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Unfolding ray trace for plates and wedges
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We present a new procedure to obtain analytic expressions for tracing rays in plates and wedges used edgewise applying the unfolding
method for ray tracing, to be able to analyze the behavior of these optical components for transporting light in optical systems. The plates
and wedges are useful in transforming the shape and characteristics of light beams, and also for changing the focal ratio or aperture number
of these beams. The analytic expressions derived are simple to use in any application.
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Presentamos un nuevo procedimiento para obtener expresionicasalara trazar rayos en placas yias usadas de canto aplicando el
método de desdoblaminto para trazar rayos, para analizar el comportamiento de las pldizaspacal transportar luz en sisterdbasicos.
Las placas y las dias sonitiles en transformar la forma y las caracséica de los haces de luz. Y targhipara cambiar la ram focal o
nimero de abertura de esos haces. Las expresionégasaerivadas son sencillas de usar en cualquier agitaci

Descriptores: Disefo 6ptico; trazo de rayos; placas;f@s.
PACS: 42.15.Dp; 42.15.Eq; 42.15.-i

1. Introduction amenable for carrying out the ray tracing using the technique
of unfolding the rays. The objective of the technique devel-
Plates and wedges are generally used facewise as windowsped here is to simulate the real behavior of the ray trajectory
beam splitters, to displace images and beams, and for changy a single straight ray that is equivalent to the original one;
ing the polarization as well as the direction of rays and focatp our knowledge, this is the first time that this type of treat-
distances in optical systems, and also, as second and multhent has been done. This is accomplished by means of vir-
ple reflection mirrors and some other applications [1,2]. Theyal rotations of the plates or wedges around the back of one
wedges are normally used as thin prisms in optical systemgxterior surface of the plate or wedge with respect to the di-
For some applications it is necessary to use the plates angdction of propagation for straightening or unfolding the rays.
wedges edgewise to maximize the transfer of radiation anghe unfolding ray trace simplifies the calculations and gives
create a controlled distribution of illumination in optical in- the opportunity to visualize the behavior of the system under
struments by changing the form of the entrance image and thgydy. Another method to study the rays inside plates and
beam shape. For example, in slit spectroscopy the entranggedges, for example for analyzing the transfer of radiation in
image is in general CirCUlar; therefore to be able to COI|ECb|ateS and Wedgesl is the Tunnel diagram [7'8] For Chang-
all the light it is necessary to change that form into a recting the shape and size of the input images in spectroscopy, in
angular one to pass all the light through the slit of the specprder to maintain the intrinsic resolution and throughput of
trometer. Also, plates and wedges are used in non-imagingpectrometers [9], there are different instruments called im-
instruments, such as light pipes [3-6]. A glass plate is aage slicers [10]. In general these slicers are composed of mir-
smooth, homogeneous, flat, relatively, thin rigid body of uni-rors and use multiple reflections to change the circular images
form thickness. A glass wedge is a piece of a tapered glasgto rectangular ones [11]. The light lost in those devices is
plate. To analyze systems composed of plates and wedg@geat, due to the multiple reflections. For the case of plates
used edgewise, it is necessary to have useful analytic expregnd wedges the internal reflections are total; therefore, the
sions; therefore in this paper we develop the procedure tfght lost is only due to absorption in the glass of the plate or
follow up the trajectory of a single straight ray from the en-edge, hence is very important in the study of low intensity
trance on the first Surface, through the internal material, Ukources as in astronomical Spectroscopy_ Another novel char-
to the exit surface, by unfolding the rays. Usually, given theacteristic of the results that are presented here is that, with
entrance point of the ray, the successive reflections are cajhe initial data of the entrance ray, and the knowledge of the
culated by flndlng the pOint of reflection where the ray inter'parameters of the Wedge or p|ate, a set of formulas can be

sects the surfaces, the normals at those points, and the ang|@sed directly to obtain the exit data of the ray and the number
using the reflection law. At the end, up to the exit surface of reflections without any additional calculations.

a set of equations are obtained for the point of intersection

with the last surface and the exit direction of the rays. One In what follows, in Sec. 2 we present the unfolding
can visualize this processes for a ray in a plate as in Fig. Imethod of ray tracing. Section 3 introduces the mathemat-
In this procedure all the numerical calculations must be venycal procedure using the conventional ray tracing techniques
precise, because in a sequential process the errors propagaterder to have a set of equations for the exit ray; in plates
very easily. On the other hand, the plates and wedges ai®ec. 3.1, symmetric wedges Secs. 3.2, 3.3, 3.4, and 3.5 for
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cal analysis of our method and shown in Fig. 2 for parallel

L Z V’\/d’\/j i plates.

| 2 3. Mathematical Procedure

I &
FIGURE 1. Geometry of a plate seen sideways with dimensiéns 31
in the direction of ray propagatioh,in the perpendicular direction, o
andt in the other perpendicular direction.

