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Capillary penetration in cells with periodical corrugations
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In this work we present a theoretical study of the spontaneous capillary flow of a viscous liquid, developed in the gap between a couple of
parallel corrugated plates (corrugated Hele-Shaw cell). The periodical corrugation of the interior walls of the plates is assumed as a sine-like
pattern, transverse to the flow direction. Such a configuration may generate periodical gaps with a structure where zones of maximum anc
minimum closing occur. This is a simple idealization of typical micro and nano fabricated gaps used to mould polymers by capillarity. This
model can also be useful to understand the capillary flow in naturally fractured reservoirs. By using lubrication theory we found that a very
peculiar temporal flow is developed which could be of interest in improving our knowledge of this type of moulding.

Keywords: Micro and nano-scale flow phenomena; capillary effects; flow in channels.

En este trabajo presentamos un estudiwite del flujo capilar espoaheo, de uniguido viscoso, desarrollado en el espacio entre un par
de placas paralelas (celda de Hele-Shaw corrugada). La corpugamiiodica de las paredes interiores se supone como patrones tipo seno,
transversa a la diredm de flujo. Tal configuradn puede generar espacios pdicos con estructuras dedximo y ninimo acercamiento

entre ellas. Esta es una idealiZzatisimple de losipicos espacios micro y nanofabricados usados para moldéarguok por capilaridad.

Este modelo tambn puede sditil para entender el flujo capilar en yacimientos naturalmente fracturados. Usandadaleelarlubricadin
encontramos que se desarrolla un peculiar flujo capilar temporal el cual puede ser&epatarmejorar nuestro conocimiento sobre este
tipo de moldeo.

Descriptores: Feromenos de flujo a micro y nano escala; efectos capilares; flujo en canales.

PACS: 47.61.-k; 47.55.nb; 47.60.+i

1. Introduction in naturally fractured reservoirs of oil and gas and flows in
fractured rock aquifers, which are of enormous economical

This work considers the dynamics of the capillary penetraimportance [3].
tion of a viscous liquid into a corrugated Hele-Shaw cell. By
u3|ngth_|§ c_onflgur_at|on the_a_lut_hors have previously a_malyzed In modeling thefilm flow developed in the corrugated
the equilibrium height (equilibrium free surface) attained byHel

- L . e-Shaw cell we have used the lubrication theory [4]. By
a liquid when the corrugation in the cell is assumed to have . o . .

L. : .~ .~ Using this approximation, we can follow the two-dimensional
a sine-like structure, transverse to the main flow direction

L . - I flow whose main directions are along the vertical direction
Wh.'Ch is along the vertical d|rect|9n [1]. The eqU|I|pr|um and along the direction where the corrugation occurs. Due
Zﬁ:gztv\\:vea:z Lij‘;zsg dwhen the capillary and hydrostatic pre% the high non-linearity of the resulting equations we have

_ ’ ) ) solved they numerically. Through the resultant free surfaces
~ Inour previous work we have argued that this basic conynq the times involved in reaching equilibrium, we show that
figuration allows us to generate complex free surfaces. In thighe geometry imposes strong periodical deformations on the

work we study the dynamic evolution of such free surface§ptertace and that the spatially averaged profilg,, evolves
and how the equilibrium profiles are reached as a functionys 5 function of time;, approximately obeying, for short
of time. This problem completes the study of how a viscousjmes the Washburn law whet,, ~ /2. Incidentally

liquid can spontaneously penetrate, due to the action of thgyis |aw is valid in spontaneous capillary flows without cor-
capillary pressure, vertical, structured two-dimensional changgation and in the absence of gravity.

nels. Physically, the characteristic spatial scale where the

capillary pressure acts is of the order of the capillary length,

l. = (0/pg)*/?, whereo is the surface tensiom, is the lig- The division of this work is as follows: in the next section
uid density andy is the gravity acceleration. In normal ter- we derive the governing equations to describe the film flow
restrial conditions the capillary length is of the order of a fewin the cell. After that, in Sec. 3 we discuss the numerical
millimeters. Thus, our study can be useful in understandingolutions for the spatially averaged profiles and for the time
flows in micro and nano fabricated gaps used to mould polyelapsed to attain the equilibrium height. Finally, in Sec. 4 we
mers by capillarity [2] and in modeling the capillary flows present the main conclusions of this work.
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In this work, we assume that the interior walls of the cor-
rugated Hele-Shaw cell have a sine-like corrugation. Our
purpose in this part is to understand how such a corrugation
changes the shape of the liquid free surface. In order to ana-
lyze this problem we assume that the flow in the corrugated
cell is a thin film or lubricated flow, because the maximum
amplitude of the corrugation is so small that it allows the de-
velopment of such a flow. In Fig. 1 we consider the vertical
Hele-Shaw cell with corrugated walls.

