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The majority of human diseases are related with the dynamic interaction of many genes and their products as well as environmental con-
straints. Cancer (and breast cancer in particular) is a paradigmatic example of such complex behavior. Since gene regulation is a non-
equilibrium process, the inference and analysis of such phenomena could be done following the tenets of non-equilibrium physics. The
traditional programmein statistical mechanics consists in inferring the joint probability distribution for either microscopic states (equi-
librium) or mesoscopic-states (non-equilibrium), given a model for theparticle interactions (e.g. the potentials). Aninverse problemin
statistical mechanics, in the other hand, is based on considering arealizationof the probability distribution of micro- or meso-states and used
it to infer the interaction potentials between particles. This is the approach taken in what follows. We analyzed 261 whole-genome gene
expression experiments in breast cancer patients, and by means of an information-theoretical analysis, we deconvolute the associated set of
transcriptional interactions,i.e. we discover a set of fundamental biochemical reactions related to this pathology. By doing this, we showed
how to apply the tools of non-linear statistical physics to generate hypothesis to be tested on clinical and biochemical settings in relation to
cancer phenomenology.

Keywords:Cancer genomics; information theory; molecular networks.

La mayoŕıa de las enfermedades humanas están relacionadas con la interacción de muchos genes, y con condicionantes ambientales, lo que
las hace feńomenos complejos. El análisis de las interacciones bioquı́micas relacionadas se basa frecuentemente en la consideración de las
relaciones de regulación geńetica. Puesto que la regulación geńetica es un proceso fuera del equilibrio, la inferencia y el análisis deésta
puede hacerse siguiendo los principios de la termodinámica irreversible y la mecánica estad́ıstica fuera del equilibrio. El enfoque tradicional
de la mećanica estad́ıstica es inferir la distribución de probabilidad conjunta para los estados del sistema en términos de un modelo para
las interacciones. Un problema inverso en mecánica estad́ıstica consiste en considerar una realización de la distribucíon de probabilidad y
emplearla para inferir las interacciones entre las partı́culas. Tomamos este enfoque para analizar 261 experimentos de expresión de mRNA de
genoma completo, en pacientes con cáncer de mama y, a través de una medida basada en la teorı́a de la informacíon descubrir el conjunto de
interacciones transcripcionales asociadas. Mostramos cómo aplicar las herramientas de la fı́sica estad́ıstica no-lineal para generar hipótesis
(es decir, el conjunto de interacciones inferidas) que pueden ser probadas en ensayos clı́nicos y bioqúımicos con relacíon a la fenomenologı́a
del ćancer.

Descriptores:Geńomica del ćancer; teoŕıa de la informacíon; redes moleculares.

PACS: 87.10.Vg; 87.16.Yc; 87.18.Cf; 89.75.Hc; 89.70.Cf

1. Introduction

The forms and functions of living cells, also calledcellular
phenotypesare known to be determined by the interplay of
many genes and their products such as proteins, enzymes and
so on. Given this fact, the identification of rules of behavior
at the genome-wide level is essential to elucidate both nor-
mal cell function and pathological phenotypic conditions at
whole-system scale. A usual tool to track down this pheno-
typic diversity is gene expression analysis. Since the process
of gene expression by itself is often regulated by different
genes and their products, statistical associations abound be-
tween genetic transcripts abundance (e.g. messenger RNA
segments [mRNAs]). These associations could be behind the
mechanisms of cell function. However, one hard-to-grasp is-

sue is that the process of gene expression by itself is a com-
plex one, both from the biochemical and thermodynamical
points of view [1,2]

The complex description given by the set of interactions
consists, generally, in identifying gene correlations from ex-
perimental data through the use of theoretical models and
computational analysis. The discovery of such an interac-
tion’s set involves the solution of an inverse problem (a de-
convolution) that basically tries to uncover the interactions
from the properties and dynamics of observable behavior in
the form of, for example, RNA transcription levels in a char-
acteristic gene expression profile.

Genome-wide transcriptional profiling, also called Gene
Expression Analysis (GEA) has permit us to go far ahead of
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studying gene expression at the individual-level, by providing
global information about functional inter-relations between
genes, mRNAs and the associated regulatory proteins. GEA
have increased our understanding of the dynamics and inter-
play between different processes involved in gene regulation
and have pointed out to previously unappreciated biological
functional relations, such as the coupling between nuclear
and cytoplasmic transcription and metabolic processes [2].
GEA also revealed extensive communication within regula-
tory units, for example in the organization of transcription
factors into regulatory motifs. It is these kinds of regulatory
interactions what one is ultimately looking for in GEAs.

Several stages are involved in the regulation of gene
expression-transcription: such as mRNA processing, nuclear
export, translation and degradation. These steps were usu-
ally analyzedin isolation by using conventional biochemi-
cal techniques like the PCR reaction and electrophoresis [1].
This point of view has left the impression that such stages
are independent. In the past molecular biology research was
focused on the mechanisms underlying individual gene ex-
pression or in the best scenario the behavior of a small set of
genes, rather than exploring regulatory mechanisms that can
influence many genes at one time.

