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We present a new procedure to obtain analytic expressions for tracing rays in plates and wedges used edgewise applying the unfolding
method for ray tracing, to be able to analyze the behavior of these optical components for transporting light in optical systems. The plates
and wedges are useful in transforming the shape and characteristics of light beams, and also for changing the focal ratio or aperture number
of these beams. The analytic expressions derived are simple to use in any application.
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Presentamos un nuevo procedimiento para obtener expresiones analı́ticas para trazar rayos en placas y cuñas usadas de canto aplicando el
método de desdoblaminto para trazar rayos, para analizar el comportamiento de las placas y cuñas para transportar luz en sistemasópticos.
Las placas y las cũnas sońutiles en transformar la forma y las caracterı́stica de los haces de luz. Y también para cambiar la razón focal o
número de abertura de esos haces. Las expresiones analı́tcas derivadas son sencillas de usar en cualquier aplicación.

Descriptores: Diseño óptico; trazo de rayos; placas; cuñas.

PACS: 42.15.Dp; 42.15.Eq; 42.15.-i

1. Introduction

Plates and wedges are generally used facewise as windows,
beam splitters, to displace images and beams, and for chang-
ing the polarization as well as the direction of rays and focal
distances in optical systems, and also, as second and multi-
ple reflection mirrors and some other applications [1,2]. The
wedges are normally used as thin prisms in optical systems.
For some applications it is necessary to use the plates and
wedges edgewise to maximize the transfer of radiation and
create a controlled distribution of illumination in optical in-
struments by changing the form of the entrance image and the
beam shape. For example, in slit spectroscopy the entrance
image is in general circular; therefore to be able to collect
all the light it is necessary to change that form into a rect-
angular one to pass all the light through the slit of the spec-
trometer. Also, plates and wedges are used in non-imaging
instruments, such as light pipes [3-6]. A glass plate is a
smooth, homogeneous, flat, relatively, thin rigid body of uni-
form thickness. A glass wedge is a piece of a tapered glass
plate. To analyze systems composed of plates and wedges
used edgewise, it is necessary to have useful analytic expres-
sions; therefore in this paper we develop the procedure to
follow up the trajectory of a single straight ray from the en-
trance on the first surface, through the internal material, up
to the exit surface, by unfolding the rays. Usually, given the
entrance point of the ray, the successive reflections are cal-
culated by finding the point of reflection where the ray inter-
sects the surfaces, the normals at those points, and the angles
using the reflection law. At the end, up to the exit surface,
a set of equations are obtained for the point of intersection
with the last surface and the exit direction of the rays. One
can visualize this processes for a ray in a plate as in Fig. 1.
In this procedure all the numerical calculations must be very
precise, because in a sequential process the errors propagate
very easily. On the other hand, the plates and wedges are

amenable for carrying out the ray tracing using the technique
of unfolding the rays. The objective of the technique devel-
oped here is to simulate the real behavior of the ray trajectory
by a single straight ray that is equivalent to the original one;
to our knowledge, this is the first time that this type of treat-
ment has been done. This is accomplished by means of vir-
tual rotations of the plates or wedges around the back of one
exterior surface of the plate or wedge with respect to the di-
rection of propagation for straightening or unfolding the rays.
The unfolding ray trace simplifies the calculations and gives
the opportunity to visualize the behavior of the system under
study. Another method to study the rays inside plates and
wedges, for example for analyzing the transfer of radiation in
plates and wedges, is the Tunnel diagram [7,8]. For chang-
ing the shape and size of the input images in spectroscopy, in
order to maintain the intrinsic resolution and throughput of
spectrometers [9], there are different instruments called im-
age slicers [10]. In general these slicers are composed of mir-
rors and use multiple reflections to change the circular images
into rectangular ones [11]. The light lost in those devices is
great, due to the multiple reflections. For the case of plates
and wedges the internal reflections are total; therefore, the
light lost is only due to absorption in the glass of the plate or
wedge, hence is very important in the study of low intensity
sources as in astronomical spectroscopy. Another novel char-
acteristic of the results that are presented here is that, with
the initial data of the entrance ray, and the knowledge of the
parameters of the wedge or plate, a set of formulas can be
used directly to obtain the exit data of the ray and the number
of reflections without any additional calculations.

In what follows, in Sec. 2 we present the unfolding
method of ray tracing. Section 3 introduces the mathemat-
ical procedure using the conventional ray tracing techniques
in order to have a set of equations for the exit ray; in plates
Sec. 3.1, symmetric wedges Secs. 3.2, 3.3, 3.4, and 3.5 for
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FIGURE 1. Geometry of a plate seen sideways with dimensionsd
in the direction of ray propagation,h in the perpendicular direction,
andt in the other perpendicular direction.

