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Non-destructive measurement of the dielectric constant of solid samples
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We discuss and analyze a practical methodology for the determination of the dielectric constant of a macroscopic solid sample in a non-
destructive way. The technique consists in measuring the capacitance between a pointer electrode and the dielectric surface as a function of
the separation distance in a scale comparable to the radius of curvature of the tip’s apex. The changes in capacitance that must be measured
will commonly be in the atto-farad scale and require specialized instrumentation which we also describe here. The technique requires two
calibration standards and the sample needs to have a portion of its surface flat and some minimum dimensions, but otherwise it can have an
arbitrary shape. We used a simple model based on the method of images to explain the methodology and present experimental results with
the proposed methodology.
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Se describe una metodologı́a pŕactica para determinar la constante dieléctrica de una muestra sólida de una manera no destructiva. La técnica
consiste en la medición de la capacitancia entre un apuntador y la superficie dieléctrica como funcíon de la distancia de separación en una
escala comparable al radio de curvatura de la punta. Los cambios en la capacitancia que se deben medir estarán normalmente en la escala
de los ato-faradios y requieren de instrumentación especializada la cual también se describe aquı́. La técnica requiere de dos patrones de
calibracíon y la muestra necesita tener una porción plana en su superficie y con algunas dimensiones mı́nimas, pero fuera de eso puede
tener una forma arbitraria. Utilizamos un modelo sencillo basado en el método de las iḿagenes para explicar la metodologı́a y presentamos
resultados experimentales con la metodologı́a propuesta.

Descriptores: Mediciones capacitivas; constante dieléctrica; apuntador; caracterización de materiales.

PACS: 72.20.-I; 77.22.-d; 77.22.ch; 77.22.Ej; 77.22.Gm

1. Introduction

Capacitive measurements are commonly used to obtain the
dielectric constant at low frequencies of liquids and solid
films [1,2,3,4]. When determining the dielectric constant
of solid samples by capacitance techniques, a sample with
a specific shape and dimensions must be prepared. For in-
stance, one may need to form a parallel plate capacitor with
the sample for measurement [5]. In this respect capacitance
techniques used with solid samples are destructive, since the
sample must be cut and processed before measurement. The
capacitive electrode geometry is very important because the
capacitive value is directly in function of it. A few recent
publications in this area have shown that capacitive measure-
ments using spherical electrodes are more accurate [6]. How-
ever, the smaller the electrode’s dimensions, the smaller the
capacitance value one has to measure. It has been published
that a thin tip electrode in close proximity to a surface can
be used instead of a spherical electrode [2,7]. On the other
hand, several groups have shown recently that it is possible
to obtain capacitive measurement values in the order of atto-
Farads with modern instrumentation. Nowadays, the surface
capacitive image of thin film semiconductors is one applica-
tion of interest where atto-Farad measurements are reported
by several groups [8-11]. Also, in a recent publication we
analyzed the capacitance of a spherical-electrode in contact
with a dielectric-coating of finite thickness and found that
the capacitance value is independent of the sample thickness

when the tip’s radius is several times smaller than the sam-
ple’s thickness [12].

In this work we show that it is possible to obtain the
dielectric constant of a macroscopic solid sample in a non-
destructive way and without knowing its precise dimensions
by means of a metallic tip used as a capacitive electrode. Ba-
sically, the hypothesis of the methodology proposed here is
that when using a pointer electrode with a sufficiently small
radius at its apex in close proximity to the sample’s surface,
one can extract a contribution to the capacitance which is in-
sensitive to the sample’s dimensions but sensitive to the local
relative permitivity of the dielectric sample. After a proper
calibration procedure one can accurately measure the dielec-
tric constant of solid samples with sufficiently large dimen-
sions. The proposed methodology is non-destructive in the
sense that it does not impose conditions on the general shape
of the sample nor on the second capacitive electrode required
to established a potential difference.

