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Quasinormal frequencies of the Dirac field in the massless topological black hole
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Motivated by the recent computations of the quasinormal frequencies of higher dimensional black holes, we exactly calculate the quasinormal
frequencies of the Dirac field, propagating indimensional D > 4) massless topological black hole. From the exact values of the
quasinormal frequencies for the fermion and boson fields we discuss whether the recently proposed bound on the relaxation time of a
perturbed thermodynamical system is satisfied infhdimensional massless topological black hole. Also we study the consequences of
these results.
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Motivados por el alculo de las frecuencias cuasinormales de agujeros negros emgrmde dimensiongd es mayor o igual a cuatro, en

el presente aitulo calculamos exactamente las frecuencias cuasinormales del campo de Diraedoseien el agujero negro topgico

de masa cero coP? > 4. Usando los valores exactos de las frecuencias cuasinormales para los fermiones y bosones, discufimios, si el |
recientemente propuesto, sobre el tiempo de relajamiento de un sistema té@mmodiperturbado se satisface en el agujero negrodgjua

de masa cero coP > 4. Adicionalmente estudiamos algunas consecuencias de estos resultados.

Descriptores: Modos cuasinormales; agujero negro tdgito de masa cero; campo de Dirac; tiempo de relajamiento.

PACS: 04.70.Bw; 04.50.Gh; 04.70.Dy

1. Introduction ¢) the expansion of functional determinants in some ther-
mal spacetimes [8,9],

The physical systems for which we exactly solve their equa-
tions of motion can be expected to play a significant role in
several lines of research. For these physical systems we ex-
actly calculate the physical quantities that for other systems For many relevant spacetimes their QNFs must be cal-
we calculate by using approximate methods. Also in manyculated approximately, hence we use numerical methods or
research areas, the physical insight that is obtained by studyperturbation methods [1-3]. Nevertheless, recently exact cal-
ing the exactly solvable systems can be used to infer someulations of the QNFs for several spacetimes have been pre-
details about the behavior of more complex physical systemsented. Among these we enumerate the following:
| .The quasmorma! modes (QNMS) ofa black holg are so- a) three-dimensional static and rotating BTZ black
utions to the equations of motion for a classical field that holes [5,11-13]
satisfy the appropriate radiation boundary conditions at the ' !
horizon and at the asymptotic region. The quasinormal fre- b) three-dimensional charged and rotating black holes of
quencies (QNFs) of a field are valuable quantities since these  the Einstein-Maxwell-dilaton with cosmological con-
are determined by a few parameters of the black hole and stant theory [14-17],
the field [1-3], for example, the QNFs of the Kerr-Newman
black hole are determined by the mass, angular momentum,
and charge of the black hole and the mode of the field. Hence d) five-dimensional dilatonic black hole [18,19],
if we measure the QNFs of a field, then we can infer the val- e) D-dimensional de Sitter spacetimd ¢ 3) [20-26],
ues of the mass, angular momentum, and charge of the Kerr-
Newman black hole. f) BTZ black string [27],

Also the QNMs allow us to study the linear stability of gy Nariai spacetime [28]

the black holes, because if we find QNMs whose amplitude

increases in time, then the black hole may be unstable [1-3]" the following paragraphs we comment on anotiier
dimensional anti-de Sitter black hole for which the exact val-

Recently the QNMs have found applications in several re- >
search lines. For example, ues of its QNFs have been calculated.
We notice that the AdS/CFT correspondence of string
ter black holes [2,4,5], because this correspondence proposes
b) the determination of the area quantum of the black holghat the QNFs of the anti-de Sitter black holes determine the

event horizon [6,7], relaxation time of the dual conformal field theory [4,5]. (See

d) the expansion of the “distant past” Green functions
used in self-force calculations [10].

¢) two-dimensional dilatonic black hole [18,19]
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Ref. 5 for an explicit verification of this proposal in three- 2. QNFs of the Dirac field
dimensional rotating BTZ black hole.)