Systematic studies of genome-wide binding patterns
made evident the existence of a great deal of coordinate regu-
lation among transcription factors (i.e. genes that catalyze or
inhibit the expression of other genes, either by themselves or
by means of their produced proteins). Factors that combina-
torialy regulate (on a concomitant way) a particular gene also
often coordinately regulate the expression of other genes, po-
tentially even themselves or each other. For an introduction
to gene expression phenomena and transcriptional regulation
from a physicochemical point of view in Ref 3.

1.1. Cancer

Cancer is the random, uncontrolled and accelerated prolifer-
ation of cells due to genetic abnormality. This genetic ab-
normality usually starts with sets of mutated genes that either
suppress or stimulate the cell’s cycle continuity.

Normally, cells grow and divide to form new cells as the
body needs them. When cells grow old, they die, and new
cells take their place. Sometimes, this process goes wrong.
New cells form when the body does not need them, and old
cells do not die when they should. These extra cells can form
a mass of tissue called a growth or tumor. Tumors (or neo-
plasms) can be benign or malignant. Benign tumors are not
considered cancer, because they are rarely life-threatening,
can be removed and usually do not grow back. Also, cells
from benign tumors do not invade the tissues around them
nor spread to other parts of the body. In the other hand, ma-
lignant neoplasms are cancer, may be life-threatening. And
although they often can be removed, in many cases they grow
back. Also carcinomas are able to invade and damage nearby
tissues and organs and to spread (metastasize) to other parts
of the body. Cancer cells spread by breaking away from

the original (primary) tumor and entering the bloodstream or
lymphatic system. The cells invade other organs and form
new tumors that damage these organs. The spread of cancer
in this form is what we callmetastasis.

Cancer neoplasms correspond to malignant cells origi-
nated in glandular or epithelial lineages due to states of disor-
dered genetic behavior. One particular point of focal interest
is the de-regulation in the mechanisms that control the tran-
scription of mRNA under normal conditions. A usual sce-
nario is given by the so calledtranscriptional burstswhich
are stages of unusually high levels of mRNA synthesis within
affected cells.

In the case of breast cancer, it forms in tissues of the
breast, usually the ducts (tubes that carry milk to the nip-
ple) and lobules (glands that make milk). It occurs in both
men and women, although male breast cancer is rare. When
breast cancer cells spread, the cancer cells are often found in
lymph nodes near the breast. Also, breast cancer can spread
to almost any other part of the body. The most common are
the bones, liver, lungs, and brain. When metastatic processes
arise, the new tumor has the same kind of abnormal cells as
the primary tumor. For example, if breast cancer spreads to
the bones, the cancer cells in the bones are actually breast
cancer cells. The disease is metastatic breast cancer, not bone
cancer. For that reason, it is treated as breast cancer, not bone
cancer.

Given the large evidence of the genetic origins of cancer,
a usual experimental tool to its study is the use of genome-
wide high-thoughput gene expression analysis. In the follow-
ing, we will demonstrate how to apply the tools of statistical
physics to extract relevant information for such kind of ex-
perimental studies.

2. Gene expression data analysis

In recent times, the use of high density oligonucleotide arrays
has become widely used in several instances in the molecular
biomedical research community. The system, also known as
GeneChipr-technology made use of oligonucleotides, usu-
ally of 25 base-pairs in longitude that are used to probe genes.
Each gene is generally represented by a set of 16-20 pairs
of those oligonucleotides known as probe sets. One of each
pair of these oligos is known as the perfect match (PM) probe
and correspond to an exact segment of the complementary se-
quence of the associated gene, whereas the other one, known
as the mismatch probe (MM) is made by changing the middle
(13th) base in order to look up for the effects of non-specific
binding [4].

mRNA experimental samples are prepared, labeled with
a fluorescent dye (see Fig. 1) and hybridized to the arrays
(chips) (Fig. 2). Then the chips are scanned with a laser and
images are produced (Fig. 3) and analyzed to obtain an inten-
sity value asociated to each probe. The intensity of the fluo-
rescent signal of a probe is related to the concentration of the
mRNA molecule corresponding (tagged) by this probe [3].
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Of particular interest results the question of how to com-
bine the data for the set of 16-20 PM-MM pairs to define
a measure ofexpressionthat represent in an optimal way the
amount of the associated mRNA species [5]. This is not a
trivial issue since, as one could see for the physicochemical
procedures just sketched, there are a lot of variables involved
in the analysis (several orders of magnitude more than the
number of experimental samples) and the resulting signals
are very noisy. These facts imply that the usualfrequentist
approach to probability and statistics has to be modified to
deal with GEA data.

In this work we analyzed genome wide expresion data
obtained with Affymetrix HGU133Plus2 human gene ex-
pression chip under procedure GPL570 for 261 Microarrays
(MAs) of Breast Cancer (BRCA) and Normal tissue samples
from several independent experiments (from the following
NIH-NCBI/GEO accession keys: GSE7904 (62 samples),
GSE5460 (129 samples), GSE5764 (30 samples), GSE3744
(40 samples). All arrays were processed within the same

FIGURE 1. mRNA from the samples is marked with a fluorescent
dye molecule [red spots] in solution and then put in contact to the
surface of the GeneChipr .