The methodology proposed in this paper for extracting
the tip’s apex capacitance closely follows the one reported
in Ref 2, developed for measuring the dielectric constant of
very thin films. However, here we are interested in macro-
scopic solid samples with dimensions in the millimeter range
and larger, so the model required here is different from that
in Ref. 2. In the present methodology the apex capacitance
variations are due to the electrical interaction between the
tip’s apex and the dielectric interface only, while the contri-
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bution from the tip’s apex capacitance variations due to the
interaction of the apex with the substrate are negligible. In
fact, the capacitance variations measured here are neglected
in the model used in Ref. 2. A calibration procedure for
quantitative measurements of the dielectric constant is dis-
cussed in detail. Although, the capacitance variations that
must be measured in the present application are in the atto-
farad range, as in capacitance microscopy and relate tech-
niques, the requirements on the mechanical stage to handle
the tip’s position are less demanding. We estimate the min-
imum ratio between the tip’s apex radius and the sample’s
thickness to achieve a reasonable accuracy on determining
the dielectric constant with the proposed methodology. On
the other hand, the minimum apex radius will be determined
by the minimum capacitance variation we can measure.

In Sec. 2 of this paper we describe the basic principles
and assumptions of the proposed methodology. In Sec. 3 the
measurement methodology and the experimental setup used
in this work are described.

2. Principles of the proposed methodology

2.1. Basic principle

The basic idea behind the proposed methodology is relatively
simple. Consider a flat interface between a medium of elec-
tric permittivity εx and a medium of electric permittivityεy.
Suppose we place a conducting sphere of radiusa in the first
medium near the interface with the second medium. Using
the method of images, it is not difficult to show that the ca-
pacitance is given by

Cs(s) = 4πε1a

∞∑

i=0





i∏

j=1

aΓ
2 (a + s)− xj−1



, (1)

wheres is the distance separating the sphere from the inter-
face,x = 0,

xn =
a2

2 (a + s)− xn−1
, and Γ =

(
ε2 − ε1

ε1 + ε2

)
.

Notice that wheni= 0 in Eq. (1) we get 1 inside the
curly brackets and thus the first term of the sum is4πε1a.
Thus the capacitance of this ideal system is a function of the
dielectric constantsk1 and k2 of both media (k1 = ε1/ε0

andk2 = ε2/ε0, whereε0 is the electric permittivity of vac-
uum) and of the radius of the spherical electrode,a. Clearly,
if we know k1 anda we may determine the dielectric con-
stantk2 from a measurement of the system’s capacitance at a
known separation distances. Due to random experimental er-
rors in any measurement, it will be more accurate to retrieve
the value ofk2 from a measured curve of the capacitance
as a function of the distances. In practice, due to parasitic
capacitances in any real measurement, it will be necessary
to measure capacitance differences. For instance, one could
measure the difference in capacitance for two different val-
ues ofs. In practice it will be convenient to choose one of the
values ofs to be zero.

FIGURE 1. ∆Cs(s) curves for a sphere of radiusa= 20 µm and
different values of the sample’s dielectric constant fromk2 = 1 to
k2= 8. The curves were calculated with Eq. (1).

FIGURE 2. ∆Cs versusk2 curves for a sphere of radiusa= 20µm
at different values of the separation distances.The curves were ob-
tained with Eq (1).

In Fig. 1 we use Eq. (1) to plot∆Cs(s) ≡ Cs(s)−Cs(0)
versuss for a spherical electrode of 20µm radius in air
(k1=1) for several values ofk2. In Fig. 2 we plot∆Cs(s)
for specific values ofs as a function ofk2 for the same con-
ducting sphere. The graphs in Figs. 1 and 2 suggest that
using a 20µm spherical electrode and mechanical stage with
micrometer resolution, it is possible to determinek2 from the
measurement of∆Cs(s) in a scale of femto- to atto-farads.

In practice, however, the sample will not have infinite di-
mensions. To estimate when the dimensions of the sample
are not large enough, let us consider the case of a dielectric
film of finite thickness,d, as shown in Fig. 3. In this case, we
may readily find a first correction to Eq. (1) using the method
of images. Basically, we sum the first image charges on the
conducting substrate arising from the image charges formed
between the spherical electrode and the dielectric interface.
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An exact solution to this problem would require one to con-
tinue this process and keep adding image charges of the im-
age charges back and forth between the spherical electrode,
the dielectric interface and the conducting substrate. How-
ever, here we only need an indication that the sample may not
be considered of infinite dimension and thus we keep only the
first set of image charges on the conducting substrate. In this
case we get

Cf (s) = Cs(s) + 4πε1a

×
∞∑

i=1





i∏

j=1

aM

2 (a + d + s)− yj−1



, (2)

wherey0 = 0, and

yn =
a2

2 (a + d + s)− yn−1
and

M =
(

2ε1

ε1 + ε2

)(
2ε2

ε1 + ε2

)
.

