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Levitation forces between a finite rectangular
superconductor and a spherical magnet
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A model to describe the interaction between a spherical permanent magnet and a square superconductor in the mixed state was elaborated.
The proposal is based on image dipole ideas as is the case of the Frozen dipole model that has been used in the literature. More precisely,
a frozen dipole was put in the center of the superconducting sample; this dipole “was born” when the first critical field was reached in that
position. This led to the attractive force magnet-superconductor in the penetrated-field state. In the description of the Meissner state, the
demagnetizing field was not included in the calculation. Both vertical and horizontal forces are discussed.
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1. Introduction

Superconducting levitation is a fascinating phenomenon that
offers the potential development of fast, superconducting fly-
wheels for energy storage applications [1]. To make these
devices possible, it is necessary to have a reliable description
of the complex interactions of the superconductor with an ex-
ternal axisymmetric magnetic field. Relevant advances have
been made since the early model of Hellmanet al. [2] Ac-
cording to that model, a point dipole (the magnet) induces an
image dipole inside the superconductor, which is considered
to fill in the space below an infinite plane,i.e., the super-
conductor has an infinite thickness. This way, the magnetic
field at the interface superconductor/vacuum remains paral-
lel to the surface of the sample. This condition describes
the Meissner effect in the superconductor,i.e., the field ex-
pulsion. To describe the interactions between the magnet and
the superconductor in the mixed state represents a major task.
Next, two common methods are briefly discussed: the frozen
dipole model [3] and the Bean model [4]. In the first model
a second point dipole is induced inside the superconductor,
oriented in such a way that it always attracts the magnet. As
the magnet descends on the superconductor and approaches
the surface, the dipole approaches also from the other side.
Once the magnet gets at the closest point to the superconduc-
tor, the dipole gets “frozen” and remains in a fixed position
despite future displacements of the magnet. It is necessary to
add more frozen point dipoles in order to reproduce the hys-
teresis observed in the behavior of the vertical force [5]. In
the Bean model the idea is to study the local distribution of
both the current density -whether dependent or independent
of the internal magnetic field- and the magnetic field inside
the superconductor subjected to an external (usually uniform)
magnetic field. The total forces are calculated by summing up
the contributions from the whole sample.

Several reviews on the superconducting levitation forces
have been published, see for example the article of Hull [6]
or more recently, the excellent work of Navauet al. [7].

As mentioned before, in the image dipoles model the su-
perconductor is assumed to be infinitely thick. Under this
hypothesis, the images lie inside the superconductor no mat-
ter how far the magnet is. But, for a superconductor thinner
than the height of the magnet, this idea is not feasible. A
description based on the ideas of the frozen dipole model is
proposed in this paper. In order to justify the proposal, we
performed some measurements in a real system and compare
them with the calculations. Next, the data used to feed the
theoretical model are presented.

2. Experimental

We used a YBa2Cu3O7 (YBCO) sample doped with CeO2
(0.5 wt.%) This superconductor was prepared and character-
ized at the Laboratorie CRISMAT (France). The procedure
of fabrication and texturing is described in detail in [8]. The
superconductor was isostatically pressed before texturing in a
20 mm diameter disk. The sample was extracted from the pel-
let by polishing it to form a rectangular prism having width
2R = 10 mm, length 2S = 10 mm and thickness L = 3.5 mm.
The melt-textured superconductor has a critical temperature
of 88.4 K and a critical current density of6.5× 104 A/cm2 at
77 K and zero field.

The experimental setup is shown in Fig. 1. The supercon-
ducting sample was put into a liquid nitrogen bath (zero field
cooling). Then, a spherical magnet with its magnetization di-
rected vertically, having a mass of 0.712 g and a radius of
2 mm, was lowered by hand towards the center of the super-
conductor following a vertical path. Because of the repulsive
force exerted by the superconductor, it was necessary to push
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TABLE I. List of magnets used to magnetize the superconductor. Nd means a NdFeB magnet and Sm means a SmCo magnet.Bmagnetis the
average field applied to the superconductor in an area of 1 cm× 1 cm andBsc is the magnetic field trapped in the sample.