Furthermore, we recall that in asymptotically anti-de Sit-Th.e line element of &p_,-symmetric spacetime may be
ter spacetimes, there are solutions to the Einstein equatiorlpér'tten as [59]
that re_pres_ent bla(_:k holes whose horizons are negative curva- ds? = F(r)2dt? — G(r)2dr® — H(r)?dS%_,, (1)
ture Einstein manifolds [30-36]. These solutions are usually
known as topological black holes, and for some of these sowhereF'(r), G(r), andH (r) are functions only of the coor-
lutions the mass parameter can assume negative or zero vainater, and &%, _, denotes the line element of(® — 2)-
ues [30-36]. dimensionalG p_s-invariant base spacetimep_», which
Among these exact solutions of the Einstein equationsdepends only on the coordinates: = 1,2,...,D — 2.
there is one that has attracted a lot of attention. It is the Ouraimisto calculate exactly the QNFs of the Dirac field
asymptotically anti-de Sitter black hole whose mass is equa#volving in D-dimensional MTBHSs. Thus first we explicitly
to zero [30-36]. In the rest of the present paper, we shalwrite the Dirac equation
call it the massless topological black hole (MTBH). Accord- .
ing to Ref. 37, we can consider the MTBH to be a higher di- Xy =my @

mensional generalization of the three-dimensional static BTZ, MTBHs to find its exact solutions. Note that we follow the

plack hole, and we expect that it will play a significant role ;g4 conventions; thus in the formula (2) the sym¥odle-

in future research. notes the Dirac operaton; stands for the mass of the Dirac
The metric of theD-dimensional MTBH is simple and as field, andv> denotes the spinor of dimensi@f’/2!, where

a consequence many of its physical properties can be calc{ip /2] denotes the integer part 6f/2 [56,60-65].

lated exactly [37-41]. For example, the QNFs of the gravita-  As is well known, in aD-dimensionalG p_,-symmetric

tional Klein Gordon, and electromagnetic perturbations wergpacetime with line element (1), the Dirac equation reduces

calculated exactly in Refs. 37 and 38 and Sec. 6 of Ref. 390 a pair of coupled partial differential equations in two vari-

respectively. Also its stability against the three types of grav-ables (see for example Egs. (30) of [56] and Refs. 60 to 65

itational perturbations was proven in Refs. 40 and 41. Fofor more details):

numerical and analytical computations of the QNFs for other

topological black holes, see Refs. 42 to 48. by — Eaﬂ/@ — (Z,{Z — imF) o1,

Here we exactly calculate the QNFs of the Dirac field G
evolving in the D-dimensional MTBH and thus we extend F . F
the results of Refs. 37 to 39. The computation of the QNFs Orpr + Z0nn = — <mH T sz) V2, ®)
for this fermion field is interesting because in some back- . .
grounds the Dirac field behaves in a different way from thewherem stands for the eigenvalues of the Dirac operator on

; o 9
boson fields; for example, it is well known that in a rotating the manifoldXp_» with line element &7,_,, and the func-

black hole, the Dirac field does not show superradiant scaions ¥1 andy, are the components of a two-dimensional

tering [49-52], in contrast to boson fields [53]. Also notice SPiNOr¥2n which depends only on the coordinatgsr) of
that the QNFs of the Dirac field allow us to discuss some adt"€ G p—2-Symmetric spacetime with line element (1), that is
ditional details about the behavior of the MTBH under per- b (r,t)
turbations. Yap(r,t) = ( ’ > : (4)

¢2 (T’ t)

Note that in higher dimensional spacetimes, for the Dirac ) ) ) )

field we only know the QNFs reported in Refs. 19, 26, 54 to'Ve Pointoutthatin Egs. (3) and in the rest of this paper, we
57; thus for this fermion field, its resonances have not beei{/ft€ the functions), (r,2), 4o (r, t), F(r), G(r), andH(r)
studied as extensively as for other fields. Hence this paper eiMPly asi1, v, F, G, and H, respectively. We shall use a
tends our knowledge of the QNMs of the Dirac field in highers'm'lar convention for the functions to be defined in the rest

dimensional black holes. of tf_:_e;]prl_esentl work.t o o MTENs s
This paper is organized as follows. In Sec. 2 we find ex- € Ine element 0 -aimensiona s Isgven

act solutions to the Dirac equationirdimensional MTBHs by [30-36]
and using these solutions we exactly calculate the QNFs of r2 9 dr? 9 2
the Dirac field. Exploiting these results we enumerate some ds” = <1 + Lz) dt” — m —r7d¥p_y, (5)
facts about the behavior of the MTBHs under perturbations. L

In Sec. 3 we investigate whether the fundamental QNFs ofvherer € (L, +o0), L is related to the cosmological con-
the MTBH satisfy the bound recently proposed by Hod instantA by