Notice that the sum in Eq. (2) starts fori= 1, and thus the
first term of the sum is4πε1a

2M/2(a + d + s). Clearly, if
d À a, then we have thatCf (s) → Cs(s). When the second
term in Eq. (2) is not negligible, we may already suspect that
the approximation of an infinite sample will not hold and the
proposed methodology will incur in errors.

2.2. Obtaining the dielectric constant with a practical
system

In practice we will not have an infinite surface nor an iso-
lated sphere as an electrode. Instead, we will have a sample
of finite dimensions and we could use a conducting pointer
electrode attached to a cantilever in close proximity to the
sample’s surface as shown in Fig. 4. We will also have to use
a second electrode beneath the sample to establish a poten-
tial difference between the conducting tip and the surface of
the dielectric sample. The second electrode may be in sim-
ple contact with the sample. Of course, the capacitance of
the system will be a complicated function of geometry of the
electrodes, cantilever and sample. It will also have a parasitic

FIGURE 3. A spherical electrode on a dielectric film forming a
capacitive system.

FIGURE 4. (a) Capacitive system with tip and cantilever used in
practical measurements. (b) Equivalent RC circuit whereCstray

represents the total stray capacitance produced by the tip cone, can-
tilever, chip, mechanical mounting and wiring andCapex represents
the apex-dielectric sample-substrate capacitance of interest andR
is a finite resistance associated to the dielectric sample.

contribution from the electronics used. In general we can as-
sume that the pointer will be in air and we may take,k1 = 1,
that isε1 = ε0.

Nevertheless, if the radius at the apex of the pointer elec-
trode is small compared to the dimensions of the sample
and of the cantilever, we may separate the whole capaci-
tance of the system in two: a contribution from the apex-
surface region plus a contribution from the rest of the elec-
trode, cantilever and electronics. Let us denote the contri-
bution to the capacitance from the apex asCapex and that
due to the rest of the system asCstray. Both Capex and
Cstray are functions of the tip-surface separation,s. Then
we may write, C(s) = Capex(s) + Cstray(s). For s ¿ a,
whereais the apex’s radius of curvature,Cstray(s) will be
a slowly varying function ofs whereasCapex(s) will be a
rapidly varying function. To some approximation,Capex(s)
can be modeled as the capacitance of the isolated-sphere and
infinite-surface given in Eq. (1). SinceCstray(s) will be
a slowly varying function ofs, we may expandCstray(s)
about s = 0 in a Taylor series and keep only the first
two terms, that is,Cstray(s) = Cstray(0)+β(k2)s, where
β(k2) = [∂Cstray/∂s]s=0.
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Experimentally, it is necessary to measure the capacitance
change from a reference point. In practice, a convenient ref-
erence point is when the tip is in contact with the surface,
that is, ats = 0. Then, let us define the “capacitance differ-
ence from contact”∆C(s) as,∆C(s) = C(s) − C(0). If
the stray capacitance behaves linearly for not too large values
of s, we have

∆C(s) = ∆Capex(s) + β(k2)s, (3)

where∆Capex(s) = Capex(s) − Capex(0). Now, Eq. (1)
shows thatCapex(s) tends rapidly to a constant value soon
after s becomes larger thana. This means that in Eq. (3),
∆C(s) will tend to a linear function rapidly ass approaches
the value ofa and surpasses it.

Then we should measure∆C(s) versussfrom s = 0 until
linear dependence withs is reached. We obtain the value of
β(k2)and subtract the stray capacitance from Eq. (3) and ob-
tain ∆Capex(s) [2,7]. The function∆Capex(s) will depend
on the dielectric constant of the sample,k2, and the apex’s
dimensions only. In practice we may calibrate the system
by obtaining∆Capex(s) for a few samples of known dielec-
tric. Then we may define a convenient value ofs = sm and
adjust a curve∆Capex(sm; k2) that passes through the cal-
ibration points. If this curve is found to be smooth up to
the maximum value of interest ofk2, then two or three cali-
bration points may suffice. To obtain the dielectric constant
of a given sample in later measurements, we must measure
∆Capex at s = sm and from the calibration curve we may
retrieve the dielectric constant of the sample. In the rest of
this paper we describe our experimental work showing the
feasibility of the methodology.