Magnet Size (cm) Bmagnet(T ) Bsc(T )

Nd-Disc 5× 5× 0.63 0.366± 0.011 0.290± 0.015

Sm-Square 2.5× 2.5× 0.63 0.475± 0.013 0.310± 0.008

Nd-Disc 3× 3× 1.25 0.54± 0.015 0.320± 0.010

Sm-Rectangle 2.5× 1.25× 0.63 0.640± 0.013 0.330± 0.007

Sm-Disc 2.5× 2.5× 0.63 0.66± 0.008 0.330± 0.005

Nd-Disc 2.5× 2.5× 0.63 0.75± 0.019 0.330± 0.007

Sm-Disc 2.5× 2.5× 0.95 0.80± 0.011 0.340± 0.014

Sm-Disc 1.25× 1.25× 0.63 0.85± 0.013 0.340± 0.008

Nd-Rectangle 5× 2.5× 1 0.88± 0.025 0.350± 0.011

firmly the sphere. The magnet was released after achieving a
stable levitation, once the magnetic lines were pinned to the
superconductor. A height ofa = 3.5 mm was measured in
that position.

The magnet was previously characterized by measuring
the magnetic field at different points along the symmetry axis,
and it was concluded that it has a magnetic dipole moment
µ = 2.533 × 10−2 A m2. The capability of the supercon-
ducting sample for trapping magnetic field was characterized
in the following way. A permanent magnet was approached
to the surface of the superconductor immersed in liquid nitro-
gen until their surfaces made contact; then, the magnet was
retrieved. To estimate the trapped field in the superconductor,
the field at the center of its upper surface (Bsc) was measured
with a Hall probe. This was realized with different magnets
wider than the YBCO sample. In every case, the field pro-
duced by the magnet (Bmagnet) was measured at its surface
and scanned over an area of1 × 1 cm (the area of the su-
perconductor). In order to have a representative field, the 30
measured values ofBmagnet were averaged.Bsc was mea-
sured in successive runs at least three times for every magnet
and the values were averaged too. The results are shown in
Table I.

As Bmagnet is increased,Bsc increases up to a value of
0.35 T. It is clear that the sample could trap higher fields if
larger fields were applied. The capability of high-Tc super-
conductors for trapping magnetic fields has been studied ex-
tensively elsewhere [9,10]. Now, the intention of including
this characterization in this study was to compare the mea-
sured values of the trapped field with an estimation obtained
with the model developed in the next section.

3. Theory

The force between a magnet and a superconductor in the
mixed state will be described using two models: magnetic
field full expulsion (Meissner state), Sec. 3.1, and penetra-
tion of the magnetic field, Sec. 3.2.

3.1. Field expulsion

First, the repulsive force between the magnet and a perfect
diamagnet (i.e., a superconductor in the Meissner state) will
be calculated. To perform this calculation it is necessary
to know the magnetization of the superconducting sample,
M(Ha), whereHa is the applied field. In the case of a
complete field expulsion from the superconductor, we have
~B = 0, and therefore~M = − ~H = − ~Ha − ~HM . Here, ~HM

is the magnetic field produced by the superconductor with
magnetization~M , i.e., the demagnetizing field. The follow-
ing integral equation is obtained:

~M(~r) = − ~Ha(~r)−
∫

sc

d ~HM . (1)

In principle, this equation might be solved by an iterative
process. Usually, the magnetization of the superconductor is
achieved by numerical calculations, mainly using the finite-
element method [11-13].

The intention of this work was to obtain full analytical
expressions of the forces, but to calculate the demagnetizing
field under a nonuniform external field~Ha is a very compli-
cated task. In a first approximation, the superconductor in
Meissner state has a magnetization

~M(~r) = − ~Ha(~r). (2)

It will be shown that already, at this level, the model describes
adequately the general characteristics of the system.

It is interesting to recall that according to the Bean model
of the mixed state, the initial magnetization of an infinite su-
perconducting slab of critical current densityJc and thick-
nessL, when an external magnetic field is applied to it, can
be written asM = −Ha + H2

a/Hp, whereHp = JcL is the
so called penetration field. This expression is valid as long as
Ha does not exceedHp; Ha is assumed uniform and paral-
lel to one of the sides of the superconductor. It can be seen
that the assumption of neglecting~HM in this work, leads to a
similar conclusion when an infinite value ofJc is taken in the
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Bean model, in the sense that the same~M( ~Ha) is obtained in
both cases.

The magnetization of a superconductor of orthorhombic
shape in Meissner state has been previously studied theoreti-
cally and experimentally [14]. In that work, small samples of
niobium (typically 1.5 mm× 1.5 mm×1-to-6 mm) were sub-
jected to a uniform external fieldHa from 0 to7× 104 A/m.
For low values ofHa, it was concluded thatM = χHa (χ is
the initial susceptibility). For a superconductor with geomet-
ric proportions similar to the used in this work (width/length
' 0.35), their result isχ ' −2.5. As the ratio width/length of
the superconductor growths,χ tends to−1, i.e., the demag-
netizing field tends to disappear.