FIGURE 2. Tagged mRNA molecules (gene probes) hybridize in
the chip’s surface to complementary probes in localized regions
(probe-sets) that now shine (in red here for pedagogical purposes)
under the scanner’s laser.

FIGURE 3. Scanning photograph of an actual GeneChipr as read
by an Affymetrix unit.

protocol (GPL570) and in all cases unnormalized fluores-
cence raw data files (.CEL files) were used. The pre-
processing was done according to the RMA [6] algorithm
implemented in R/BioConductor [8] (see Sec. 2.2) and sta-
tistical tests for differential expression profiles were done in
the FlexArray/Nanuq platform [9] (see Sec. 2.3).

2.1. Across laboratories comparisons

In this work (and in many other GEA-related works whose
goal is to infer relationships under an integrative approach -
the so-calledSystems Biologyparadigm-) we made use not
just of a single experimental data source but of many. We did
so, because in order to obtain the statistical power to make a
reasonable deconvolution of the great information amount as
given by high-througput technologies, one needs the biggest
possible number of experimental samples. As is the case the
number ofin-houseexperiments that an individual facility
could run is often limited by financial and technical mat-
ters [10].

Of course given the complex nature of the experimental
setups for GEA [3], a question raises on the validity of using
data from multiple sources (the so-calledacross-labsprob-
lem). Eventhough experimental settings may be very similar,
each laboratory will usually end up with different results in
the form of p-value distributions or gene lists. Under this con-
ditions many people take these results and perform a statisti-
cal meta-analysis of the different data [10,11] to combine in a
somehow systematic manner information from different labs.
Of course, in order to be combined across studies, quantitita-
tive estimates should refer to the same measure or quantity,
should be standarized to the same scale and should possess
some inherent measure of variability.

A usual approach to this kind of meta-analysis is the per-
forming of hierarchical Bayesian partitions and permutation
of processed data [12]. A somehow better alternative in-
volves gatheringraw experimental data (.CEL files in the
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case of Affymetrix GeneChips) from several sources and then
pre-process them and normalize them together [11]. This of
course implies a bigger amount of computational and human
resources but is in our view a muchcleanerand better alter-
native. Also Bayesian or information theoretical estimates of
the joint probability distributions inferred from thesepools
of data are more sound, because systematic and fixed effects
tend to cancel [12]. We then decided to proceed accordingly
and thus we only included in this paper, raw data of chips pro-
cessed under the very same protocol in different laboratories.
We then did all the pre-processing and array normalization
ourselves.

2.2. Pre-processing: Background correction and nor-
malization

By analyzing the statistical behavior of the PM and the MM
probes under controlled experimental conditions [5] some
facts are revealed. For example, for large values of genetic
abundance the differences between PM and MM probes have
a bimodal distribution with the second mode occurring for
negative differences. This effect has been related with het-
eroscedasticity (unequal variances in the distributions) [6].

Another strong challenge in GEA is related to how to ef-
fectively dissociate actual gene expression values from exper-
imental noise. The hybridization noise has been found [14]
to have very strong dependence on the expression level, with
different characteristics for the low and high expression val-
ues. The hybridization noise characteristics at the high ex-
pression regime are mostly Poisson-like, whereas its charac-
teristics for the small expression levels are more complex,
probably due to cross-hybridization. Thus, in order to cor-
rectly assess the statistical relevance of the measured gene
expression differences between two experiments, it is crucial
to characterize the fluctuation caused purely by experimental
measurement. It is known that noise depends strongly on the
expression level. Therefore, an expression-dependent distri-
bution function is needed to characterize the variability be-
tween replicates [14].

A related source of undesired variation is that, on increas-
ing mRNA concentration levels, the distance of the average
PM intensity to the background noise increases. The levels
of background intensity could thus mask the effects of some
mean-valued expression levels,i.e. the averageshiningef-
fect could hide a relatively important signal. In order to op-
timize thesignal-to-noise-ratio(SNR) a background correc-
tion has been proposed [5]. We will consider a model for
the PM probes including bothtrue signal and background
noise in the following formPMijn = bgijn + sijn. If we
assume that each array has a common average background
level E(bgijn) = βi it is possible (but very naı̈ve) to con-
sider removal of the background effect by substracting the
βi, PM corrected

ijn = PMijn − βi. A better alternative for im-
proving the SNR is to consider the background correction as
B(PMijn) = E(sijn|PMijn). This background correcting
procedure is based on the consideration of theB-transform

that, as stated above, consists on adjusting the background
noise via the conditional expectation of the signals on the
PM values. The usual way to do so is by considering expo-
nentially distributed signals and normally distributed back-
ground noises [5].

Also, in the vast majority of the applications of
GeneChips one wishes to learn how mRNA concentration
profiles differ in response to genetic, cellular and environ-
mental differences. One important instance is when large (or
small) expression of a given gene or set of genes may cause
an illnes (such as cancer), thus resulting in variation between
diseased and normal tissue (a so called case-control compari-
son). However, observed intensity levels also depend on sam-
ple preparation, manufacture of the arrays, and lab process-
ing of such arrays (dye labeling, hybridization and scanning).
These are called sources ofobscuring variation[5].