Ref. 58. In Sec. 4, following Chandrasekhar [53], in MTBHs 2 D-1HD-2) ©)

we write the Dirac equation as a pair of Sgtinger type dif- 2A ’

ferential equations and identify the effective potentials. Fi-and &% , stands for the line element of a
nally in Sec. 5 we discuss the results obtained. (D—2)-dimensional compact space of negative curvature
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> p_»[30-36]. Notice that thét, r) sector of line element (5) and definingo = wL, m = mL, andK = —ix, we get that
for the MTBH is similar to that of the three-dimensional static the system of partial differential equations (8) transforms into
BTZ black hole with masd/ = 1. Taking into account this  the coupled system of ordinary differential equations for the
fact, it was proposed that the-dimensional MTBH (5) isa functionsR, andR; = —iR;:
higher dimensional generalization of the three-dimensional .
static BTZ black hole [37]. _ _ 232 o 2 gy (zK_m> R,

The QNMs of the MTBH are solutions to the equations dz z
of motion for a field that are purely ingoing near the event dR, iK
horizon and, since this black hole is asymptotically anti-de (ZQ—I)T—i@R1: — (2 —1)'? (+m> Ry. (10)
Sitter, we impose that at infinity the radial functions go to
zero (Dirichlet's boundary condition) [37,39]. In this sec- If we make the following ansatz for the functiofs and

tion, we compute the QNFs of the Dirac field propagating i (see the formulas (26) of Ref. 26 for a similar ansatz
D-dimensional MTBHs to find out about the behavior of th'sfor the radial functions of the Dirac field evolving if-

black hole under fermion perturbations and compare with it$}; ensional de Sitter spacetime):
behavior under boson perturbations. We note that the results

of this section are an extension of those already published in Ri(z) = (22 _ 1)-1/4(2 + 1)1/2R1(z)
Refs. 37 to 39. 7
The line element of th&-dimensional MTBH (5) has the Ra(z) = (22 = 1)"Y4(z = 1)V2Ry(2), (11)

same form as the line element of thg, _,-symmetric space- 3 3
time (1). Thus making the appropriate identifications, we gethen we find that the function®, and R, satisfy
that the functiond”, GG, andH for the MTBH are equal to

dR ~ 7:¢ .

1 r2\ /2 221) =24 (i0+1) Ry= <—m> 24+1)Ry,
F=G=<—1+L2) , H=r. (7 ( )dz ( 2) 2 z ( )
Therefore inD-dimensional MTBHSs the coupled partial dit- (22_1)dR1 — (io+1) Ry=— (ZK_H;L> (z—1)Ry. (12)

ferential equations (3) reduce to dz z
2 .
Byihy — 2 — 15%/}2 = (22 —1)/? <m _ im) ¥ Next, we define the functionf andf, by
L zL ’
2 1 ; fi(z) = Ri(2) + Ro(2),  falz) = Ri(2) — Ra(2), (13)
&gwl =+ i 7 821/)1 = —(22 — 1)1/2 (:Z + zm) ’(/)2, (8)

to obtain that these functions must be solutions to the coupled

wherez = r/L and therefore: € (1,400). In what fol- system of ordinary differential equations

lows, we write in detail the procedure used to solve exactly

Egs. (8). 24 df 5
Choosing for the componenis andi), a harmonic time ("~ )§+ mz

K
) fi= (io+5+iK—m) fa,
dependence of the form

7
z

d . iK - . -
V1(z,t) = Ry(z) e ™, (22_1)5_ <mz—z> fo= (i0+5—iK+m) fi. (14)
_ —iwt
a(2,1) = Ra(z) €7, ©®)  From Egs. (14) we obtain that functioris and f, satisfy the
| decoupled ordinary differential equations
d? d _ L iK _ _ . K? . o
(22 —-1)? dzél +2z(z2—1)£+(22 -1 (m—k;) fi— <m222—2mzK—z2> fi= ((zw—k%)z —(zK—m)2> f1,
d? d . iK . oy K? . . -
(22-1)2 dzJ;2 +2z(z2—1)£—(z2 -1) (m—l—ZZ?) fo— <m222—2mzK—Z2) fo= ((zw—!—%)z —(zK—m)2> f2o (15)
To solve Egs. (15), we make the changes of variables
r = 2% andu = (z — 1)/, and take functiong; and f»
in the form where
fi(u) =uPr(1— u)Flf%l(u),
W 1
=uP2(1 - )2 5+
Falu) = uP2(1 = )" Ry (), a6) P { o a
-4

Rev. Mex. . 56 (1) (2010) 44-53



QUASINORMAL FREQUENCIES OF THE DIRAC FIELD IN THE MASSLESS TOPOLOGICAL BLACK HOLE 47

1 1 ~ 9 ~ 1
T 3ym*—m+ g, - -
o 1o 4 ag =By + Co+  + 5\ /M2 +m+ §,
| =
1 1 ~ ~ 1
PR AVAL I ¥ by =By — Co+ 3 + L\ /2 +i+ 1,
Tvlm24m+ L cg = 2By + 1, (19)
Fy =
1 1 (=9~ 1 where the quantitie§’; andC’, take on the values
. . ~ A . 1Ly K K
to find that the function$?; and R, must be solutions of the 2 2 2
hypergeometric differential equation [66,67]: Cr = K Cr = L ik (20)
e d 2o 27 2
u(l—u)—é—!—(c—(a—f—b—i—l)u)—f—abf:O. (18)
du du At this point we notice that the coordinatelies in the

If the parameter is not an integer, then the solutions 10 ranger € (1, +00). Hence the variable satisfies € (0, 1).