The force on the superconductor can be calculated by
summing up all the infinitesimal interactionsd~F between
each dipoled~µ = ~MdV and the applied field~Ba:

~F =
∫

sc

∇(d~µ · ~Ba) = µ0

∫

sc

∇(dV ~M · ~Ha)

= −µ0

∫

sc

dV∇(Ha)2 (3)

Here, the integration is taken over the whole volume of the
superconductor. According to Eq. (3), it can be concluded
that the force on the superconductor comes from a potential-
energy density(dU/dV ) = µ0H

2
a .

This dipole-dipole model has been used previously to cal-
culate levitation forces in different magnet-superconductor
systems,e.g. dipole-cylinder [15], bar-cylinder [16], dipole-
ring [17], square-cylinder [18], wire-sphere [19], and ring-
cylinder [20].

FIGURE 1. Experimental setup of the system. A spherical perma-
nent magnet is placed above a rectangular superconductor, which
was submerged into a liquid nitrogen bath (not shown). The cen-
ters of the sphere and the superconductor remain in the same ver-
tical line. The center of the magnet is located a distancea above
the upper surface of the rectangle. The empty arrow indicates the
magnetic dipole moment~µ of the sphere.

As shown in Fig. 1, the spherical magnet with dipole
moment~µ is located above a rectangular superconductor.
The origin of the coordinate system is at the center of the
magnet. The distance between this point and the upper sur-
face of the slab isa. The center of the slab is located at
(0, 0,−(a + L/2)). The superconductor lies horizontal be-
tween the planesz = −a andz = −(a + L) with its sides
parallel to theX andY axes.

It is well known that the magnetic field due to a spheri-
cal magnet is the same as the one produced by a point dipole
with the same magnetic moment located at the center of the
sphere. This field is:

~Ha(r) =
1
4π

[
3~r(~r · ~µ)

r5
− ~µ

r3

]
(4)

By substituting Eq. (4) in Eq. (3) and changing the sign,
the repulsive force ejected on the magnet is obtained. Next,
the vertical component of this force is calculated. Vertical
(~µ = µk̂) and horizontal (~µ = µî) configurations were ana-
lyzed.

3.1.1. Vertical configuration

When~µ = µk̂, the vertical force on the magnet is given by

Fz =
µ0

4π

µ2

16π
[g(a)− g(a + L)] (5)

where g as a function of the independent variableξ is defined
as

g(ξ) =
RS

ξ2(ξ2 + R2)2(ξ2 + S2)2(ξ2 + R2 + S2)2

×
[
R6(9ξ2 + 6S2) + R4(35ξ4 + 41ξ2S2 + 12S4)

+ R2(48ξ6 + 80ξ4S2 + 41ξ2S4 + 6S6)

+ 22ξ8 + 48ξ6S2 + 35ξ4S4 + 9ξ2S6
]

+
3R(7ξ4 + 10ξ2R2 + 4R4)

ξ4(ξ2 + R2)5/2
arctan

S√
ξ2 + R2

+
3S(7ξ4 + 10ξ2S2 + 4S4)

ξ4(ξ2 + S2)5/2
arctan

R√
ξ2 + S2

(6)

By takingS → ∞, the expression for an infinitely long
slab is obtained:

g(ξ) =
3πR

2
7ξ4 + 10ξ2R2 + 4R4

ξ4(ξ2 + R2)5/2
(7)

Furthermore, whenR → ∞, the result for an infinite
sheet is obtained:

g(ξ) =
6π

ξ4
(8)

Finally, if L →∞, the vertical force between the magnet
and an semi-infinite superconducting plane results to be

Fz =
µ0

4π

3µ2

8a4
(9)
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FIGURE 2. Vertical force (Eqs. (5) and (6)) on a spherical mag-
net with µ = 2.533 × 10−2 Am2 as a function of the width of
the rectangular superconductor in Meissner state. We took R=S for
simplicity. The sphere is placed ata = 3.5 mm above the super-
conductor, with its magnetization along thez direction. The force
grows monotonically and saturates at different levels, depending on
the value of L. For a thickness of 10 mm and higher, the saturation
force practically coincides with the result given by Eq.(9) for an
semi-infinite sample (horizontal discontinuous line).

