS) [20] ini- lentif they give rise to similar (or even identical) probability
tially developed to work out the complex structure generatedlistribution functions.
by the human heart beat time series. Nevertheless, IBS has Following the very same order of ideas, Yang and
proved to be a very powerful tool in the comparison of the dy-coworkers [20] defined a measure of similarity (akin to sta-
namics of highly nonlinear processes. In the particular castistical equivalence) between two time series by plotting the
to be considered here, the data provided is the distributionank number of every m-bit word in the first time series with
of gene expression intensities for the set of differentially exthe rank for the same m-bit word in the second time series.
pressed genes in the group of cancer and normal tissue safbviously if the two RF-PDFs are statistically equivalent,
ples. then the scattered points will li@lmost surelyin the diag-

A promising approach to understnad these kinds of inonal line. In this sense, the average deviation of these points
teractions is given if we consider that the correlations in thérom the diagonali(e. § = 45°) is a good measure of the
system are given bgommunication channelgither real or  distance (or dissimilarity) between these two time series.
abstract) for the bio-signals. Thus, Information Theory (IT)  Of course since the time series are supposed to be finite,
could play a useful role in identifying entropic measures bethe m-bit words are not equally likely to appear. The method
tween pairg g;, g, } of genes within the sampling universe as introduces the likelihood of each word by defining a weighted
potential interaction®; ;. IT can also provide with means to distanceA,,, between two given symbolic sequenegsand
test for the MaxEnt distribution, by considering, for exampleoz as follows:
the Kullback-Leibler (KL) divergence (also called multiin-

21’”
formation) or the Connected Information as criteria of itera- A (. ;.\ — 1 Ri(w) — Ro(w) | Fwe) (5
tive convergence to the MaxEnt PDF in the same sense that m(01,02) = 55y ;' 1) = Ra(wp) [Fwe) (5)
the cumulant distribution leads to the specification of usual
PDFs [21]. F(wy) is the normalized likelihood of the m-bit word k,
Within the present context the symbolic sequence repre/€ighted by its given Shannon entropg.:
sent the expression values of a single gene (say gene k-th) 1

all along the sampling universe (of siz€), as given by a  £'(wk)=— [=p1(ws)log p1(wk) —p2(wi) log pa(we)] (6)
gene-expression Vectdy = gi = (gk,, Gas - - - Gkar)- ILiS -
possible to classify each pair of successive points into on#! this casep; (wy) andR; (w.) represent the probability and
of the following binary stateg,,, if (I'n;1 — I'y) < 0 then rgnk of a given WOI‘dU.k in the i-th series. The normaliza-
I, — 0; in the other case(Tps1 — T) > 0) I, — 1. tion factor in Eq. (6) is the total Shannon’s entropy of the
This procedure maps th& step real-valued time series €nsemble and is calculated as

I'(i)={T"1,Ty,..., 'y} intoanN — 1 step binary-valued se-

ri((as)I(E). Once we ha}ve this series, it is possible to definea 2 — > [=p(we) log pr (wx) = pa(we) log pa(wy)]
binary sequence of length (called anm-bit word). Each of b

the m-bit wordawy, represents a unique pattern of fluctuationsA,,, (o1, 02) is called the Information Based Similarity In-
in a given time series. For every unitary time-shiftthe al-  dex (IBS) between series;, and o,. One notices that
gorithm makes a different collectidi, of m-bit words over A,,,(01,02) € [0,1]; Voi1,02; Vm. In fact one is able
the whole time seriedl, = {wy,wo,...,wy}a. Itisex-  to considerA,,(o1,02) as a probability measure. In the
pected that the frequency of occurrence of these m-bit wordsituation in whichlim A,,,(c1,02) — 1 the series are ab-
will reflect somehow the underlying dynamics of the original solutely dissimilar, whereas in the opposite case given by
(real-valued) time series. lim A,,(¢1,02) — 0 the two series become identical (in the
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statistical sense). One can then approximate the value of thef the top 20 over and under expressed genes in lobular and
interaction potential®(g;, g;) between genes; andg; as  ductal breast cancer with respect to normal tissue is given in
follows. If one is to consider interaction as given by corre-Table I.
lation or information flow, one can notice that high values  The list of over- and under- regulated genes in Table |
of A, imply stronger dissimilarity, hence lower correlation shows interesting features. 16 out of the 20 over-expressed
and sinceA,, is a probability measure, one can define thegenes have been previously reported associated to breast
complementary measuek’, = 1 — A,, and then one can cancer. Also, 17 out of the top 20 under-regulated genes
approximated(g;, g;) ~ A%, (g:, 95) have been linked to breast cancer neoplasms (complete list
of references available upon request). A statistical enrich-
ment analysis of gene Ontology (Biological Process) [39]

4. Results categories among the genes in Table I, also reveals inter-
esting tendencies. The list, small as it appears, includes
4.1. Over and under expressed genes statistically significant enrichment of the following biologi-

_ . . cal processes (we include permutation test p-values): mul-
After pre-processing the gene expression data according tQ.qjular organismal development.£2 x 10-°), anatom-