Parallel Plates

We develop the procedure first for the case of a plane-parallel
plate for simplicity and because it shows all the peculiarities
of the technique. In Fig. 1 we show the plate with lengih
— T the direction £) of ray propagation, thicknegsin the () di-

rection and width in the () direction for one ray that travels
. inside the plate making internal reflections. The geometry of
the unfolded ray is shown in Fig. 2. Instead of using the plate
l directly to trace a single ray as in Fig. 1, we use the virtual
z stack of plates given in Fig. 2.

A ray in three dimensions starting at the poing /,20)
is represented by the following expressions:

r=x9 + A,
Y=1Y +)‘ma
zZ=2zy + An, (1)

FIGURE 2. Stack of plates for unfolding the rays in our procedure,
to produce a rectangular form. wherel, m andn are the direction cosines of the ray akd

is a parameter that gives the length of the ray. From Fig. 2
different configurations; and asymmetric wedges Sec. 3.G@he ray enters the plate at the point fyo,z0), Crosses sev-
Some examples using the equations derived are shown iral planes and leaves out the stack in some point on the exit
Sec. 4. Section 5 presents the conclusions. surface. A plane in three dimensions is given by

Az +By+Cz—D =0, 2
2. Background T @)

and for the back surfacé = B = 0; therefore, from Fig. 2
Any optical system that includes a number of mirrors canye gbtain
best be analyzed by unfolding the optical rays [12]. This is D —d )
accomplished by removing the reflecting plane mirrors and C ’
replacing them with an equivalent aperture of the same size and from the third Eq. (1) we find
the mirrors for straighting the optic axis. In the case of non- de»
dispersing prisms we can substitute the prism by an equiva- A= 0. 4)
lent plane-parallel plate that behaves in the same way as the n
prism. It is necessary to rotate the prism around itself with  Knowing the height where the ray intersects the last sur-
respect to the back surface of the prism to form a parallefacez = d,
plate made of two prisms, let’s say, one prism on top of the Yd = Yo + Am. (5)
other [1.3]' In case of plqtes and wedges, the unfoldmg ge- We are interested in finding out the number of reflec-
ometry is formed by rotating the real plate (wedge) virtually i

. ns in order to know the exit ray direction, and this problem
around the top surface of the same plate (wedge) with respec .
- . . . IS solved as follows. The number of crossings that the ray
to the direction of ray propagation to obtain a virtual plate

(wedge) on top of the original one. The rotated plate (wedge?nakes with the surfaces gives us the direction of the ray after

N eaving the end of the plate. If the number is odd, the ray
is in turn rotated now around the top of the last surface, and sQ L : S
. . : changes direction with respect to the entrance direction and
on, in order to obtain a virtual stack of plates (wedges). The". . )
: with respect to the local normal of the exit surface. Also, this

same procedure is used to produce the plates (wedges) be-

o ; umber of crossings permits us to calculate the point where
low the original plate (wedge). Each plate (wedge) is turne .

. he ray leaves the plate. The number of virtual surface cross-
around with respect to the one before and the same proce-

dure used before is continued. This geometry, the stack gfgs: or reflections in the original plate, is easily found to be

plates (wedges) is important for finding the correct directions 1 4 olval
and exit points in the ray trace. This procedure produces the N = 2’11 , (6)
system of virtual plates or wedges used for the mathemati-
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¥
e * la (_1)Nma n. (8)
B /2
x ol e R A
|— z h.lL Iy For the special cases of rays that do not have any inclina-
- S tion, the height ig). = y4. As a result of this section, the
= |

equations (4), (5), (6), (7) can be used sequentially, without
. y any additional ray tracing, in order to find out information
g ' about the exit ray, crossing the plate, with the data for the
FIGURE 3. Geometry of a wedge seen sideways with dimensionsincident ray and plate.
d in the direction of ray propagatiohy in the entrance side of the
wedge,h; in the exit side of the wedge, amdn the perpendicular
direction.

3.2. Symmetric wedges

We define the symmetric wedge by its lengtim the direc-

tion of ray propagationz), entrance heighty, exit height

h1, and widtht shown in Fig. 3. For symmetric wedges there
are several cases: the first one is when the smaller facés

the entrance aperture, (see Sec. 3.3) the second one is when
the entrance aperture is the other fdce(see Sec. 3.4); and

the last one is when the wedge is seen sideways with respect
to the other two cases (see Sec. 3.4). Lastly, there exists the
case of an asymmetric wedge, to be analyzed in Sec. 3.6.