3. Experimental work

3.1. Experimental considerations

When an ac voltage,Vac(ω) = V0 exp(jωt), is applied
between the tip and the substrate electrode, an ac current,
Iac(ω) = I0 exp(jωt), is established through the system.
The capacitive system can be represented as an RC circuit
in which a finite resistanceR is in parallel with the capaci-
tance of the tip’s apex with the sample’s surface,Capex. As
already mentioned, the tip is attached to a cantilever so that
the tip’s cone, the cantilever, the whole mechanical structure
and the wiring produce a stray capacitanceCstray also in par-
allel with the RC circuit as indicated in Fig. 4b.

An admittance analysis shows that

I0 = (1/R + jωCapex + jωCstray)V0.

Thus the established current is out of phase with re-
spect to the applied voltage and its imaginary part (i.e.
the component 180◦ out of phase) is proportional to the
capacitance of the system. We may then refer to the
stray currentIstray = jωCstrayV0, and the apex current,
Iapex = jωCapexV0, both purely imaginary. Therefore, in

practice we can measure the capacitance by applying a volt-
age of constant amplitude at a fixed frequency and measur-
ing the imaginary part of the current with a lock-in amplifier.
The stray capacitanceCstray is typically orders of magnitude
larger thanCapex and since any amplifier will have a finite
dynamic range, it is necessary to subtract most of the current
arising from the stray capacitance. Otherwise it would not
be possible to resolve the small variations ofCapex. A tech-
nique to accomplish this was proposed and demonstrated by
Lee, Pelz and Bhushan [10]. In order to reduce the stray cur-
rent, the same voltageVac(ω) but shifted 180◦ in phase must
be applied to a calibration capacitor with a capacitanceCcal

close toCstray at a reference position of the tip sample’s
separation distance. The displacement current going through
the calibration capacitor, -Ical, and the currentI0 arrive at a
common node and these two currents are added. The differ-
enceI0 − Ical ≡ ∆I must be in the order of magnitude of
Iapex. After this node the contributions to the imaginary part
of the current is the “apex” current,Iapex = jωCapexV0 plus
the small difference current between the stray and calibration
currents∆I The total current entering the Lock-in amplifier
is ILock−in = Idis + Iapex + ∆I, whereIdis = V0/R is the
dissipative current (real), as depicted in Fig. 5.

The capacitance value∆C = Capex +(Cstray – Ccal) at
a given separation distances is calculated with the following
expression:

∆C =
Im [Ilock−in()]

ωVac (ω)
, (4)

FIGURE 5. Block diagram of the capacitive measurement system
in which the total current flow is shown. As can be seen, the cur-
rent passes through the dielectric sample, tip, phase shift stage and
finally to the lock-in amplification stage where the real and imagi-
nary parts of the current are obtained.

FIGURE 6. Complete tip and cantilever mounting with reflective
surface on tip upper side, 3mm conductive tip and signal wire with
tubular arm (guard).
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whereIlock−in(ω) is the difference in currents ats and at
s =0, andIm(·) denotes the imaginary part. A fine-control
of the current cancellation loop should be included so that
Iapex + ∆I can be adjusted to zero at the reference separa-
tion distances = 0.

3.2. Experimental setup

A 3 mm metallic tip was attached to a flexible cantilever
4 mm in length as shown in Fig. 4. The exact shape of the
tip’s apex could not be clearly observed under the microscope
but an effective radius in the range of 20-40µm was esti-
mated. A reflective surface was mounted on the upper side of
the cantilever in which a laser beam was reflected to a quad-
rant photo-detector in order to sense the tip tilt position, as it
is shown in Fig. 6.

The cantilever with the tip was kept at a fixed height
above a metallic sample holder mounted on a New Focus
8095 x, y, z mechanical-stage (positioner) with 16nm dis-
placement per motor pulse approximately. The sample was
placed on top of the sample holder and displaced upwards at
16 nm steps until the sample’s surface made contact with the
tip’s apex. As soon as the tip makes contact with the dielec-
tric sample’s surface, the tip pushes the cantilever upwards
and the reflected laser beam position on the quadrant photo-
detector generates a signal indicating to stop the sample’s dis-
placement. The experimental setup is shown in Fig. 7.