Due to these facts, unless arrays are correctlynormalized
comparing data from different arrays can lead to misleading
results. For example, in Fig. 4 we present a scatter plot of in-
tensity of two different chips one from a breast cancer patient
and the other from normal tissue. As we can see, it shows

FIGURE 4. Scatter plot of intensity of a breast cancer patient (y-
axis) versus normal tissue (x-axis) mRNA intensity levels.

FIGURE 5. QQ-plot for the quantile normalized distributions from
the same data as in Fig. 4. Deviations from the identity line are
over- or under- expressed genes.
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a very noisy pattern, mostly because the data is not properly
normalized. Nevertheless, since we are looking for statisti-
cally significant deviations from the identity line (no expres-
sion change) unnormalized data may lead to wrong conclu-
sions. Several methods have been proposed to normalize the
arrays and it has been found [6] thatquantile normalization
(QN) performs best. The goal of QN is to make the distri-
bution of probe intensities the same for arrays within a given
category (quantile), in such case a quantile-quantile plot (QQ
plot) will be given as an identity line (see Fig. 5).

A generalization for the usual QQ-plot forn data vectors
could be given in terms of aprojection operatorformalism,
as follows: if alln data vectors (in this casen is the number
of arrays) have the same distribution, then plotting the quan-
tiles in n dimensions gives a straight line along the direction
given by the unit vector

D =
(

1√
n

,
1√
n

, . . . ,
1√
n

)
.

This suggests thus that we could make a set of datasets hav-
ing the same distribution if weproject the points of ourn
dimensional quantile plot onto the diagonalD.

If we denote by~qk = (qk,1, . . . qk,n) the vector of the k-
quantiles forn arrays andD the unit-diagonal, the associated
projection that make all quantiles lying in the diagonal is thus
written as:

proj [D|~qk, ] =


1

n

n∑

j=1

qk,j ,
1
n

n∑

j=1

qk,j . . .
1
n

n∑

j=1

qk,j


 (1)

In other words, wequantile-normalizethe arrays to the
same distribution by taking the mean quantile and substitut-
ing it instead of the data item in the original dataset. This QN
process could be computationally implemented in the follow-
ing form [7] :

1. Given a dataset consisting ofn arrays of lenghtp, form
the matrixX of dimensionp× n where each array is a
column

2. Sort each column ofX to getXsort

3. Take the means across rows ofXsort and assign this
means to each element in the row to getX†sort

4. getX normalized by rearranging each column ofX†sort

to have the same ordering as the originalX.

We could rephrase Eq. 1 and the above algorithm in terms
of non-linear transforms of the original distributions. QN is
a special case of a transformationx†i = F−1 (G(xi)) where
estimates ofG are given by the empirical distribution of each
array and estimates ofF followed the empirical distribution
of the averaged sample quantiles (G and F are the standard-
ize normal Gaussian and Fisher density distributions, respec-
tively) [7].

A minor drawback of the bitransformed QN scheme just
sketched is that it could fail to represent appropriately the

tails of the distribution. However, in practice, given the
fact that probeset expression measures are usually computed
using multiple probes, this problem is highly diminished.
Also after analyzing the error distributions, some researchers
have proposed expression measures based only on the PM
probes [13].

A general scheme has been proposed, called the Robust
Multi-array Average (RMA) algorithm [6] which

1) background-corrects the arrays using anexpectation-
of-the-signaltransformation (B-transform),

2) normalizes the arrays by a QN and

3) Fits a linear model to summarize the probe intensities
for each probeset.

RMA is less noisy than all other measures at lower mRNA
concentrations, has a smaller spread (and thus is better tai-
lored to detect differentially expressed probe-sets) and has
greater sensitivity. For all the reasons above we decided to
perform RMA correction and pre-processing of the raw gene
expression data before performing any additional analyses.

2.3. Statistical tests for differential expression

As we have seen whole-genome GEA has turned out to be
a technology that now is capable of providing genome-wide
patterns of gene expression across many different conditions.
The basic level of analysis of these patterns consists in cat-
egorize whether observed differences in expression (see for
example, Fig. 6) are significant or not. Traditional statisti-
cal methods are unsatisfactory due to the lack of a systematic
framework that can accommodate noise, variability, and low
replication often typical of microarray data.

FIGURE 6. Histogram of gene expression after RMA pre-
processing: dark-pink bars corresponds to breast cancer and
translucent baby-blue bars to normal tissue. We are interested in
single-colored regions, that exhibit differential expression between
these two conditions.
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FIGURE 7. Number of statistically significant dif-
ferentially expressed gene probes (NGP) vs p-value.
Parametric t-tests were done to asses significance.

NGP = 29381× e−0.2318 [− log10 p−value]; R2 = 0.9906.

Due to this fact, Baldi and Long [15] developed a
Bayesian probabilistic framework for MA data analysis.
Baldi-Long analysis (also called a cyberT-test) consists in
modeling log-expression values by independent normal dis-
tributions, parameterized by corresponding means and vari-
ances with hierarchical prior distributions. From this data
one derives point estimates for both parameters and hyper-
parameters, and regularized expressions for the variance of
each gene by combining the empirical variance with a local
background variance associated withneighboring(in param-
eter space) genes. An additional hyperparameter, inversely
related to the number of empirical observations, is used to de-
termine thestrengthof the background variance. These point
estimates, combined with a statistical t-test (aregularizedt-
test), provide a systematic inference algorithm that compares
favorably with the more widely used simple t-test or fold
methods, and partly compensate for the lack of replication
within the actual GEA framework.