Sec. 2.2, we proceeded to perform statistical tests (Sec. 2.3)5| structural developmentl €9 x 10-5), tissue devel-

to look up for differentially expressed gené®. genes that opment 6.74 x 10-5), extracellular matrix, organization

are present in a much higher (lower) concentration in disyq biogenesis2(53 x 10~2), cell surface receptor and

eased samples as compared to normal samples. The resultifg 4 signal transduction1(35 x 10~2), positive regula-

number of differentially expressed gene probes depends Qf;, of retroviral genome replicatior §1 x 10-2), epithe-

course on the statistical bounds of confidence as given, fq[5| e proliferation (.02 x 10~2), apoptotic chromosome

example in the form of p-values. In Fig. 7 we can see the,onqensationi(02 x 10~2), negative regulation of apoptosis
dependence of the number of statistically significant dlffer—(4.57 % 10~2) and negative regulation of programmed cell

entially expressed gene probes (NGP) with the p-value of thga i 4 675 10-2). These processes are linked to cell growth
cut-off on a parametric t-test (Baldi-Long cyber T-test). Alist 50 projiferation, cellular communication, DNA damage and
suppression of apoptosis. All of these functions are well
known hallmarks of cancer.

TABLE |. Top 20 Over and Under regulated genes in Breast
Cancer. Genes marked with an asterisk have been previously re-4 2 Threshold d L.
ported associated with breast cancer (PRBC) e reshold determination

Over regulated genes PRBC Under regulated genes PRBCMost of the means of interaction inference are based on the
KRT14 * CTHRC1 * evaluation of one or several values for the correlations (usu-
ally given in the form of probability or information theoret-

DST * COL11A1 * ) ) . i
. . ical measures). The problem is that there is no well defined
KRT15 Lyz criteria as to what is thaeght value of the cut-ofin, for ex-
C2orf40 COL1A2 * ample the p-value, the IBS measure or another quantitative
OXTR * COL10A1 indicator of interaction. For if one takest@o-stringentcri-
PIGR RRM2 * teria_one is possib_ly having Ieft-out_an important _interaction
MYH11 . COL11A1 N and if your _gut—o_ff istoo-looseyou will end up having a lot
. . of false positive links. The usual approach to solve a problem
KRT17 ASPN like this is starting with a set of known interactions, generate
KRT5 * CDC2 * a dataset with an open range of cut-off values and then choose
KRT17 * TOP2A * the value that preserve the real interactions giving rise to a
CNN1 * COL8A1 * minim_al error set. Unfortunately,_ for most interes;in_g_ cases
CCL28 COL10A1b . thgre |§ no set of already known interactions and, if it indeed
SFRP1 . KIAAOLOL . exists, it is generally very poor.
Here we propose an alternative way to tackle the thresh-
SBEM * RRM2 * i i ifi
olding problem. The design was done specifically for ge-
DMN CXCL10 * nomic expression data but it is probably adaptable to other
AK5 * LY96 * kinds of data. We developed a mixed approach based on the
NTRK2 * IGHV4-31 * quan_tification of aglobal statist?cal criteria for which it is
possible to generate permutation p-values, and alecal
PTN * PRC1 * X ) : "
FoSB . COLBA2 . pattern-sharing IBS analysis characterized by two quantities,

the IBS value itself and the size of the m-bit-word window.
WIF1 * MIF * We calculated the IBS index for the gene expression vec-
tors (GEVs) of the genes and fot values from 5 to 10 (the
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algorithmic complexity of the calculations grows exponen-
tially so m = 10 was an upper bound for our calculations given
the large sample number of 261 whole genome experiments)
For the sake of stringency we only retained as interactions
those pairs of genes whose GEVs havg, > 0.85 corre-
sponding to the higher degrees of correlation. As it can be
seen in Fig. 8, an asymptotic regime is attained for these ™
networks for values of m = 5-8 depending on the IBS,()
cut-off (or equivalently the\?, threshold ).

TABLE |. Top 20 Validated Gene-Gene InteractionsAll values

of Ay, > 0.85, Function refers to gene pairs with known biologi-
cal function, in some cases, previous reference to breast carcinoma
(PRBC) has been given.