FIGURE 2. Stack of plates for unfolding the rays in our procedure,
to produce a rectangular form.

different configurations; and asymmetric wedges Sec. 3.6.
Some examples using the equations derived are shown in
Sec. 4. Section 5 presents the conclusions.

2. Background

Any optical system that includes a number of mirrors can
best be analyzed by unfolding the optical rays [12]. This is
accomplished by removing the reflecting plane mirrors and
replacing them with an equivalent aperture of the same size as
the mirrors for straighting the optic axis. In the case of non-
dispersing prisms we can substitute the prism by an equiva-
lent plane-parallel plate that behaves in the same way as the
prism. It is necessary to rotate the prism around itself with
respect to the back surface of the prism to form a parallel
plate made of two prisms, let’s say, one prism on top of the
other [13]. In case of plates and wedges, the unfolding ge-
ometry is formed by rotating the real plate (wedge) virtually
around the top surface of the same plate (wedge) with respect
to the direction of ray propagation to obtain a virtual plate
(wedge) on top of the original one. The rotated plate (wedge)
is in turn rotated now around the top of the last surface, and so
on, in order to obtain a virtual stack of plates (wedges). The
same procedure is used to produce the plates (wedges) be-
low the original plate (wedge). Each plate (wedge) is turned
around with respect to the one before and the same proce-
dure used before is continued. This geometry, the stack of
plates (wedges) is important for finding the correct directions
and exit points in the ray trace. This procedure produces the
system of virtual plates or wedges used for the mathemati-

cal analysis of our method and shown in Fig. 2 for parallel
plates.

3. Mathematical Procedure

3.1. Parallel Plates

We develop the procedure first for the case of a plane-parallel
plate for simplicity and because it shows all the peculiarities
of the technique. In Fig. 1 we show the plate with lengthd in
the direction (z) of ray propagation, thicknessh in the (y) di-
rection and widtht in the (x) direction for one ray that travels
inside the plate making internal reflections. The geometry of
the unfolded ray is shown in Fig. 2. Instead of using the plate
directly to trace a single ray as in Fig. 1, we use the virtual
stack of plates given in Fig. 2.

A ray in three dimensions starting at the point (x0,y0,z0)
is represented by the following expressions:

x = x0 + λl,

y = y0 + λm,

z = z0 + λn, (1)

wherel, m andn are the direction cosines of the ray andλ
is a parameter that gives the length of the ray. From Fig. 2
the ray enters the plate at the point (x0,y0,z0), crosses sev-
eral planes and leaves out the stack in some point on the exit
surface. A plane in three dimensions is given by

Ax + By + Cz −D = 0, (2)

and for the back surfaceA = B = 0; therefore, from Fig. 2
we obtain

z =
D

C
= d, (3)

and from the third Eq. (1) we find

λ =
d− z0

n
. (4)

Knowing the height where the ray intersects the last sur-
facez = d,

yd = y0 + λm. (5)

We are interested in finding out the number of reflec-
tions in order to know the exit ray direction, and this problem
is solved as follows. The number of crossings that the ray
makes with the surfaces gives us the direction of the ray after
leaving the end of the plate. If the number is odd, the ray
changes direction with respect to the entrance direction and
with respect to the local normal of the exit surface. Also, this
number of crossings permits us to calculate the point where
the ray leaves the plate. The number of virtual surface cross-
ings, or reflections in the original plate, is easily found to be

N =

[
1 + 2 |yd|

h

2

]
, (6)
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FIGURE 3. Geometry of a wedge seen sideways with dimensions
d in the direction of ray propagation,h0 in the entrance side of the
wedge,h1 in the exit side of the wedge, andt in the perpendicular
direction.

FIGURE 4. Stack of wedges for unfolding the rays in our proce-
dure.

where the square brackets means truncation of the result.
Therefore, the exit point is found using

ye = (−1)N (yd ∓ Nh), (7)

where the plus sign is used for negativem, and the direction
cosines of the exit ray are

l, (−1)Nm, n. (8)

For the special cases of rays that do not have any inclina-
tion, the height isye = yd. As a result of this section, the
equations (4), (5), (6), (7) can be used sequentially, without
any additional ray tracing, in order to find out information
about the exit ray, crossing the plate, with the data for the
incident ray and plate.

3.2. Symmetric wedges

We define the symmetric wedge by its lengthd in the direc-
tion of ray propagation (z), entrance heighth0, exit height
h1, and widtht shown in Fig. 3. For symmetric wedges there
are several cases: the first one is when the smaller face,h0, is
the entrance aperture, (see Sec. 3.3) the second one is when
the entrance aperture is the other face,h1 (see Sec. 3.4); and
the last one is when the wedge is seen sideways with respect
to the other two cases (see Sec. 3.4). Lastly, there exists the
case of an asymmetric wedge, to be analyzed in Sec. 3.6.