Once we have properly pre-processed data, we are now in
position to use it to look up for regulatory interactions. To do
that we will apply the tools of non-linear statistical physics, in
particular a quasi-Hamiltonian formalism based on the con-
sideration of information-theoretical measures of correlation
as surrogates for physical interactions as we will show in the
following section.

3. Non-linear analysis

The deconvolution of the gene regulation interactions set
will be based on a information-theoretical optimization of
the Joint Probability Distribution (JPD) of gene-gene multi-
correlations as given by gene expression experimental data.
This could be implemented as follows. The JPD for the sta-
tionary expression of all genes,P ({gi}), i = 1, . . . , N may
be written as follows [16]:

P ({gi}) =
1
Z

expHgen (2)

Hgen = −
N∑

i

Φi(gi)−
N∑

i,j

Φi,j(gi, gj)

−
N∑

i,j,k

Φi,j,k(gi, gj , gk)− . . . (3)

Here N is the number of genes,Z is a the partition func-
tion, theΦ’s are empiricalinteraction potentials. A trunca-
tion procedure in Eq. (3) will be used to define an approx-
imate coarse-grained hamiltonianHaprox that aims to de-
scribe statistical properties of the system. A set ofparticles
(genes)Ω, interacts with each other when the potentialΦΩ

between such set is non-zero. The relative contribution of
ΦΩ is taken as proportional to the strength of the interaction
between this set.

A closer look of Eq. (3) reminds us of the typical problem
of the BBGKY hierarchy in statistical mechanics. Unfortu-
nately, there is not such well defined criteria to truncate the
geometric series expansion in multiple p-way interaction po-
tentialsΦi1,i2,...,ip(gi1 , gi2 , . . . , gip) ; ∀i as in, for example
the diluted regime in the BBGKY hierarchy (see, for exam-
ple [18]).

In the current genomics literature, sample sizes of or-
der102 (the usual maximum size available in most present-
day studies) are generally taken as sufficient to estimate 2 -
way marginals, whereas 3-way marginals [e.g.triplet interac-
tionsΦi,j,k(gi, gj , gk)] require about an order of magnitude
more samples, a sample size unattainable under present cir-
cumstances. Being this the case, one is usually confronted
with a 2-way hamiltonian of the form:

Haprox = −
N∑

i

Φi(gi)−
N∑

i,j

Φi,j(gi, gj) (4)

Given these facts, the deconvolution of the set of bio-
chemical interactions consists in theinverse-problemof de-
termining the complete set of relevant 2-way potentials
Φi,j(gi, gj) consistent with the JPD [Eqs. (2) and (3)] that
defines all known constrictions,e.g.the values of the station-
ary expression of genesgi as given by the set ofΦi(gi)’s and
non-committal with every other restriction in the form of a
marginal [17]. A recently developed approach is the use of
statistical and information theoretical models to describe the
interactions [19].

If we consider a 2-way interaction hamiltonian, all gene
pairs i,j for whichΦi,j = 0 are said to be non-interacting.
This is true for genes that are statistically independent,
P (gi, gj) ≈ P (gi)P (gj), but it is also valid for genes that do
not have a direct interaction but are connected via other genes
i.e. Φi,j = 0 butP (gi, gj) 6= P (gi)P (gj). Several metrics
such as Pearson Correlation, Square Correlation and Spear-
man Ranked coefficients over the sampling universe have
been used, but the performance of these methods is usually
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poor as suffers from a big number of false positive predic-
tions. To overcome some of the limitations of these methods,
we inferred gene-gene regulatory interactions by means of a
local pattern-sharing approach [20].

3.1. Information theoretical measures

In the nonlinear analysis of highly complex data, special at-
tention should be given to the discovery of hidden informa-
tion within the repetitive appearance of certain basic pat-
terns embedded in the given signals. In order to detect and
somehow quantify such underlying structures several meth-
ods have been developed. A very promising approach is
based on the consideration of the linguistic properties of the
symbolic dynamics associated with the time series under con-
sideration. This approach based on the quantification of the
so called Information-Based Similarity Index (IBS) [20] ini-
tially developed to work out the complex structure generated
by the human heart beat time series. Nevertheless, IBS has
proved to be a very powerful tool in the comparison of the dy-
namics of highly nonlinear processes. In the particular case
to be considered here, the data provided is the distribution
of gene expression intensities for the set of differentially ex-
pressed genes in the group of cancer and normal tissue sam-
ples.

A promising approach to understnad these kinds of in-
teractions is given if we consider that the correlations in the
system are given bycommunication channels(either real or
abstract) for the bio-signals. Thus, Information Theory (IT)
could play a useful role in identifying entropic measures be-
tween pairs{gi, gj} of genes within the sampling universe as
potential interactionsΦi,j . IT can also provide with means to
test for the MaxEnt distribution, by considering, for example
the Kullback-Leibler (KL) divergence (also called multiin-
formation) or the Connected Information as criteria of itera-
tive convergence to the MaxEnt PDF in the same sense that
the cumulant distribution leads to the specification of usual
PDFs [21].