FIGURE 3. Vertical force (eqs. (5) and (10)) on a spherical magnet
with µ = 2.533× 10−2 Am2 as a function of the thickness of the
superconductor in Meissner state. Again,R = S, a = 3.5 mm and
µ in the vertical direction. The force grows monotonically withL
and reaches a saturation value which depends onR. The horizontal
discontinuous line represents the value given by Hellman’s model
for a semi-infinite superconductor.

which is the early expression obtained by Hellmanet al. [2]
with the images method.

The variation ofFz with the dimensions of the supercon-
ductor is shown in Figs. 2 and 3. It can be seen that this
force grows monotonically and reaches a saturation value. It
is interesting to note that for a sample with2R = 2S = 2 cm
(about six times the distance to the magnet) andL = 1 cm,

the vertical force is practically the same as the one obtained
for an infinite sample. This explains the success of Hellman’s
model even for these small samples.

3.1.2. Horizontal configuration

The result ofFz for ~µ oriented along thex direction in the
same expression than Eq. (5), but in this configuration the
functiong(ξ) is given by

g(ξ) =
RS

ξ2(ξ2 + R2)2(ξ2 + S2)(ξ2 + R2 + S2)2

×
[
3R6 + 6R4(2ξ2 + S2) + ξ4(ξ2 + S2)

+ R2(10ξ4 + 10ξ2S2 + 3S4)
]

+
3R(2ξ4 + 5ξ2R2 + 2R4)

ξ4(ξ2 + R2)5/2
arctan

S√
ξ2 + R2

+
3S(3ξ2 + 2S2)
ξ4(ξ2 + S2)3/2

arctan
R√

ξ2 + S2
(10)

ForS →∞, i.e., an infinitely long slab:

g(ξ) =
3πR(2ξ4 + 5ξ2R2 + 2R4)

2ξ4(ξ2 + R2)5/2
(11)

Now, by takingR → ∞, the expression for an infinite
sheet follows:

g(ξ) =
3π

ξ4
(12)

Again, in the limit of a semi-infinite plane (L → ∞)
the vertical force tends to the value(µ0/4π)(3µ2/16a4),
which coincides with the value obtained with the images
method [2].

3.2. Field penetration

To describe the penetration of the magnetic field in the super-
conductor, an assumption is made based on the frozen dipole
model. A magnetic point dipole represents the behavior of
the penetrated region of the sample. This is equivalent to
making a multipole expansion of the magnetic field and re-
taining only the dipole term. In the present model it will be
assumed that the dipole appears and stays at the center of
the sample. More precisely, the dipole appears in this point
when the first critical fieldHc is reached. After that, as the
magnet keeps getting closer to the superconductor, the mag-
nitude of the induced dipole momentµs increases until the
magnet reaches the position where the mechanical equilib-
rium is reached. It is assumed that the magnetization of the
magnet remains oriented vertically all its way. Therefore, the
induced magnetic point dipole will be oriented always in the
same direction.

The first critical magnetic field can be obtained from
Hc(T ) = H0[1−(T/Tc)2]. For an YBCO sample submerged
in liquid nitrogen it will be takenH0 = 100 Oe, Tc = 90 K
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FIGURE 4. Trapped magnetic field in the rectangular superconduc-
tor as a function of the magnetic field of the permanent magnets
described in Table I. The data with error bars correspond to the
experimental values reported there. The point signaled with an ar-
row corresponds to the calculated fields produced by the spherical
magnet and the induced dipoleµs at the upper surface of the su-
perconductor. This theoretical point is in good agreement with the
observed experimental behavior. The dotted line is a guide for the
eye.

FIGURE 5. Diagram that illustrates the proposed mechanism of
how the superconductor sample is penetrated by the magnetic field
of the magnet. (a) No penetration occurs while a>10.6 mm (Ha <
Hc). (b) Once the critical magnetic field is reached, a magnetic
dipole µs appears and stays at the center of the superconductor;
µs increases when a diminishes, following Eq. (13); 3.5 mm< a
< 10.6 mm. (c)µs reaches its maximum value when the magnet
gets the position where the mechanical equilibrium is reached. (d)
The induced dipole remains frozen (same value and same position)
when the magnet is retrieved.

andT = 77 K, and obtainHc(77K) = 27 Oe. This value is
reached at the center of the superconductor when the center
of the magnet is located at a distance of 12.3 mm,i.e., when
a = 10.6 mm.