Figure 7a shows the complete tip-sample mounting and
Fig. 7b shows the laser beam and quadrant detector mounted
to sense contact with the sample’s surface. The whole system
wiring was shielded and grounded before applying the volt-
age signal between the tip and metallic sample holder. The
total capacitance of the experimental setup was around 0.2
pF. The total capacitance includes stray and apex-sample ca-
pacitances which were measured with a SR715 Stanford Re-
search LCR meter with a 10 KHz frequency and 1 Vrms. We
assembled a current cancellation circuit on a PCB (Printed
Circuit Board) similar to that reported in Ref. [10]. The
circuit consists of amplitude and phase shift stages. The ac
voltage was compensated in amplitude and was 180◦ phase
shifted. This voltage was applied to a calibration capacitor
that was designed on the PCB.

Theoretically, the value of the calibration capacitor must
be equal to the total capacitance of the experimental setup
at some reference point. As already mentioned, the refer-
ence point is taken ats = 0, that is, when the tip is in con-
tact with the sample’s surface. The calibration capacitor was
designed as a strip capacitor and was integrated in the PCB
with the cancellation-current circuit as described in the Ap-
pendix. Once fabricated, the capacitance of the calibration
capacitor was measured with the LCR meter and found to be
Cm=0.205 pF, close enough to the total capacitance of 0.2 pF.
Since the calibration capacitor is fixed, to obtain a null cur-
rent at the reference points = 0 we adjusted as needed the
amplitude and phase shift on the current passing through the
calibration.

The methodology for measuring capacitance versus sep-
aration curves was the following. First, the dielectric sam-
ple was elevated until the tip’s apex made “soft” contact with
the dielectric sample upper surface. The current was then
adjusted with the variable amplitude control to reach a suffi-
ciently small value (typically±1 pico-ampere). The separa-
tion distances was increased at fixed steps and the imaginary
component of the current was registered with the Lock-in am-
plifier. Then∆C(s) was calculated with Eq. (4) at each step
of s. Later, the value of∆C(0) was subtracted from all subse-
quent measurements of∆C(s) and the curve of∆C versuss
was plotted. Also, a small offset on the experimental scale of
the separations (smaller than one step) had to be subtracted to
obtain a smooth and reproducible curve. The reason for this
offset is that when the tip was brought into contact we could
push the tip upwards, deflecting the cantilever a fraction of
the last step. On the other hand, the mechanical stage pre-
sented a variable backlash depending on the size of the step
chosen. In any case this offset was determined from the first
few experimental points on a curve and subtracted.

3.3. Measurements

To calibrate our experimental setup we need three calibra-
tion points. Two of them may be obtained with two slabs
of different materials of known relative permittivity, and an
additional point may be obtained with air. (In this case one
simply includes no sample in our setup.) The two calibra-
tion materials were chosen to be glass slab of the soda-lime
type and a piece of PCB of the FR-4 type (according to the
manufacturer) which is a hard dielectric material. To deter-
mine their relative permittivity, we deposited thin metallic
films (by sputtering) on both sides of two calibrations sam-
ples, forming a parallel plate capacitor with each of them.
We measured the capacitance with the LCR meter and in-
verted the relative permittivity from the parallel-plate capac-
itor formula. We obtained a relative permittivity of 7. 64 for
the glass and of 4.87 for the FR-4 sample. Both slabs had a
rectangular shape, 2 cm×2.5 cm. Due to edge effects we es-
timated that the latter values may be off from the real ones by
at most 2% and a more rigorous procedure to generate cal-
ibration samples may be needed. However, we will ignore
this possible error since it would only introduce a systematic
error in future measurements of the dielectric constant with
our experimental system, and here we are interested only in
evaluating the feasible precision of the proposed methodol-
ogy.

Measurements of∆C(s) from s = 0 to s = 40 µm at
steps of 1.6µm were performed for two calibration slabs
and for air. In the case of air, the reference points = 0,
was taken at a height of 1 mm from the metallic substrate.
All current data were averaged within a 10 second time pe-
riod with a 64 Hz sample rate and a 100 ms time constant
with a standard deviation ofσ = ±1pA approximately. The
current noise wasIn=0.91 pA/

√
Hz with a noise equivalent

bandwidth of 1.2 Hz (100 ms, 12 dB/oct time constant), and
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1Vrms. Thus, we had an equivalent capacitance input noise
of Cn=14.5 aF/

√
Hz.