Within the present context the symbolic sequence repre-
sent the expression values of a single gene (say gene k-th)
all along the sampling universe (of sizeM ), as given by a
gene-expression vectorΓ = −→gk = (gk1 , gk2 , . . . , gkM

). It is
possible to classify each pair of successive points into one
of the following binary statesIn, if (Γn+1 − Γn) < 0 then
In = 0; in the other case ((Γn+1 − Γn) > 0) In = 1.
This procedure maps theN step real-valued time series
Γ(i)={Γ1, Γ2, . . . , ΓN} into anN−1 step binary-valued se-
riesI(i). Once we have this series, it is possible to define a
binary sequence of lengthm (called anm-bit word). Each of
the m-bit wordswk represents a unique pattern of fluctuations
in a given time series. For every unitary time-shiftλ, the al-
gorithm makes a different collectionWλ of m-bit words over
the whole time series,Wλ = {w1, w2, . . . , wn}λ. It is ex-
pected that the frequency of occurrence of these m-bit words
will reflect somehow the underlying dynamics of the original
(real-valued) time series.

It is in this point that one is to recall that in studies of natu-
ral languages it has been observed that authors have different
word usage, i.e. characteristic preferences for the frequency
of use of every word, this fact has been reflected on a statisti-
cal linguistic phenomena known as Zipf’s law [22]. This sta-
tistical principle has been applied in a wide variety of systems
from natural language [23] to DNA sequences [24, 25] and
even musical structures [26]. In order to apply this concept to
symbolic sequences, one should consider the frequency of ev-
ery m-bit word and then sort them in descending order by fre-
quency of occurrence, in this way we are able to write down
a probability distribution function in therank-frequencyrep-
resentation (RF-PDF). This RF-PDF represents the statistical
hierarchy of symbolic words of the original time series [20].
In the theory of stochastic processes, two given symbolic se-
quences (chains or strings) are said to bestatistically equiva-
lent if they give rise to similar (or even identical) probability
distribution functions.

Following the very same order of ideas, Yang and
coworkers [20] defined a measure of similarity (akin to sta-
tistical equivalence) between two time series by plotting the
rank number of every m-bit word in the first time series with
the rank for the same m-bit word in the second time series.
Obviously if the two RF-PDFs are statistically equivalent,
then the scattered points will liealmost surelyin the diag-
onal line. In this sense, the average deviation of these points
from the diagonal (i.e. θ = 45◦) is a good measure of the
distance (or dissimilarity) between these two time series.

Of course since the time series are supposed to be finite,
the m-bit words are not equally likely to appear. The method
introduces the likelihood of each word by defining a weighted
distance∆m between two given symbolic sequencesσ1 and
σ2 as follows:

∆m(σ1, σ2) =
1

2m − 1

2m∑

k=1

|R1(wk)−R2(wk)|F (wk) (5)

F (wk) is the normalized likelihood of the m-bit word k,
weighted by its given Shannon entropy,i.e.:

F (wk)=
1
Z

[−p1(wk) log p1(wk)−p2(wk) log p2(wk)] (6)

in this case,pi(wk) andRi(wk) represent the probability and
rank of a given wordwk in the i-th series. The normaliza-
tion factor in Eq. (6) is the total Shannon’s entropy of the
ensemble and is calculated as

Z =
∑

k

[−p1(wk) log p1(wk)− p2(wk) log p2(wk)] .

∆m(σ1, σ2) is called the Information Based Similarity In-
dex (IBS) between seriesσ1, and σ2. One notices that
∆m(σ1, σ2) ∈ [0, 1]; ∀σ1, σ2; ∀m. In fact one is able
to consider∆m(σ1, σ2) as a probability measure. In the
situation in whichlim∆m(σ1, σ2) → 1 the series are ab-
solutely dissimilar, whereas in the opposite case given by
lim∆m(σ1, σ2) → 0 the two series become identical (in the

Rev. Mex. F́ıs. 55 (6) (2009) 456–466



INFORMATION-THEORETICAL ANALYSIS OF GENE EXPRESSION DATA TO INFER TRANSCRIPTIONAL INTERACTIONS 463

statistical sense). One can then approximate the value of the
interaction potentialsΦ(gi, gj) between genesgi andgj as
follows. If one is to consider interaction as given by corre-
lation or information flow, one can notice that high values
of ∆m imply stronger dissimilarity, hence lower correlation
and since∆m is a probability measure, one can define the
complementary measure∆∗

m = 1 − ∆m and then one can
approximateΦ(gi, gj) ≈ ∆∗

m(gi, gj)

4. Results

4.1. Over and under expressed genes

After pre-processing the gene expression data according to
Sec. 2.2, we proceeded to perform statistical tests (Sec. 2.3)
to look up for differentially expressed genes,i.e. genes that
are present in a much higher (lower) concentration in dis-
eased samples as compared to normal samples. The resulting
number of differentially expressed gene probes depends of
course on the statistical bounds of confidence as given, for
example in the form of p-values. In Fig. 7 we can see the
dependence of the number of statistically significant differ-
entially expressed gene probes (NGP) with the p-value of the
cut-off on a parametric t-test (Baldi-Long cyber T-test). A list