3.3. Firstcase

For the first case, the geometry of the unfolding arrangement
is shown in Fig. 4. In order to know where the ray inter-
sects the exit surface, we must initially make an approxima-
tion for that position by means of a circumscribed cylinder
to the stack of wedges shown in Fig. 4. For clarity we show
only the parallel of the cylinder through the point of intersec-
tion. From the geometry, we find the point of intersection of
the rayry with the cylinder, and trace the position vectao

that point. The equation for the cylinder is given by

=2 g ©)

where the radius of the circumscribed cylinder from Fig. 4 is
FIGURE 4. Stack of wedges for unfolding the rays in our proce-

z0 + d
dure. r= 7(323 @) (10)
where the square brackets means truncation of the result. 2
Therefore, the exit point is found using whered, is the angle of the wedge and is given by
Ye = (_1)N(yd F Nh), (7) 0o hy — hs
where the plus sign is used for negative and the direction tan <2> = T o (11)

cosines of the exit ray are
| and by substitution of Egs. (1) into Eq. (9) we obtain

N

(yom + zon) % [(yom + zon)* — (m® + n®)(m? + n® — 12)] (12)

\ =
(m? + )

Now the position vector of the point of intersection with the cylinder is given by

x=\NU =Nm’ z=Nn' 13
) y ) )
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By substitution of the third of Egs. (17) into Eq. (16) (for
simplicity we neglect the primes, we obtain the rotated plane

By + Cz — D =0, (18)

cylinder
with

B =sin(a), C = cos(a), D=z +d (19)

Substituting Eq. (1) into Eq. (18) produces

D — Byo — CZQ

)\:
Bm + Cn

, (20)

which together with Egs. (1), can be used to find the point
where the ray intersects the inclined back plane of the corre-
sponding wedge. Having found the number of crossings and
FIGURE 5. Wedge with entrance side greater than the exit side, toie point of intersection of the ray with some back plane, it
produce a rectangular output. is necessary to calculate the real exit point of the ray over
the back plane of the original wedge, and for that purpose we
" have to fold back the virtual wedges onto the real one by the
negative of the angle.. Therefore, the exit position of the

wherel’, m’ andn’ are the position vector direction cosines
with A’ = r from Fig. 4 and therefore, from Egs. (1)
and (13), we obtain

v ) ) ray is
l,:xo+ ’ m/:M7 n,:z0+ n; (14)
r r T T —
with m’ we can find, from Egs. (13), where the ray intersects * ’
the cylinder. Thus we can calculate the point on the cylinder, Yy = cos(a)y + sin(a)z,
and in this way calculate the anglethat the position vector )
zy = —sin(a)y + cos(a)z. (21)

makes with the optical axis. With this angleand with the
wedge anglé),, one can calculate the number of crossings
that the ray makes through the surfaces of the stack, or inter- The ray trace is accomplished using Egs. (1), (15), (19),
nal reflections in the original wedge, before leaving the las(20) and (21) together with the angle The exit direction of

surface as o) the ray is found by rotating by the negative of the angle
1+ 2l
_ . % | (15) namely
where again the square bracket means truncation of the resullt. my = (=1)" cos(cos™!(m) F a), (22)

Now we have to rotate around theaxis the wedge the an-
glea = N6, to know where the ray intersects the last planewhere the plus sign is applied when the initialis negative.
of the given wedge. The last plane of the original wedge isAs can be seen, the results for a wedge are a little more cum-
given by bersome.
z = 2y + d. (16)

A rotation around the axis by the anglex is represented
by 3.4. Second case

/
T=, Now we develop the equations for the second case, a wedge
with the entrance surface greater than the exit surface, shown
L ) in Fig. 5. We follow the same procedure as in the last case.
z =y sin(a) + 2z’ cos(a). 17 Substituting Egs. (1) into Eq. (9) for the circumscribed cylin-
| der produces

y =1y cos(a) — 2’sin(a),

=

~(om + zom) £ [om + zon)® — (m 4+ 0)aE + 2B — 1)
(m? +n?)

P , (23)

Rev. Mex. 5. 56 (1) (2010) 14-20



18 0. CARDONA-NWNEZ, A. CORNEJO-RODRGUEZ, AND P.C. GARGA-FLORES

3.5. Third case

If one is interested in forming an image with a trapezoidal
shape, a wedge seen perpendicular to the cases discussed
above as is shown in Fig. 6. This case is similar to the
formulation for a plane-parallel plate given above. The ray
intersects the back surface and one can find this point as in
the case of a plate. The difference with the case of a plate
is that the position vector to that point is found in order to
calculate the direction cosines and the arthées in the case

of the wedges. With the angle found above and the angle of
the wedge, we can find the number of crossings of the ray
through the wedges as was done before for the two previous
cases.