Eq. (18) are given in terms of the standard hypergeometrig\|so the tortoise coordinate of the MTBH is [39]
functions, Iy (a, b; ¢; u) [66,67].

For the functions?; and R,, the quantities:, b, andc of 2\ !
Eq. (18) are equal taif, b;, ande; correspond to the function Te = / (—1 + L2> dr = —L arccoth{z); (21)
Rii=1,2)

thusr, € (—o0,0), r. — —oo near the event horizon and
r« — 0 near infinity. From these definitions of the coordi-
natesu andr,, we get that

a1:B1+Cl+i+% ﬁ”L2 5

blzBl—Cl-f—%‘F% mQ—ﬁL—F%,

i

c1=2B; + 1, as 7, — —oo, u~e/t and (22)

| as r, — 0, u~1.

Now we use these results to compute the QNFs of the Dirac field exactly. First let us study the flinctMachoose the
quantitiesCy, By, andFy asCy = 1/2+iK/2, By = i0/2 + 1/4, andFy = 1/4 4+ /m? —m + 1/4/2. If we assume that
the quantityc; is not an integer, then we obtain that functifinis equal to

fr=0—-uh {Dlui®/2+1/42F1(a17b1§ cr;u) + Equ 2Py (ay — e + 1,by — e+ 1;2 — e U)} ) (23)
wherelD; andE; are constants. Taking into account expressions (22), we find that near the horizon fifpttgraves as
fl ~ ]D)leiwr* +r./(2L) + Ele—iwr* —r*/(QL); (24)

thus in order to have a purely ingoing wave near the event horizon, we must impose the cdnditioh[37-39]. Hence the
function f; becomes

fl :Elu—i&/2—1/4(1 _u)1/4+\/'fh2_ﬁl+1/4/22F1(a1 — 4 ].,bl - 4 1’2 _ Cl;u)

= Eyu @271 — ) VATV, By (0, By ). (25)
We recall that if the quantity — a — b is not an integer, then the hypergeometric functiéh(a, b; c; u) satisfies [66,67]:
(e)T'(c—a—10)
I'(c—a)l'(c—1b)
L(e)T'(a+b—rc)

I'(a)L'(b)

wherel'(x) stands for the gamma function. Hence if the quantity- a; — ;1 is not an integer, then we write the functign
of the formula (25) as

—i@/2— Fy)l(y —on — m2—m
fr = Equm @2t ng)—(x}r@i—gii(l_“)l/H FmEA2, By (g, Bryan 4 B+ L =151 — )

INGTIN - e
+ (’Yl)r((sll)]‘-f(gi) ’Yl) (1 _ u)1/4— m —m—&-1/4/22F‘1(,)/1 — g, — 51371 +1-— ay — Bl; 1— u) ] (27)

oF1(a,b;cu) = oF1(a,bja+b+1—c¢l—u)

1—uw) "% F(c—a,c—be+1—a—b1—u), (26)
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Due to the MTBHSs being asymptotically anti-de Sitter,  For QNFs (31) and (32), we find thhf () < 0, hence
the QNM boundary conditions at infinity require that— 0 these QNMs decay in time. Thus thedimensional MTBH
asu — 1[37,39]. From expression (27) we note that the firstis linearly stable against Dirac perturbations. Something sim-
term in square brackets vanishesuas> 1. The second term ilar happens for the QNFs of the electromagnetic and grav-
vanishes forl /2 > /m? —m + 1/4, (that is, forl > m). itational perturbations [37,39]. The stability of the MTBHs
Thus the functionf; goes to zero as — 1, and therefore if against the gravitational perturbations was shown in Refs. 40,
1 > / the boundary condition at infinity does notimpose anyand 41.

restriction on the frequencies, that is, there is a continuum of  aoq e previously commented, in Refs. 37 to 39 the QNFs
frequencies that satisfy the boundary condition at infinity ofy¢ the gravitational, electromagnetic, and minimally coupled

the QNMs. Forn > 1, in order thatf; — 0 asu — 1, We  magssless Klein-Gordon perturbations were calculated. The

must impose the condition

o1 = —ng, Or 61 = —Nnq, ny=0,1,2,... (28)

Therefore forn > 1, from Egs. (28) we find that the QNFs

of the functionf; are equal to

@1:K—¢(2n1+1+,/m2—m+}1), or
@1=—K—i(2n1+\/ﬁ12—fn+}1>,

whereas foll > / there is a continuum of QNFs.