Y v

H(y.t)

o Qualitative experiments [1] allow us to observe that the
5 e, A — flow has a free surface as shown in Fig. 1a. For simplicity,
" ,/:; : P ™ we suppose that each plate has a sine-like corrugation given
gt Bt |,
% G -
_]: E’WI | 21y
—_ SENSESENEL, [ amm S h(y) = tw 17(175)COST , Q)
o | e :
™ S ! L/ \\ whereh = wd is the minimum amplitude of the corrugation,
\\w,/'/ \\v,/ “\\L_/,/ h = 2w — wé is the maximum amplitude andis the wave-

o _ _ length of the corrugation. The coordinate systemrigy( z)
FIGURE 1. a) Schematic view of the zone invaded by a viscous 55 shown in Fig. 1a and 1b.

liquid (grey zone).H (y, t) denotes the air-liquid interface. b) Gap

between the corrugated walls. The main geometrical parameters of Notice that_ a system of flat parallel plates a distatoe
the corrugation are shown. apart are obtained far = 1, and the amplitude of the corru-

gation is maximum fo = 0. To build the capillary pressure
that yields the motion of the liquid we assume that locally,
across the transversal directian the free surface is made of
sections of spheres with curvatuRe= h/ cos whered is
the contact angle. (See Fig. 2). Then the capillary pressure
in the free surface is, = p, — 0/R = py — 20 cos0/h(y)
wherep, is the atmospheric pressure ala@) indicates ex-
R plicitly that the separation between plates is a functiop.of
P, When the liquid advances it does not cross the free sur-
—=% “oR face f(z,y,t) = z — H(y,t) = 0; this is the deep-averaged
8 kinematic condition which yields an equation for the deep-
averaged free surfacg,(see Fig. 1a) in the form

- — —Zh— —

of
ot
—w2h=a-n=q - <5, )
IVf] VSl
x wheren is the unit vector normal to the surface pointing

FIGURE 2. Local shape of the liquid between plates where contactinside, q is the volume flowrate vector per unit length, and
angled is shown. Here the curvature radifisand the value of the g = (g, ¢.). The simplification of Eq. (2) gives
pressure on the free surface are defined. )

0
| | | ~Aon=q-vr, ©
2. Governing equations for spontaneous capil- ’
lary penetration whereg, andg, are, respectively,
Physically, spontaneous capillary penetration of a liquid into (2h)3 Op
a vertical nano or micro channel, of characteristic sizés Iy =~ 12 9y’ )

due to the capillary pressuge ~ o/a which pulls the lig- 5
uid up into the capillary. In vertical channels the flow should - _ (2h) op.
be finally stopped at the equilibrium height where the hy- - 120 02
drostatic pressure compensates the capillary pressure [5, 6]. . . .

Ina HeIeI?Shaw cell, mF:)ide of two paraFI)IeI fI};tppIates cIE)séﬂere“ IS the dynamic w;cosny. In terms af(-) the mass
together, the equilibrium profile is a horizontal flat Surfaceconservatlon can be written as
z = H = constant, wherez is the upward vertical coordi- dq,  Oq.

nate. dy 2

®)

—0. (6)
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The use of relations (4) and (5) in (6) yields the Reynolds3. Results
equation for the pressure

9 <h3ap> + 9 (h38p) =0, (7y The resulting system of partial differential equa-
dy \ Oy 0z \ 0z tions (13)-(14) subjected to the boundary condi-
which will be solved under the boundary conditions tions (15)-(17) was solved by using the implicit finite-
differences discretization. A careful analysis of the solutions
p=0:atz =0, (8) as a function of the spatial and temporal meshes allows us
to know that a50 x 50 mesh is adequate to get an accurate
20 cos 6 ) X . . . )
p= _W +pgH : atz=H(y,t), (9) solution. The numerical time step was variable; in the first

stages of the phenomenon the time step was ardond
p(y,z) =ply+ A 2). (10) and it was increased as the phenomenon advanced. Typical

) » calculations were made for a total of 20 000 time steps.
Equation (8) expresses the condition that the pressure

is the pressure of the liquid referred to the pressure of the
surrounding gasp(,), Eq. (9) refers to the condition that the
pressure at the free surface is the sum of the capillary pres- 13
sure plus the hydrostatic pressure and, finally, Eq. (10) is the
condition of periodicity for the pressure.