When the stable levitation of the sphere is reached at
a = 3.5 mm, the repulsive force given by Eqs. (5) and (6)

must be equal to the weight of the magnet plus the force
between the magnet andµs. This way the valueµs =
6.95× 10−3 A m2 is obtained.

In order to evaluate how reasonable this value is, two
fields at the center of the upper surface of the superconductor
were calculated: the one due to the spherical magnet levi-
tating at its equilibrium position, and the one produced by
the induced dipoleµs. These fields are0.12 T and0.26 T
respectively. These two numbers were compared with the
measured values of trapped field in the superconductor (Ta-
ble I), as shown in Fig. 4. It is easy to see that the theoretical
estimation fits nicely with the experimental trend.

Based on the experimental observations, it is assumed
that the magnitudeµs varies from 0 to6.95 × 10−3 A
m2 as the magnet descends to the superconductor. The
precise dependence ofµs with the heighta given in mm
(3.5 < a < 10.6), is assumed to have an exponential be-
havior:

µs(a) = 6.95× 10−3Am2
(10.6− a

7.1

)n

(13)

where n is an adjusting parameter. Following the idea of the
frozen dipole model, it is assumed that when the magnet is
moved apart from its equilibrium position,µs remains frozen
at the center of the superconductor. This behavior is sketched
in Fig. 5.

4. Total force

In this section the combined contributions of the repulsive
and attractive forces on the magnet are analyzed. The force
ejected by a magnetic dipole~µ located at the origin on a sec-
ond dipole~µs located at point~r is given in general by: [21]

~Fs =
3µ0

4πr5

[
(~µ · ~r) ~µs + ( ~µs · ~r)~µ +

+ (~µ · ~µs)~r − 5(~µ · ~r)( ~µs · ~r)
r2

~r
]

(14)

In the vertical configuration of our geometry,~µ=µk̂,
~µs=µsk̂, and~r = (x, 0, z). Substituting in Eq. (14) and
changing the sign, the attractive force ejected on the magnet
is:

~Fm =
3µ0µµs

4π(x2 + z2)5/2

[ (
5z2

x2 + z2
− 1

)
xî

+
(

5z2

x2 + z2
− 3

)
zk̂

]
(15)

4.1. Vertical

The total vertical force ejected by the superconductor on the
magnet is the sum of the calculated from Eqs. (5)-(6) and
thez component of Eq. (15). In particular, the analysis will
be restricted to the casex = 0. As mentioned before,µs

increases from 0 to its maximum value according to Eq. (13)
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FIGURE 6. Total vertical force on the magnet as a function of
the distancea, calculated withµ = 2.533 × 10−2 A m2, R = S
= 5 mm, L = 3.5 mm, andn = 0.8. The weight of the magnet
(= 7×10−3 N) was not included. The arrows indicate whether the
magnet approaches to (upper branch) or moves away from (lower
branch) the superconductor. A typical hysteretic FC curve from
Ref. 6 is shown in the inset, and a good qualitative agreement with
the model is observed.

FIGURE 7. Total vertical force on the magnet as a function of the
distancea, calculated withµ = 2.533×10−2 A m2, R = S = 5 mm,
L = 3.5 mm, andn = 5. Again, the weight of the magnet was not
considered here. The arrows indicate that the magnet approaches to
and moves away from the superconductor (upper and lower branch,
respectively). A typical hysteretic ZFC curve is observed.

during the descent of the magnet, and stays with the same
value during the ascent. As Wuet al. [5], we use the value
n = 0.8. As shown in Fig. 6, a typical hysteretic curve for
a field cooling (FC) process is observed. The minor loops
at intermediate points of the path were not considered in the
model. It has been shown that these loops can be explained
by adding more frozen dipoles in the superconductor [5].

By the other hand, ifn = 5, we obtain a typical behavior
for a zero field cooling (ZFC) process, as shown in Fig. 7.