To calculate the QNFs of the functigfa, we choose the
quantitiesCy, By, andFy asCy = iK/2, By = i0/2 4+ 1/4,
andF, = 1/4 + \/m?2 +m + 1/4/2. A similar method to
that used for the functioffi; allows us to find that, for ali,
the QNFs of the functiorf, are o2 = 0,1,2,...):

@22K—i<2n2+\/fn2+m+i), or
@2=—K—i<2n2+1+1/m2+m+}1). (30)

From formulas (13) we find that functiod®, andR, are
linear combinations of functiong, and f,; therefore only
the QNFs that are equal for both functiofis and f> will
be QNFs of the Dirac field ifD-dimensional MTBHs. Thus
whenm < 1, for the functionf; we find a continuum of
QNFs, but for the functiorf, we only find QNFs (30). Hence
for m < 1 the QNFs of the Dirac field are equal to

(29)

L P ~0,1,2
w=p gty tm), n=0,1,2,...
K 3

Whenm > 1 for function f; we find QNFs (29), whereas
for function f> we find QNFs (30). After some simplifica-
tions we find that forn > 1, the QNFs frequencies of the

values obtained for the QNFs of these fields are

w:if—%<n+A>,

L L 4 (33)

where the quantity\ takes on the values

D—1 for the vector-type gravitational
and electromagnetic perturbations
|D—5|+2 for the scalar-type gravitational
and electromagnetic perturbations
D+1 for the tensor-type gravitational
perturbation D > 5) and minimally
coupled massless Klein-Gordon field,
(34)

A:

the quantity¢ depends on the perturbation type and is re-
lated to the eigenvalues of the Laplacian on the manifold
Yp_o[37-39].

For the non-minimal coupled to gravity massive Klein-
Gordon field, the QNFs are equal to [38]

_ & i D—1)2 2
w=+7 -7 2n+1+\/(T) +m2 L% ), (35)
wherem?, . = m?* —yD(D —2)/(4L?), m denotes the mass

of the Klein-Gordon field, and is the coupling constant be-
tween the scalar curvature and the Klein-Gordon field. No-
tice that in Ref. 38, a different time parameter was chosen
to that used in the present paper. This fact implies that the
QNFs (35) have an additional factor bf L to the QNFs re-
ported in Ref. 38.

From formulas (31)—(35), we find that for the Dirac field
the imaginary part of QNFs (31) and (32) does not depend on
the spacetime dimension; unlike boson fields, the imaginary

Dirac field are also determined by expressions (31). Thus ipart of their QNFs (33) and (35) shows an explicit depen-
MTBHs formulas (31) give the QNFs of the Dirac field for dence on the spacetime dimension. Thus for the Dirac field,
any value of the mas#. In the massless limit the QNFs (31) the decay time; = 1/|Im(w)| depends on the mode num-
reduce to bern and not on the spacetime dimension. In contrast, for
the boson fields the decay time is inversely proportional to
the spacetime dimension; thus for a given boson field and
fixed mode number, the decay time decreases as the space-
time dimension increases. Hencelindimensional MTBHs

the decay time for the Dirac field and the decay time for the

(32)
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boson fields show a different behavior when the spacetime The hyperbolic spac# has an unique spin structure (due
dimension changes. to the fact that the hyperbolic space is contractible) [71]. It
Furthermore, from formulas (33) and (34) for the mass-is known that on the hyperbolic space for the Dirac operator,
less boson fields with mode number, and for > 5, we the discrete spectrum is empty and its continuous spectrum is
find that the tensor type gravitational perturbation and mini-R [69,71]. We note that the conventions used in Refs. 69
mally coupled massless Klein-Gordon field decay faster thaand 71 and the present paper are different. In the conventions
vector-type and scalar-type electromagnetic and gravitationahat we use here, the eigenvalues of the Dirac operator on
perturbations. the hyperbolic space are purely imaginary as in Ref. 72 (and
From QNFs (32) and (33), we see that for > 6, the  thereforeK € R), whereas in Refs. 69 and 71 the eigen-
decay time of the massless Dirac field is greater than the dexalues of the Dirac operator on the hyperbolic space are real
cay time of the massless boson fields. Thusfoe> 6 the  numbers.
massless boson fields decay faster than massless Dirac field. If the manifold is compact, then general elliptic the-
Also for D = 5, the tensor type gravitational perturbation andory asserts that the spectrum of the Dirac operator is
minimally coupled massless Klein-Gordon field decay fastediscrete [69,70]. Thus we expect that on the base manifold
than the other massless boson fields and massless Dirac field,_, of the MTBH, the eigenvalues of the Dirac operator
For D = 4, we find that the minimally coupled massless will be discrete. Furthermore, for 2-dimensional compact
Klein-Gordon field decays faster than the electromagneticmanifold X, the eigenvalues of the Dirac operator satisfy