Given a free surface, Eq. (7) yields the pressure field in
the liquid. The free surface then is advanced by the kinematic
condition [6] which in terms of{ has the form

OH h*9pdH h?dp 1 <5
ot 3udy Oy  3udz (11) x

Coupled Egs. (7) and (11) need to be solved numerically
because there are no analytical solutions for them. In order to
get such solutions we transform Egs. (7) and (11) and bound-
ary conditions (8)-(10) into their non-dimensional form. The

adequate dimensionless variables are o0 @3 & s ms | 1im
~ H t T
H:757—277§:777]:g7 77
Ze te w A
. h - _p o cos 12 FIGURE 3. Free surfaces for several dimensionless timesiere
C - 9 - 7p - 7Ze - . ( )
Ze w Pe PgwW A/ze = 0.01 andé = 0.5.

The quantityz, is the equilibrium height attained by the
free surface if the corrugation does not exist. In terms of
these quantities, Eq. (7) for the pressure transforms into the
dimensionless equation

1.10

0 (~50P\ A O [~30p
— (B )+ == (=) = 13 o e
on < 677) + 2o OC ( 8() 0, (13) ECE RN s
while Eqg. (11) takes the non-dimensional form . ”
oH 12 0poH _ N T2 0p an D
or 30n0n  z 30C (-

and the derivation of Egs. (13) and (14) allows us to establish

thatp, = o cosf/w andt. = pA?/(wo cos ). In addition, = 1765107 T - r=15.34
Egs. (13) and (14) will be solved under the dimensionless { - .=008 s = 22-48
boundary conditions e ;=557 7 =
p=0:at¢ =0, (15) 0.0 0.2 0.4 0.6 0.8 1.0
~ 1 . n
ﬁ:H—ﬁ:at(:H, (16)
N % FIGURE 4. Free surfaces for several dimensionless timeslere
p(n,¢) = p(n+ 1,0). (A7) A/z. = 0.01ands = 0.9.
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10" 3 e uid reaches a maximum height close to the union of the plates
. ' ] and slowly this maximum advances to the zone of contact of
x 105 ",_,-—""'i',—_ ------- the plates. Formally, this latter case can be seen as locally
(T it ] (a) i valid for zones wherey = 0,1. Consequently, the change
Prea ™ T in the curvature of the free surface as a time function can be
10°4 /‘,./"' = a S explained as due to the strong shear stresses that initially are
. i stronger in the zones where plates are closer. There the shear
1047 . stresses overcome the capillary driven force that always pulls
a Wz, =001 up the free surface.
107 3 -- - WZ =01 Figure 4 shows the temporal behavior of the free surface
P MZ =1 when corrugation is very smootld (= 0.9). As in Fig. 3,
S NZ =10 it has been assumed in this plot that the wavelength of the
10° corrugation is short f/z. = 0.01). Another interesting re-
0% 107 10° 10° 10t 100 10° 100 10" 10" sult is observed from the estimation of the averaged height,
T H,,, as a time function. This quantity is a measure of how,
: on average, the free surface of the liquid advances into the
L — corrugated cell. In Fig. 5 we observe thdy,, is nearly in-
i ] o S dependent of facta¥, which is related to the intensity of the
( = ’7,"‘ i
i [P ()
107 4 G 1 wz=om
/.// ’ 10'3_
10t 4-7 .
T WZ =001 .
107 5 i - 1077
r -v-‘r-uz:=1 z 1
g ——=Z =10 o 10" 5
]O-ﬁ ki BEELLLL | T T T o B, T T
10° 107 10° 107 10" 107 107 10" 10° 10" 10 10°4
T
FleufRE 5. Log-chr)]g %Iot ofthe ollimensionle(ss)a\r/]eragletlshe@m 10°
as a function of the dimensionless timeln (a) the valuey = 0.4 U P P %
implies that the corrugation is stronger than in (b) wheee 0.9. 107 107 1071010 1;)_ 107 107 10710710
3.1. Free surface evolution b)
In Figs. 3 and 4 we show the time evolution of the dimension- .