4.2. Horizontal

Whenx = 0, there is no horizontal force acting on the mag-
net. However, when it is displaced laterally along the X axis,
the resulting horizontal force is the combination of the x-
component in Eq. (15) and the repulsive forceFP due to
the Meissner state of the superconductor. The later was cal-
culated starting from Eq. (3) usingc© Mathematica, and the
result is

FP =
µ0µ

2

128π2
[P (R,S,−a, x)− P (R, S,−(a + L), x)

+ P (−R,S,−a, x)− P (−R, S,−(a + L), x)] (16)

where

P (α, S, z, η) =
( z

S3

)[
3S2z2 + [z2 + (α− η)2](α− η)2

[z2 + (α− η)2]2(α− η)2

−
z2 + S2

[
2 + 3z2

S2+(α−η)2

]
+ (α− η)2

[S2 + z2 + (α− η)2]2

]

+
3S[2S2 + 3(α− η)2]

[S2 + (α− η)2]3/2(α− η)4

× arctan
z√

S2 + (α− η)2

+

[
2α4 + 2z2 − 8α3η + 5z2η2 + 2η4

(α− η)4[z2 + (α− η)2]5/2

+
α2(5z2 + 12η2)− 2αη(5z2 + 4η2)

(α− η)4[z2 + (α− η)2]5/2

]

× 3z arctan
S√

z2 + (α− η)2
(17)

For an infinite sample (R, S, L →∞), the repulsive force
tends to zero for any finite value ofx, as it should be.

The total horizontal forceFx is shown in Fig. 8. It can be
seen that for lateral displacements below 4.4 mm, the attrac-
tive force dominates over the repulsive one and the magnet is
pulled to return to its equilibrium position. Above 4.4 mm,
the repulsive force is higher than the attractive force and the
magnet is pushed off. This result is particularly important to
describe the stability of the magnet around its levitation po-
sition. The calculation is qualitatively in agreement with the
experimental results [23,24]. Forx ¿ z (| x |≤ 1 mm), the
force approaches the straight dashed line shown in Fig. 8.
The slope of this line isk = 50 N/m. This value is remark-
ably similar to the obtained by Johansenet al [22] in their
theoretical study of the lateral oscillations of a rectangular
superconductor in the mixed state levitating on a rectangular
magnet (k = 56 N/m for a 3.5 mm separation). Neglecting
the damping caused by friction, the magnet of mass0.712 g
is expected to oscillate harmonically in this region with a fre-
quency of 42 Hz. To verify this, the magnet was given a slight
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FIGURE 8. Total horizontal force (continuous line) on the magnet
as a function of its position along the X axis. The data used in the
calculation are:µ = 2.533×10−2 A m2, µs = 6.95×10−3 A m2,
R = S = 5 mm, L = 3.5 mm, and a = 3.5 mm. The full curve is anti-
symmetric inx. The dashed straight line corresponds to a harmonic
oscillator behavior. The upper inset shows experimental data taken
from Ref. 23, which are in good agreement with the model. The
lower inset shows the variation of the magnetic field measured at
a fixed point, when the magnet oscillates horizontally around its
equilibrium position.

push and its further motion was monitored by measuring the
magnetic field in a fixed point above the magnet, close to its
equilibrium position. The variation of the field with time is
shown in the lower inset of Fig. 8. It was observed that the
magnet oscillated with a frequency of only 7 Hz,i.e., one
sixth of the calculated value. This measurement was con-
firmed with a stroboscope. In order to consider the effect of
the demagnetizing field on the magnetization in the Meissner
state, the result for a superconducting rectangular prism un-
der a uniform external field:M = −2.5Ha [14], was used
instead ofM = −Ha, Eq. (2). As a result, the theoreti-

cal frequency shifted to 39 Hz, still far from the measured
value. Clearly, to improve the agreement it is necessary to
take into account the damping of the motion and calculate the
demagnetizing field of the superconductor under the specific
nonuniform magnetic field of the magnet used in this study.

5. Conclusions

The model proposed in the present work neglects the de-
magnetizing field but provides analytical expressions that de-
scribe several aspects of the force between a permanent mag-
net and a finite superconductor in the mixed state. More pre-
cisely, these issues are: i) The dimensions of the supercon-
ductor are incorporated in the calculation. In the limit of
an infinite superconductor, the repulsive force tends to the
proper value. This way, the model allows us to quantify how
good/bad is the approximation of taking the sample as infi-
nite. ii) The frozen dipole model was adapted to be appli-
cable to a superconductor with finite thickness. The mag-
netic moment of this dipole was obtained from the condition
of mechanical equilibrium observed experimentally. This
value was consistent with our measurements of the magnetic
field trapped in the superconductor. iii) The different ways
in which the sample can be magnetized were parameterized
by an exponentn. By varying this parameter it was possi-
ble to reproduce the typical hysteretic approach/draw-away
curves of the total vertical force in FC and ZFC processes.
iv) The total horizontal force was calculated as well, and a
good agreement with previous experimental results was ob-
served.
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