3.3. First case

For the first case, the geometry of the unfolding arrangement
is shown in Fig. 4. In order to know where the ray inter-
sects the exit surface, we must initially make an approxima-
tion for that position by means of a circumscribed cylinder
to the stack of wedges shown in Fig. 4. For clarity we show
only the parallel of the cylinder through the point of intersec-
tion. From the geometry, we find the point of intersection of
the rayr0 with the cylinder, and trace the position vectorr to
that point. The equation for the cylinder is given by

r2 = z2 + y2, (9)

where the radius of the circumscribed cylinder from Fig. 4 is

r =
z0 + d

cos
(

θ0
2

) , (10)

whereθ0 is the angle of the wedge and is given by

tan
(

θ0

2

)
=

h1 − h2

2d
, (11)

and by substitution of Eqs. (1) into Eq. (9) we obtain

λ =
(y0m + z0n) ± [(y0m + z0n)2 − (m2 + n2)(m2 + n2 − r2)]

1
2

(m2 + n2)
(12)

Now the position vector of the point of intersection with the cylinder is given by

x = λ′l′, y = λ′m′, z = λ′n′, (13)
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FIGURE 5. Wedge with entrance side greater than the exit side, to
produce a rectangular output.

wherel′, m′ andn′ are the position vector direction cosines,
with λ′ = r from Fig. 4 and therefore, from Eqs. (1)
and (13), we obtain

l′ =
x0 + λl

r
, m′ =

y0 + λm

r
, n′ =

z0 + λn

r
; (14)

with m′ we can find, from Eqs. (13), where the ray intersects
the cylinder. Thus we can calculate the point on the cylinder,
and in this way calculate the angleθ that the position vector
makes with the optical axis. With this angleθ and with the
wedge angleθ0, one can calculate the number of crossings
that the ray makes through the surfaces of the stack, or inter-
nal reflections in the original wedge, before leaving the last
surface as

N =

[
1 + 2 |θ|θ0

2

]
, (15)

where again the square bracket means truncation of the result.
Now we have to rotate around thex axis the wedge the an-
gle α = Nθ0 to know where the ray intersects the last plane
of the given wedge. The last plane of the original wedge is
given by

z = z0 + d. (16)

A rotation around thex axis by the angleα is represented
by

x = x′,

y = y′ cos(α) − z′ sin(α),

z = y′ sin(α) + z′ cos(α). (17)

By substitution of the third of Eqs. (17) into Eq. (16) (for
simplicity we neglect the primes, we obtain the rotated plane

By + Cz − D = 0, (18)

with

B = sin(α), C = cos(α), D = z0 + d. (19)

Substituting Eq. (1) into Eq. (18) produces

λ =
D − By0 − Cz0

Bm + Cn
, (20)

which together with Eqs. (1), can be used to find the point
where the ray intersects the inclined back plane of the corre-
sponding wedge. Having found the number of crossings and
the point of intersection of the ray with some back plane, it
is necessary to calculate the real exit point of the ray over
the back plane of the original wedge, and for that purpose we
have to fold back the virtual wedges onto the real one by the
negative of the angleα. Therefore, the exit position of the
ray is

xx = x,

yx = cos(α)y + sin(α)z,

zx = − sin(α)y + cos(α)z. (21)

The ray trace is accomplished using Eqs. (1), (15), (19),
(20) and (21) together with the angleα. The exit direction of
the ray is found by rotating by the negative of the angleα,
namely

mx = (−1)N cos(cos−1(m) ∓ α), (22)

where the plus sign is applied when the initialm is negative.
As can be seen, the results for a wedge are a little more cum-
bersome.

3.4. Second case

Now we develop the equations for the second case, a wedge
with the entrance surface greater than the exit surface, shown
in Fig. 5. We follow the same procedure as in the last case.
Substituting Eqs. (1) into Eq. (9) for the circumscribed cylin-
der produces

λ =
−(y0m + z0n) ± [(y0m + z0n)2 − (m2 + n2)(y2

0 + z2
0 − r2)]

1
2

(m2 + n2)
, (23)
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FIGURE 6. Transversal wedge, to produce a trapezoidal output.

FIGURE 7. Asymmetric wedges.

where the radius of the cylinder is now given by

r =
z0 − d

cos( θ0
2 )

. (24)

As in the other caseλ′ = r; therefore, Eqs. (14) apply
together with Eqs. (13) to find the exit point of the ray. The
exit direction is given by Eq. (22). Therefore, these two cases
are equal except that one has to change the signs of Eqs. (23)
and (24) to obtain Eqs. (12) and (10), respectively, from the
first case.