TABLE I. Top 20 Over and Under regulated genes in Breast
Cancer. Genes marked with an asterisk have been previously re-
ported associated with breast cancer (PRBC)

Over regulated genes PRBC Under regulated genes PRBC

KRT14 * CTHRC1 *

DST * COL11A1 *

KRT15 * LYZ *

C2orf40 COL1A2 *

OXTR * COL10A1

PIGR RRM2 *

MYH11 * COL11A1 *

KRT17 * ASPN *

KRT5 * CDC2 *

KRT17 * TOP2A *

CNN1 * COL8A1 *

CCL28 COL10A1b *

SFRP1 * KIAA0101 *

SBEM * RRM2 *

DMN CXCL10 *

AK5 * LY96 *

NTRK2 * IGHV4-31 *

PTN * PRC1 *

FOSB * COL6A2 *

WIF1 * MIF *

of the top 20 over and under expressed genes in lobular and
ductal breast cancer with respect to normal tissue is given in
Table I.

The list of over- and under- regulated genes in Table I
shows interesting features. 16 out of the 20 over-expressed
genes have been previously reported associated to breast
cancer. Also, 17 out of the top 20 under-regulated genes
have been linked to breast cancer neoplasms (complete list
of references available upon request). A statistical enrich-
ment analysis of gene Ontology (Biological Process) [39]
categories among the genes in Table I, also reveals inter-
esting tendencies. The list, small as it appears, includes
statistically significant enrichment of the following biologi-
cal processes (we include permutation test p-values): mul-
ticellular organismal development (4.22 × 10−6), anatom-
ical structural development (1.29 × 10−5), tissue devel-
opment (5.74 × 10−5), extracellular matrix, organization
and biogenesis (2.53 × 10−3), cell surface receptor and
linked signal transduction (1.35× 10−2), positive regula-
tion of retroviral genome replication (1.81 × 10−2), epithe-
lial cell proliferation (4.02× 10−2), apoptotic chromosome
condensation (4.02× 10−2), negative regulation of apoptosis
(4.57× 10−2) and negative regulation of programmed cell
death (4.67×10−2). These processes are linked to cell growth
and proliferation, cellular communication, DNA damage and
suppression of apoptosis. All of these functions are well
known hallmarks of cancer.

4.2. Threshold determination

Most of the means of interaction inference are based on the
evaluation of one or several values for the correlations (usu-
ally given in the form of probability or information theoret-
ical measures). The problem is that there is no well defined
criteria as to what is theright value of the cut-offin, for ex-
ample the p-value, the IBS measure or another quantitative
indicator of interaction. For if one takes atoo-stringentcri-
teria one is possibly having left-out an important interaction
and if your cut-off istoo-looseyou will end up having a lot
of false positive links. The usual approach to solve a problem
like this is starting with a set of known interactions, generate
a dataset with an open range of cut-off values and then choose
the value that preserve the real interactions giving rise to a
minimal error set. Unfortunately, for most interesting cases
there is no set of already known interactions and, if it indeed
exists, it is generally very poor.

Here we propose an alternative way to tackle the thresh-
olding problem. The design was done specifically for ge-
nomic expression data but it is probably adaptable to other
kinds of data. We developed a mixed approach based on the
quantification of aglobal statistical criteria for which it is
possible to generate permutation p-values, and also alocal
pattern-sharing IBS analysis characterized by two quantities,
the IBS value itself and the sizem of the m-bit-word window.

We calculated the IBS index for the gene expression vec-
tors (GEVs) of the genes and form values from 5 to 10 (the
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464 K. BACA-LÓPEZ, E. HERŃANDEZ-LEMUS, AND M. MAYORGA

algorithmic complexity of the calculations grows exponen-
tially so m = 10 was an upper bound for our calculations given
the large sample number of 261 whole genome experiments).
For the sake of stringency we only retained as interactions
those pairs of genes whose GEVs have∆∗

m ≥ 0.85 corre-
sponding to the higher degrees of correlation. As it can be
seen in Fig. 8, an asymptotic regime is attained for these
networks for values of m = 5-8 depending on the IBS (∆m)
cut-off (or equivalently the∆∗

m threshold ).

TABLE I. Top 20 Validated Gene-Gene Interactions.All values
of ∆∗

m > 0.85, Function refers to gene pairs with known biologi-
cal function, in some cases, previous reference to breast carcinoma
(PRBC) has been given.

Genei Genej Function PRBC

TBCB NINJ2 Cell adhesion –

PI15 SASH1 Tumor Suppression [27]

GSTM3 RASSF4 Tumor Suppression [28,30]

LOC152217 MANEAL Carcinogenesis [31]

DEPDC1B DUSP4 Chromosome instability [32]

MCM4 CKLF Chromosome instability [33]

MCM4 ABCB10 Tumor Suppression [34]

RBX1 ABCA5 Cell dysruption –

GSTM3 ARSB Tumor Suppression [28]

CDC6 TRERF1 Hormone resistance [36]

CDC7 CLPX p53 inactivation [37]

MCM4 MOXD1 Chromosome instability [33]

KIAA0251 ARHGEF11 Angiogenesis –

GAS2L3 /MTPN LMNB1 Cytotoxicity –

CDC7 COPE Tumor Suppression [37]

MELK BET1 Proliferation –

DEPDC1B KRT15 Chromosome instability [32]

BUB1B RPL10A Genomic Instability [38]

CDC7 PHYHIP Tumor Suppression [37]

RPL3 ARPC5 Chromosomal instability –

FIGURE 8. Dependence of the number of inferred transcriptional
interactions on the information measure (IBS) and the bin size (pat-
tern window size).