gravitational, and massless Dirac perturbations. the Weyl asymptotic law [69]

Itis convenient to note that for the massive Klein-Gordon
and Dirac fields, the imaginary part of the QNF depends on tim N(R) _ 2[P/2lvol(%2) (37)
the mass of the field. Taking into account formulas (31) roo KD (4m)P/2r (2 + 1)’

and (35), we find that if the mass of the Dirac and the min- _ _ _ _
imally coupled Klein-Gordon fields are equal and the condi-where vo[Y) is the volume of theD-dimensional manifold
tion Y and N (k) is the number of eigenvalues whose modulus

mL < (D - 1) D (36) IS=H _ _ _
2 2 On a compact symmetric manifold with a homoge-
is satisfied, then the minimally coupled Klein-Gordon field N€oUs spin structure, the square of the Dirac opergtor
decays faster than the Dirac field. satisfies [70,73]

In MTBHs the oscillation frequencies of the boson and V2 =0+ 57
fermion fields do not depend on the mass of the field. For 8
the boson fields, the oscillation frequencies are determine@here(2 is the Casimir operator of the isometry group and
by the eigenvalues of the Laplace operator on the negativ& is the scalar curvature of the compact symmetric mani-
curvature manifol® p_», whereas for the Dirac field the os- fold. Therefore, for these manifolds, the computation of the
cillation frequencies are determined by the eigenvalues of thepectrum for the square of the Dirac operator can be done
Dirac operator orp_». by algebraic methods. Also on these manifolds the spectrum

Thus for a complete determination of the QNFs (31)of the Dirac operator is symmetric with respect to the origin,
for the Dirac field moving in MTBHs, we need to know and the spectrum of the Dirac operator is determined by the
the eigenvalues of the Dirac operator on the base manifolgpectrum of its square. Nevertheless, there are technical dif-
Y p_2 with metric d2%,_,. We expect that the event hori- ficulties and the spectrum of the Dirac operator is explicitly
zon of a black hole will be a compact and orientable manknown for a small number of manifolds [73].
ifold [68]. For the MTBH, the negative curvature manifold As far as we know, for compact hyperbolic manifolds the
Yp_o usually is a quotient of the forrii °—2 /G, whereG spectrum of the Dirac operator is calculated exactly for the
is a freely acting discrete subgroup of the isometry group fomanifold ¥ = PSLy(R)/T", where PSLy(R) is the pro-
the (D —2)-dimensional hyperbolic spad&” 2. Therefore, jective special linear group dk? andI' is a co-compact
for the QNFs (31) of the MTBH, we need to find the spectrumFuchsian subgroup [73,74]. The complicated spectrum of
of the Dirac operator on a compact spin manifold of the hy-the Dirac operator ol = PSL.(R)/T" appears in Theo-
perbolic type. Regarding the spectrum of the Dirac operatorem 2.2.3 of Ref. 73. Notice that the case relevant to our
on hyperbolic manifolds, we know the following facts. work is when the parametef Theorem 2.2.3 is equal th

In contrast to the Laplace operator, the spectrum of theind therefore the manifoldSLy(R)/T" has negative con-
Dirac operator depends on the geometry of the manifold angtant sectional curvature
the spin structure, which is a topological object that is neces- We notice that for the Dirac operator, eigenvalue esti-
sary to define spinors [69,70]. In general, the spin structure afmates can be found in several manifolds for which an exact
a spin manifold is not unique; for example the cirflehas  calculation of the spectrum is not possible [73]. We believe
two spin structures, but note that some manifolds do not adthat the following result is relevant for our work.
mit even a spin structure, for example the complex projective  In Proposition 2 of Ref. 75, it is asserted that for a com-
planeCP? [69,70]. pact and oriented two-dimensional surfacef genusg # 1,

(38)
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there is an eigenvalue of the Dirac operator that satisfies ~ We see that the first expression in formulas (44) saturates the
o inequality (42), and that the second expression does not sat-
| & |< e(g) max{principal curvatures ok}, (39)  isfy the previously mentioned inequality.