3.5. Third case

If one is interested in forming an image with a trapezoidal
shape, a wedge seen perpendicular to the cases discussed
above as is shown in Fig. 6. This case is similar to the
formulation for a plane-parallel plate given above. The ray
intersects the back surface and one can find this point as in
the case of a plate. The difference with the case of a plate
is that the position vector to that point is found in order to
calculate the direction cosines and the angleθ as in the case
of the wedges. With the angle found above and the angle of
the wedge, we can find the number of crossings of the ray
through the wedges as was done before for the two previous
cases.

3.6. Asymmetric wedges

Another case of interest is a non-symmetrical wedge that
sometimes is easier to construct because it has only one in-
clined plane. The stack of virtual wedges is shown in Fig. 7.
The analysis is similar to those carried out above for the sym-
metric wedge. Then we follow the same procedure: a ray is
traced through the stack, producing several crossings of the
surfaces, and arrives and intersects with an inscribed cylinder
(inner cylinder) and then a circumscribed one (outer cylinder)
although for clarity we show only the parallels through the in-
tersection point. This is different from the previous cases for
the symmetrical wedges. In this way one can ensure that the
number of crossings is the correct one. From that we can say
over which surface the ray will exit the wedge. We follow
the same procedure as for the symmetric wedge but now with
two cylinders. Eq. (9) is used for the two cylinders with radii

rc =
z0 + d

cos(θ0)
, (25)

and

ri = z0 + d, (26)

for the circumscribed and inscribed cylinders, respectively.
A ray is traced with an equation similar to Eqs. (1) and the
intersection with the cylinders is found with

λ1 =
(y0m1 + z0n1) ± [(y0m1 + z0n1)2 − (m2

1 + n2
1)(m

2
1 + n2

1 − r2
c )]

1
2

(m2
1 + n2

1)
, (27)

and

λ2 =
(y0m2 + z0n2) ± [(y0m2 + z0n2)2 − (m2

2 + n2
2)(m

2
2 + n2

2 − r2
i )]

1
2

(m2
2 + n2

2)
. (28)
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FIGURE 8. The distribution of points on the exit surface of a plate
for the distribution of rays given in the text in mm.

FIGURE 9. The distribution of points on the exit surface of a wedge
for the distribution of rays given in the text in mm.

The position vector to these points is found with an equa-
tion similar to Eqs. (13), and therefore the direction cosines
form an equation similar to Eqs. (14) to obtain the angles
of inclination of the position vectors to those points. Thus
one can find the number of crossings that the ray makes with
the surfaces of the wedges. There are two cases, one form
positive that is given by

N =
[ |θ|

θ0

]
, (29)

whereθ is the angle inclination of the position vector to the
circumscribed cylinder. If the value is an odd number, one
takes this last value, and if the value is an even number, one
uses forθ the angle for the inscribed cylinder to evaluate
Eq. (29). The other case is whenm is negative; then the
number of crossings is given by

N =
[
1 +

|θ|
θ0

]
, (30)

where we now evaluate Eq. (30) withθ for the inscribed
cylinder. If the value is even, we have to evaluate Eq. (30)
with θ for the circumscribed cylinder, otherwise we use the
value of the inscribed one. Now we follow the same pro-
cedure used for the symmetrical wedges, that is, to find the
point of intersection of the ray with the rotated wedge and
then rotate the wedge back to find the real exit point. Having
found the exit point and direction of any ray, we can trans-
late the wedge in the negativey-direction byh/2 to center
the asymmetric wedge in the optical axis; that is the other
difference with respect to the case of the symmetric wedge.

4. Examples

Here we show the unfolding ray trace for a plane-parallel
plate with dimensionsh = 0.3 mm,d = mm andt = 5 mm,
illuminated by a beam of 17 rays per point. Sixteen rays are
distributed in a cone of aperture number 8 and one in thez
direction. The points form a circle of radius0.15 mm and
are distributed uniformly. As the number of points and an-
gles are finite, the results show the distribution of points on
the exit surface as in Fig. 8. If one uses more points, the
unfolding of the image is not seen, and we will see only a
black image with round side edges. Also, we show in Fig. 9
the result of the application for a symmetric wedge with di-
mensionsh0 = 0.3 mm, h1 = 0.7625 mm andd = 5 mm
with an angleθ0 = 3.58◦ for the same distribution of rays as
before. Here again one can appreciate the distribution of the
finite number of points and angles. These results show how
the rays are reflected inside the plates and wedges.

5. Conclusions

A set of equations had been derived for the coordinates and
directions of an exit ray, crossing a plate or wedge, just from
the knowledge of some data for an incident ray and the di-
mensions of the plate or wedge. As a matter of fact, the re-
sulting expressions are simple and easy to use; in the cases,
for example, of spectroscopy they become very useful.
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