less normalized free surface profil%/f]av as a function of
n for several dimensionless times, H,, is the spatially av-
eraged height, reached at timgand is defined as

>

1
ﬁav = /ﬁ(ﬂ)dﬂ (t“
0

Figure 3 shows the transient evolution of the free surface
for \/z. = 0.01 andd = 0.5. At short times, the free sur-
face penetrates faster in the zone where plates are more sej
arated f = 0.5) and, as time elapses, the free surface in this
zone reduces their speed and finally it is delayed with respect
to the free surface located in zones where plates are close.

(n = 0,1). This peculiar behavior has been also observed: g re 6. Log-log plots of ., as a function of the dimension-
during the capillary penetration of a viscous liquid betweenjess timer. (a) corresponds to corrugations of short wavelength
a couple of vertical plates making a small angle [7] (Tay-and several amplitudes (b) corresponds to corrugations of large
lor’s problem [8]) where initially the free surface of the lig- wavelength for the same values®és in (a).
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corrugation. Moreover, itis observed that the averaged heigid.  Conclusions

depends strongly on the wavelengthi.e,, large A implies

high H,,,. Also, in Fig. 5 we indeed note that the dimension- In this work we have presented a simple model for analyz-
less time elapsed to attain the respective equilibrium heighing the dynamics of the spontaneous capillary penetration of
(height where the curve transforms into a horizontal line) is2 liquid into periodically corrugated Hele-Shaw cells. These

shorter as\ is larger. types of cells are similar to those occurring, for instance, in
molding of polymer in continuous networks of nano and mi-
3.2. Times to attain the equilibrium height cro channels [2]. The model of corrugated cells also can be of

N importance to model flow in fractures during the enhanced oil

At short times the log-log plot off,, vs 7, in Fig. 5, yields  recovery by the method of imbibition, where a liquid or gas
for all cases the power law,,, o 70-%%7, i.e,, this behav- s displaced capillary by an other liquid [3]. In this context,
ior is very similar to that found in the capillary penetration an important result is that despite the corrugation and under
of viscous liquids into Hele-Shaw cells without corrugation the gravity field, the spatially averaged height,,, very ap-
where at short time&l,,, o< 7/2. This result is known as the proximately obeys the Washburn lave., H,, o< 71/2
Washburn law and it is also valid for capillary penetration in By the way, the set of partial differential equations were
pipes and Hele-Shaw cells in the absence of gravity [9].  derived using the lubrication approximation valid for a film

By the way, Fig. 6 shows very important results relatedfjow developed in the corrugated cells. The partial differen-
also to the averaged height but now when the wavelengtha| equations were solved using the implicit finite-difference
is maintained constant. In Fig. 6a we plt,, vs 7 for  method. As a result a very detailed spatial and temporal de-
A/z. = 0.01 and several values of. These cases corre- scription of the free surface was achieved.
spond to corrugated cells where the separation between max- \ne have found that the curvature of the free surface
ima is very short. Conversely, in Fig. 6b is shown the plot for, g ves in a complex way as the liquid penetrates into the

A/ze = 10, which means that the separation between maximag||  The time evolution of the averaged free surface shows
is large. The main conclusion derived from plots in Fig. 6a,,6,; the wavelength), and the corrugation factos, deter-

is that the free surface, for short wavelengths, and strong COfine different ways of capillary penetration or evolution of
rugation § = 0.4), attains an averaged equilibrium height the averaged heighi,,,. These mechanisms could be of in-
lower than that corresponding to the case of smooth corrugggyest in the modeling of spontaneous capillary penetration in

tion, whens = 0.9. Consequently, the time needed to attain ;ompjex channels that can be approximated by our model of
this height is lower (around an order of magnitude) for theperiodically corrugated Hele-Shaw cells.

case of strong corrugation than that corresponding to smooth

corrugation and equal wavelength. It means that periodical
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