Furthermore, from QNFs (33) of the massless boson

where fields, we obtain that
1 if 9207 hw
clg)=1{ 3 if g=2.3, (40) —L =A. (45)
4 if ¢g>4 ™l

For g > 2, this result is pertinent for the four-dimensional Hence, taking into account the values of quantitgiven in
MTBHs. We do not know similar estimates for the eigen-formula (34), forD > 4 we find that in MTBHSs the funda-
values of the Dirac operator on higher dimensional compaciental QNFs of the massless bosons do not satisfy inequal-
hyperbolic manifolds. ity (42).

From these comments it is deduced that in the mathemat- Thus we find that inD-dimensional MTBHs the funda-
ical literature, we do not find many calculations of the eigen-mental QNFs of the massless boson and Dirac fields do not
values of the Dirac operator on compact hyperbolic mani-satisfy inequality (42). We expect that inequality (42) be sat-
folds, and we believe that the computation of these quantitietsfied in MTBHs [58] owing to the fact that Hawking's tem-
is a challenging mathematical problem. perature of the MTBHSs is of the same order of magnitude as

In Ref. 5 it was shown that the momentum space poles othe reciprocal of the characteristic length) (of the space-
the retarded correlation functions in the dual conformal fieldtime. According to Hod, the TTT bound (41) is universal and
theory and the QNFs of the three-dimensional BTZ blackwe do not know the cause of its failure for the fundamental
hole are identical. Calculating whether something similarQNFs of the MTBH.
happens for the QNFs of the-dimensional MTBH is an in-
teresting problem.

4. Effective potentials

3. Hod's bound Following the method of Chandrasekhar’s book [53], we take

Taking into account quantum information theory and ther-1" the Dirac field a harmonic time dependence as in for-

modynamic concepts, in Ref. 58 Hod found a bound on thénUIa,‘, (,9) to transform Eqs. (8) into the pair of decoupled

relaxation timer of a perturbed thermodynamic system. This Schidinger-type equations:

bound is b ?7

=, (41) T

T dr’,

wherer,,;, stands for the minimum relaxation time afid

denotes the temperature of the thermodynamic system. Thi¥here

bound is called “TTT bound” (time times temperature bound) 0/2 7 _in/2

by Hod in Ref. 58. Z+ =¢€""Ry +e " Ry,
In Ref. 58 it was shown that strong self-gravity systems,

such as the black holes, are appropriate systems for testing
the TTT bound (41). For a black hole the TTT bound states

+wZy =ViZy, (46)

T 2 Tmin =

0 = arctan@,
K

daw
that at least for the fundamental QNFs the following inequal- Ve=W?4+ —,
o o i dr,
ity is satisfied [58]: -
. 3/2
—L <, (42) V2?2 —1 <K2 + (mz)Q)
™l W= — : .47
wherew; is the absolute value of the imaginary part of the 2(K2? 4 (mz)?) + Emz(22 — 1)
fundamental QNFs andly is Hawking's temperature of the
black hole (see Refs. 58, 76 to 79 for more details). The fun& = K/L, we definer, by
damental QNM is the least damped mode of the black hole,
and it determines its relaxation time scale [1-3]. dr, 221 mKk 4
The Hawking temperature of the MTBHs is equal a. Tl Ry (m2)? (48)
to [30-36]
Ty = i, (43) and, as in Sec. 2;, denotes the tortoise coordinate of the
2rL ) i ] D-dimensional MTBHSs (see formula (21)).
and from QNFs (32) of the massless Dirac field, we find From formulas (46) and (47), we see that the effective
hw; hw; potentialsV. are complicated functions of the different pa-
Tq =1 and Tq =3 (44)  rameters. Nevertheless, in the massless limit we find that the
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formulas fori/ andV.. reduce to field have not been computed. We believe that the calculation
V21 A of the QNFs for this field is an interesting problem.
W = K7 = —Kseclr./L), According to Hod, the TTT bound of, formula (41) is

) . universal [58], [76-79], but we found in Sec. 3 that for the
_ K* (K/L)sinh(r./L) (a9) fundamental QNFs of the MTBHS the inequality (42) is not
cosh?(r./L) cosh®(r./L) satisfied [see formulas (44) and (45)]. We believe that this

Thus for the massless Dirac field the effective potentials (49PuzZling result deserves detailed study.