Gene Geng Function PRBC P W: D.%I‘ .
TBCB NINJ2 Cell adhesion - xiosndi: ol B @B Mcl & i
PILS SASHL Tumor Suppressn.on [27] FIGURE 9. Transcriptional regulation network for breast cancer top
GSTM3 RASSF4 Tumor Suppression  [28,30] gene-gene interactions.
LOC152217 MANEAL Carcinogenesis [31]
DEPDC1B DUSP4  Chromosome instability [32] 4.3. Candidate interactions
MCM4 CKLF  Chromosome instability  [33] ) _ _ )
MCM4 ABCB10 Tumor Suppression [34] Geng pairs with a h|gh degre@T of correlatiak’( — 1) are
] considered candidate interactions. These are the most valu-
RBX1 ABCAS Cell dysruption - able result of this research since they are the starting point
GSTM3 ARSB Tumor Suppression [28]  for the discussion and validation of biological pathways and
CDC6 TRERF1 Hormone resistance [36] processes to be tested in the laboratory and clinical studies in
CDC7 CLPX p53 inactivation [37] breast cancer. The complete list of interactions according to
MCM4 MOXD1 Chromosome instability [33] their A}, and p-value is available upon request_. For p—yalues
KIAAO251 ARHGEF11 Angiogenesis ~ lesser than x 10~ 11 andAj;_ > 0.85 gene-gene interactions
are showed as a network in Fig. 9. A list of some of the
GAS2L3/MTPN  LMNB1 Cytotoxicity - more important interactions discovered / confirmed by this
CDC7 COPE Tumor Suppression [37]1 research is given in Table II.
MELK BET1 Proliferation - The importance of inferring transcriptional regulation in-
DEPDCI1B KRT15 Chromosome instability [32] f[eractions become evident by considering the examples given
BUB1B RPL10A Genomic Instability [38] in Table 1l we have already seen that QEA revgals gene over-
_ and- under-regulated that are associated with some com-
cDC7 PHYHIP Tumor Suppression  [37]  mon piological processes that are dysfunctional in cancer
RPL3 ARPC5 ~ Chromosomal instability ~— — cells. Nevertheless, by considering table Il. We saw that tran-
scriptional interactions inferred by means of our statistical-
mechanical formalism are related to highly specific features
e T SRR TS G e TS of Cancer such as chromosomal instability, tumor suppres-
- i sion, and carcinogenesis. For 14 out of the 20 showed in-
- 1w ::Eg:jg; teractions there are even experimental reports linking them
g 41552009 specifically to breast carcinoma. Further studies of the asso-
£ 5 wm o St ciated (known or even unknown) biochemical pathways will
5 'g oo - 1B5=0.12 further improve our understanding of both the structure and
gE om = function of the cellular mechanisms related to breast cancer.
E‘ 000 —IB3=0.15
= 2r0m
2 A . : 5 = 5 5. Conclusions and perspectives

Bin size

Gene regulation, as we could see, is a complex phenomenon.

FIGURE 8. Dependence of the number of inferred transcriptional A great number of SO'Ca”edfverse engingering te?hnique§
interactions on the information measure (IBS) and the bin size (pathave been developed to discover the relations and interactions
tern window size). between genes and/or sets of genes. In the particular case of

Rev. Mex. . 55 (6) (2009) 456-466



INFORMATION-THEORETICAL ANALYSIS OF GENE EXPRESSION DATA TO INFER TRANSCRIPTIONAL INTERACTIONS 465

information theory based methodologies, most of them cona powerful hypotheses generation methodology in the context
sider global correlations between GEVs (measured either oaf functional genomics.

a simultaneous or dynamic way) such as mutual information, In the present case, we were able to reconstruct an en-
Kullback-Liebler divergences and so on. This approach hasemble of transcriptional interactions between genes that we
been, of course a fruitful one. prioritized in relation with ductal and lobular breast carcino-

Apart from global measures of information theoretical mas in human samples. This group of highly validated inter-
correlation, there is a need for a local analysis of correlationactions forms the theoretical basis to conform a gene regula-
We then proposed here a complementary study based in thiery network (after biological validation and annotation into
local pattern-sharinganalysis between GEVs. For this end biochemical-pathway charts).
we applied a measure (IBS) that quantifies pattern-sharing Present findings point out to the existence of transcrip-
of two data series under an information theoretical frametional modules that are related to swENcer-onlyprocesses
work [20]. We applied IBS as a measure of interaction bedike tumor suppression loss, chromosomic instability and
tween two genes. The rationale behind this analysis is thapoptotic inactivation in the one hand; and to more general,
the higher the degree of pattern sharing between two GEVeormatcellular functions processes like cell adhesion and
the larger its mutual correlation will be. If one is looking dysruption, hormone resistance, proliferation and angiogene-
for the more relevant interactions, one should take a vievsis in the other. In some transcriptional interactions these two
on the large scale pattern-sharinge( larger values of the effects are mixed-up but there are some instances in which
bin sizem). However, to account for more subtle interac- module-separabilitynay lead to the discovery of pharmaco-
tions, then a closer look at pattern sharing should be adequalegical targets with less cytotoxicity to the normal cells than
(smaller values ofn). the usual chemotherapeutic drugs.

As we already stated, microarray gene expression experi- In conclusion, information theoretical methods result in
ments were performed to compare the patterns of expressigrowerful tools to reconstruct gene functional relationships.
between breast carcinoma and normal tissue. From the sBroblems like low signal to noise ratios, under-sampling,
of statistically-significant differentially expressed genes, wenon-linear interactions, delays, etc., could be coped-with in
found a set of transcriptional interactions as a means to disa systematic manner under the Information Theoretical For-
cover a set of functional relations pertinent to breast cancemalism. The interaction’s set obtained was validated by sev-
physiopathology. The knowledge of such functional relationseralin silico analysis. However, the most outstanding result
is essential to design and perform further investigations leaddp to date was the discovery of some regulatory interactions
ing to the discovery of therapeutic targets. In this sense, staamong genes previously related to breast cancer and the bio-
tistical physics-inspired analysis of this kind could be seen atogical implications of the correlated gene clusters.
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