The experimental curves are plotted in Fig. 8. As can be
seen the graphs, the curves change faster for values ofs up
to about 10µm and tend to a straight line for larger values
of s. The tangent lines to the end portions of the curves are
also plotted in Fig. 8. The capacitance change due to the
tip’s apex is obtained by subtracting the asymptotic straight
lines from the measured∆C(s) curves as discussed above.
The data for∆Capex(s) for air, FR-4 and glass are plotted in

FIGURE 7. (a) Tip mounting, dielectric sample and sample holder
over the nano-metric positioner. (b) Complete capacitive sensor
mounting.

FIGURE 8. ∆C versuss experimental curves with offset correction
andCstray tangent lines.

FIGURE 9. ∆Capex versuss experimental fitted curves with lin-
ear, 5th and 7th orders for air, FR-4 and glass samples respectively
witht Cstray tangent lines subtracted.

Fig. 9. We also plot a fitted polynomial (linear, 5th and 7th

order respectively) to each set of data. As can be seen in this
figure, the three curves are well separated from each other.

Now, to obtain a calibration curve for future mea-
surements of the dielectric constant of solid samples, we
must choose a specific separation distance,sm, and plot
∆Capex(sm) versus the relative permittivityk2. The specific
value ofsm appears rather arbitrary. In Figs. 10a, 10b and
10c we plot∆Capex(sm) versusk2 for sm = 9 µm, 17µm
and 33µm, respectively. In all cases a polynomial of second
order fits the three calibration points very well. This shows
that in our experimental setup we do not need more calibra-
tion points, and three is enough. In principle, with either of
the three calibration curves we can measure the relative per-
mittivity of a solid sample as long as this is near or smaller
than that for the calibration glass.

Once we had the calibration curves for our setup, we con-
tinued to measure the relative permittivity of fused quartz.
We measured∆C(s) for a quartz slab about 1.7 mm thick
for s = 0 to s = 40 µm and using a 10 KHz signal. We sub-
tracted the linear dependence as explained before and calcu-
lated∆Capex(sm) for sm = 9 µm, 17µm and 33µm. These
values are indicated in Figs. 10a, 10b and 10c, respectively.
From the intersection point of the calibration curves with the
corresponding value of∆Capex(sm) we obtain a value for
the relative permittivity of fused quartz at 10 KHz of 3.90,
3.92, and 3.88 forsm = 9, 17 and 33µm, respectively. The
difference between these values may be taken as a measure
of the reproducibility error in determining the dielectric con-
stant with our experimental setup. These values differ from
each other by 1% or less, which is an acceptable error. We
may also compare our measurements with the nominal value
for the dielectric constant of 3.75 reported by the manufac-
turer of the quartz used. The difference is 5%. However the
manufacturer does not specify the frequency at which the di-
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electric constant is reported, which could explain the differ-
ence.

FIGURE 10. Relative permitivity of fused Quartz obtained with k2

calibration curves for: a)sm=9µm, b)sm=17µm and c)sm=33µm.

4. Discussion

We can observe that the curves for the sphere model given
by Eq. (1) for a spherical and the experimental curves for
∆Capex are alike. The shape and order of magnitude of
the scales coincide and we may estimate an effective radius
at the apex of the pointer electrode somewhat smaller than
20 µm. Nevertheless, Eq. (1) cannot be fitted to all the data
of ∆Capex vs. s. On the one hand, the shape of the tip’s apex
may not be round with a constant radius of curvature. On the
other hand, the spherical electrode model considers a com-
plete sphere, whereas the apex of a conducting tip electrode
may approximate a half-sphere. Therefore we should not ex-
pect Eq. (1) to fit all the experimental data well. However the
sphere model does give us a clear indication as to the order of
magnitude of the capacitance variations we need to measure.

As mentioned in Sec. 2, the shape of the sample may ac-
tually be arbitrary as long as it has a portion of its surface of
sufficiently large dimensions flat and thick enough. The rest
of the surface and volume of the sample, as well as the metal-
lic sample-holder used as a second electrode, will contribute
to stray capacitance, which is subtracted from the measure-
ments.