are of the Morse type [80]. In Ref. 39 it was shown that For the D-dimensional MTBHSs, from our results and
in D-dimensional MTBHs the effective potentials of the those already published, we obtain that the real part of the
Schidinger differential equations for the massless bosorRNFS depends on the eigenvalues of the Laplace or Dirac
fields are of the Bschl-Teller type. We note that for many OP€rators on the negative curvature maniflg_,. These

of the spacetimes for which we exactly calculate their QNFgl_alues can pe different for distinct fields, also for a flx_ed
the effective potentials of Sobdinger-type equations are of field these eigenvalues may depend on the mode of the field.

the Rschl-Teller or Morse type (see for example Table 1 in1"us the asymptotic limit of the real part of the QNFs for the
Ref. 23). D-dimensional MTBHs depend on the physical parameters

of the black hole and the field (and the mode of the field).

An interesting proposal is the so-called Hod’s conjec-
ture [6]; it states that in the semiclassical limit the area quan-
tum of an event horizon can be calibrated with the asymptotic

real part of the QNFs is determined by the eigenvalues of thgalue of the real part of the QNFs. The facts mentioned in the

Laplace operator (boson fields) or the Dirac operator (Dirac?hbol\;e dparagr_aph llr:A[_)I_l)éLhat H(?d’stﬁgnégcture_ls n?;vagf: for
field) on the negative curvature manifoltl,_». Neverthe- eL-dimensiona s (as for thB-dimensional de Sit-

less, to our knowledge there are not many calculations of th er spacetime [81]), since in this conjecture we must assume

spectrum of the Dirac operator on compact spin manifolds of:a"‘l‘tp?;ni?lega; gethaSthzsledép%n?jjtcf[zlé gge?iogr;\y;-
the hyperbolic type. We believe that this mathematical prob- en in D-dimensional MTBHs. Thus we think that for the

lem deserves detailed study. Furthermore, we notice that t di ional MTBH ti tiqate whether th
imaginary part of QNFs (31) is independent of the eigenval-~" Imensiona s we must investigate whether the re-
cent proposal of Maggiore [7] can be used to determine the

ues of the Dirac operator ofip_». This fact allows us to . . L
discuss some phenomena (see Secs. 2 and 3), even if we rea quantum of its event horizon. Work along this line is in
i ’ progress.

not know explicitly the value of the eigenvalues of the Dirac . . .
pcity 9 Finally we notice that formulas (31) also give the QNFs

operator on the manifold p_s. ) : L : ; ;
P D2 f the Dirac field propagating in three-dimensional static

For the massless boson and Dirac fields, the imaginar ) .
part of the QNFs shows a different dependence on the spac T2 black_ ho!e with ma}sM = 1. The Q.NFS of the D|rac_
eld evolving in the static BTZ were previously calculated in

time dimension. For the boson fields, the decay time depenﬁ

on the spacetime dimension, whereas for the Dirac field, it i efs. 5and 11.
independent of the spacetime dimension. Also we point out

that for D > 6, the massless boson fields decay faster thamcknowledgments
the massless Dirac field.

In MTBHSs, the QNFs of the Klein-Gordon, gravitational, | thank Dr. C. E. Mora Ley and A. Tellez Felipe for their in-
electromagnetic, and Dirac perturbations have been calcuerest in this paper. This work was supported by CONACYT
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5. Discussion

For the D-dimensional MTBHSs in Sec. 2, we found that the

i. We notice that in Ref. 29, Saavedra presented an exact expres- on the higher dimensional flat tori has been calculated (see The-
sion for the QNFs of Unruh’s acoustic black hole. The expres- orem 4.1 of Ref. 69 and Theorem 2.1.1 of Ref. 73). We point out
sion used in that reference for the effective metric of Unruh’s that the flat tori admits several spin structures and the spectrum
acoustic black hole is valid near the horizon. For the asymp-  of the Dirac operator depends on the spin structure [73]. For
totic region of Unruh’s acoustic black hole, it is probable that other examples of flat manifolds for which the spectrum of the
we need to use a different approximation of the effective met- Dirac operator is calculated exactly see Chapter 2 of Ref. 73.

ric. Thus we believe that this problem deserves additional study. 1. K.D. Kokkotas and B.G. Schmidkiving Rev. Rel2 (1999) 2
This issue was pointed out to the Author by the Referee. ' [a.rX.iv:gr-qc/9909058j. ' ’ '

7i. Forthe related case of the so-called plane symmetric black hole,2. E. Berti, V. Cardoso, and A.O. StarinetSlass. Quant. Grav.
it is convenient to notice that the spectrum of the Dirac operator 26 (2009) 163001. [arXiv:0905.2975 [gr-qc]].
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