3.6. Asymmetric wedges

FIGURE 6. Transversal wedge, to produce a trapezoidal output. ~ Another case of interest is a non-symmetrical wedge that
sometimes is easier to construct because it has only one in-
outer cylinder _ clined plane. The stack of virtual wedges is shown in Fig. 7.
The analysis is similar to those carried out above for the sym-
metric wedge. Then we follow the same procedure: a ray is
traced through the stack, producing several crossings of the
surfaces, and arrives and intersects with an inscribed cylinder
(inner cylinder) and then a circumscribed one (outer cylinder)
although for clarity we show only the parallels through the in-
tersection point. This is different from the previous cases for
the symmetrical wedges. In this way one can ensure that the
number of crossings is the correct one. From that we can say
e liden over which surface the ray will exit the wedge. We follow
the same procedure as for the symmetric wedge but now with
two cylinders. Eq. (9) is used for the two cylinders with radii

FIGURE 7. Asymmetric wedges.

where the radius of the cylinder is now given by
zo + d

I T d (24) re = cos(0)’ (25)

cos(%)’
As in the other cas®’ = r; therefore, Egs. (14) apply and
together with Egs. (13) to find the exit point of the ray. The
exit direction is given by Eq. (22). Therefore, these two cases ri = 20 + d, (26)
are equal except that one has to change the signs of Egs. (23)

and (24) to obtain Eqgs. (12) and (10), respectively, from thdor the circumscribed and inscribed cylinders, respectively.
first case. A ray is traced with an equation similar to Egs. (1) and the

| intersection with the cylinders is found with

(yoru + zon1) % [(yomu + zon1)? — (m? + n})(md + n} — 12)]2
(m3 + n?)

A= , (27)

and

(yoma + zom2) *+ [(yoma + zoma)? — (m3 + n3)(m3 + n3 — r2)]2

)\ =
? (m3 + n3)

(28)
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whered is the angle inclination of the position vector to the

i circumscribed cylinder. If the value is an odd number, one
takes this last value, and if the value is an even number, one
uses ford the angle for the inscribed cylinder to evaluate
Eq. (29). The other case is when is negative; then the
RS . number of crossings is given by

0.4

N = [1 " "ﬂ, (30)
to
where we now evaluate Eq. (30) withfor the inscribed
cylinder. If the value is even, we have to evaluate Eq. (30)
o ‘ with § for the circumscribed cylinder, otherwise we use the
: 7 value of the inscribed one. Now we follow the same pro-
cedure used for the symmetrical wedges, that is, to find the
point of intersection of the ray with the rotated wedge and
then rotate the wedge back to find the real exit point. Having
found the exit point and direction of any ray, we can trans-
. ‘ late the wedge in the negatiyedirection byh/2 to center
—0.4 -a.2 o 0.2 0.4 the asymmetric wedge in the optical axis; that is the other
FIGURE 8. The distribution of points on the exit surface of a plate difference with respect to the case of the symmetric wedge.
for the distribution of rays given in the text in mm.

—0.4

4. Examples

i Here we show the unfolding ray trace for a plane-parallel
plate with dimension& = 0.3 mm,d = mm andt = 5 mm,
illuminated by a beam of 17 rays per point. Sixteen rays are
distributed in a cone of aperture number 8 and one inzthe

: direction. The points form a circle of radiwsl5 mm and

are distributed uniformly. As the number of points and an-
gles are finite, the results show the distribution of points on
the exit surface as in Fig. 8. If one uses more points, the
unfolding of the image is not seen, and we will see only a
black image with round side edges. Also, we show in Fig. 9
the result of the application for a symmetric wedge with di-
mensionshy = 0.3 mm, h; = 0.7625 mm andd = 5 mm

with an angled, = 3.58° for the same distribution of rays as
before. Here again one can appreciate the distribution of the
finite number of points and angles. These results show how
the rays are reflected inside the plates and wedges.

0.4
T

0.2

—0.4

L L
0 ~0 8 e ot 5. Conclusions
FIGURE 9. The distribution of points on the exit surface of a wedge

for the distribution of rays given in the text in mm. A set of equations had been derived for the coordinates and
directions of an exit ray, crossing a plate or wedge, just from
The position vector to these points is found with an equathe knowledge of some data for an incident ray and the di-
tion similar to Egs. (13), and therefore the direction cosinesnensions of the plate or wedge. As a matter of fact, the re-
form an equation similar to Egs. (14) to obtain the anglessulting expressions are simple and easy to use; in the cases,

of inclination of the position vectors to those points. Thusfor example, of spectroscopy they become very useful.
one can find the number of crossings that the ray makes with

the surfaces of the wedges. There are two cases, one for
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