FIGURE 9. Transcriptional regulation network for breast cancer top
gene-gene interactions.

4.3. Candidate interactions

Gene pairs with a high degree of correlation (∆∗
m → 1) are

considered candidate interactions. These are the most valu-
able result of this research since they are the starting point
for the discussion and validation of biological pathways and
processes to be tested in the laboratory and clinical studies in
breast cancer. The complete list of interactions according to
their∆∗

m and p-value is available upon request. For p-values
lesser than1×10−11 and∆∗

m ≥ 0.85 gene-gene interactions
are showed as a network in Fig. 9. A list of some of the
more important interactions discovered / confirmed by this
research is given in Table II.

The importance of inferring transcriptional regulation in-
teractions become evident by considering the examples given
in Table II we have already seen that GEA reveals gene over-
and- under-regulated that are associated with some com-
mon biological processes that are dysfunctional in cancer
cells. Nevertheless, by considering table II. We saw that tran-
scriptional interactions inferred by means of our statistical-
mechanical formalism are related to highly specific features
of Cancer such as chromosomal instability, tumor suppres-
sion, and carcinogenesis. For 14 out of the 20 showed in-
teractions there are even experimental reports linking them
specifically to breast carcinoma. Further studies of the asso-
ciated (known or even unknown) biochemical pathways will
further improve our understanding of both the structure and
function of the cellular mechanisms related to breast cancer.

5. Conclusions and perspectives

Gene regulation, as we could see, is a complex phenomenon.
A great number of so-calledreverse engineering techniques
have been developed to discover the relations and interactions
between genes and/or sets of genes. In the particular case of
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information theory based methodologies, most of them con-
sider global correlations between GEVs (measured either on
a simultaneous or dynamic way) such as mutual information,
Kullback-Liebler divergences and so on. This approach has
been, of course a fruitful one.

Apart from global measures of information theoretical
correlation, there is a need for a local analysis of correlation.
We then proposed here a complementary study based in the
local pattern-sharinganalysis between GEVs. For this end
we applied a measure (IBS) that quantifies pattern-sharing
of two data series under an information theoretical frame-
work [20]. We applied IBS as a measure of interaction be-
tween two genes. The rationale behind this analysis is that
the higher the degree of pattern sharing between two GEVs
the larger its mutual correlation will be. If one is looking
for the more relevant interactions, one should take a view
on the large scale pattern-sharing (i.e. larger values of the
bin sizem). However, to account for more subtle interac-
tions, then a closer look at pattern sharing should be adequate
(smaller values ofm).

As we already stated, microarray gene expression experi-
ments were performed to compare the patterns of expression
between breast carcinoma and normal tissue. From the set
of statistically-significant differentially expressed genes, we
found a set of transcriptional interactions as a means to dis-
cover a set of functional relations pertinent to breast cancer
physiopathology. The knowledge of such functional relations
is essential to design and perform further investigations lead-
ing to the discovery of therapeutic targets. In this sense, sta-
tistical physics-inspired analysis of this kind could be seen as

a powerful hypotheses generation methodology in the context
of functional genomics.

In the present case, we were able to reconstruct an en-
semble of transcriptional interactions between genes that we
prioritized in relation with ductal and lobular breast carcino-
mas in human samples. This group of highly validated inter-
actions forms the theoretical basis to conform a gene regula-
tory network (after biological validation and annotation into
biochemical-pathway charts).

Present findings point out to the existence of transcrip-
tional modules that are related to suchcancer-onlyprocesses
like tumor suppression loss, chromosomic instability and
apoptotic inactivation in the one hand; and to more general,
normal-cellular functions processes like cell adhesion and
dysruption, hormone resistance, proliferation and angiogene-
sis in the other. In some transcriptional interactions these two
effects are mixed-up but there are some instances in which
module-separabilitymay lead to the discovery of pharmaco-
logical targets with less cytotoxicity to the normal cells than
the usual chemotherapeutic drugs.

In conclusion, information theoretical methods result in
powerful tools to reconstruct gene functional relationships.
Problems like low signal to noise ratios, under-sampling,
non-linear interactions, delays, etc., could be coped-with in
a systematic manner under the Information Theoretical For-
malism. The interaction’s set obtained was validated by sev-
eral in silico analysis. However, the most outstanding result
up to date was the discovery of some regulatory interactions
among genes previously related to breast cancer and the bio-
logical implications of the correlated gene clusters.
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25. B. Cant́u-Bolán and E. Herńandez-Lemus,Rev. Mex. F́ıs. E51
(2005) 118.

26. L. Dagdug, J. Alvarez-Ramirez, C. Lopez, R. Moreno, and E.
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