The model of a uniform film of thicknessd will not give
us an accurate model for the stray capacitance. However,
it can give us an estimation of the minimum dimensions of
the flat area of the sample’s surface and the minimum sam-
ple’s thickness. In Fig. 11 we calculate the calibration curves
∆C(sm) versusk2 for sm = 15 µm anda = 20 µm using
Eq. (2) for dielectric films of decreasing thicknessd. We can
appreciate that the calibration curve remains nearly constant
from d = 1mm down to 0.1 mm and it clearly moves away
until d = 0.05 mm, that is 50µm. This result suggests that
the dimensions of the sample must be only a few times larger
than the sphere radius.

FIGURE 11. Calibration curves∆C(sm) vs.κ2 for sm = 15 µm
anda = 20µm obtained with Eq. (2).
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FIGURE 12. (a) Scheme of the parallel strips with a conductive
grounded plane in a PCB. (b)Complete scheme of the calibration
capacitor.

It is not difficult to show that if the dimensions of a 3D
problem are scaled by a factorp while keeping the same rel-
ative electric permittivity, then the capacitance is scaled by
the same factorp. In the methodology proposed in this pa-
per, the scale is dictated by the radius at the tip’s apex. The
methodology could be used at smaller scales provided one is
able to measure smaller variations of the capacitance. In our
experimental measurements we had a standard deviation of
σ = ±1pA approximately which give us an uncertainty in
measuring capacitance variations of about 16 aF. If the un-
certainty on capacitance variations is improved to 1 aF, we
could reduce the tip’s apex radius 16 times to about 1 or 2µm
without losing resolution on the measurement of the dielec-
tric constant. The methodology may also be used at larger
scales and in this case the required instrumentation may be
somewhat simpler.

The resolution of the mechanical stage required to vary
the separation between the sample and the tip will depend
on the scale. In our experimental setup, the effective tip’s
apex radius was about 20µm and the step in changings was
1.6µm. We could have used a simpler mechanical stage and
the step could have been somewhat larger. In any case, if
the tip’s radius is increased or decreased the step ins may be
increased, or decreased accordingly.

5. Conclusions

We presented a new methodology to measure the relative
electric permittivity of solid samples. This methodology may
be used in a non-destructive way in many cases for samples
of different shapes. It is not necessary to deposit thin metal-
lic films on the sample to perform as electrodes. The sample
does not need to be cut into a particular shape or size, but
a flat area of the sample’s surface of some minimum dimen-
sions as well as a minimum thickness is needed. Basically,

the technique requires a capacitance meter, a metallic tip with
the appropriate apex’s radius, a mechanical stage, and two
calibration standards. Although our experimental setup can
be improved in several respects, we believe that the results
presented here prove the feasibility of the proposed method-
ology and shows that a resolution on the determination of the
dielectric constant below 1% is possible.
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Appendix

The value of the calibration capacitor must be as near as pos-
sible to the total stray capacitanceCstray= 0.2 pF of the ex-
perimental setup. In addition, a fine control is needed in order
to achieve a zero calibration before performing current mea-
surements to determine values of∆C.

The calibration capacitor was designed to be integrated
into the PCB design of the phase shift stage in order to avoid
external wiring and therefore, an increment of the stray ca-
pacitance.

The calibration capacitor design was based in mutual ca-
pacitance calculus between conductive strips separated from
a conductive grounded plane by means of a dielectric film.
The mutual capacitanceCm is a function of the spacing be-
tween strips (g), strip length (l), strip width (w), FR-4 rela-
tive permittivity (εr) and FR-4 thickness (h) as depicted in
Fig. 12a. An additional contribution to the capacitance arises
from the narrow strips connecting the capacitor to the rest of
the circuit (see Fig. 12b).

A first approximation to the dimensions of the strip ca-
pacitors was obtained using the formula [13],

Cm

l
=

εp1p2 ln
[
1 +

(
2h
g

)2
]

(
4π h

w

) (A.1)

where

p1 = (716)
(

2h

w

)
+ 1 and

k2 ≈ 0.66
(

2h

w

)
+ 1.55.

Then with finite element numerical calculations and taking
into account the narrow strips feeding the capacitor we ad-
justed the final dimensions of the parallel strips and spac-
ing g between them to make ofCm approach the value of
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Cstray. The final dimensions werel = 1.6 cm,w = 3 mm and
g=0.8 mm. We fabricated the printed capacitor on the PCB

and measured its capacitance SR715 Stanford Research LCR
meter. We obtainedCm = 0.205 pF at 10 KHz frequency.
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