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The effect of an arbitrary canonical transformation on functions defined on the configuration space is defined in such a way that a solution
to the time-independent Hamilton—Jacobi equation is mapped into another solution if the Hamiltonian is invariant under the canonical
transformation.

Keywords: Canonical transformations; Hamilton-Jacobi equation.

Se define el efecto de una transforn@eccarbnica arbitraria sobre funciones definidas en el espacio de confignraeital forma que una
solucbn de la ecuadin de Hamilton—Jacobi independiente del tiempo es enviada en otratsokida hamiltoniana es invariante bajo la
transformadn carbnica.

Descriptores:Transformaciones cénicas; ecuadin de Hamilton-Jacobi.

PACS: 45.20.Jj; 02.20.Qs

1. Introduction In Sec. 2 we derive the action of an arbitrary time-
independent canonical transformation on functions defined in

In the Hamiltonian formalism of classical mechanics, the sothe configuration space, giving some explicit examples. In
lution to the equations of motion can be obtained with the aidS€c. 3, we show that the action of a one-parameter group of
of the Hamilton—-Jacobi (HJ) equation; a complete solutioncanonical transformations on a function defined in the config-
to the HJ equation is the generating function of a canonicaliration space is determined by a partial differential equation
transformation that relates the original phase space coordiovolving the generating function of the group and that, from
nates to a new set of canonical coordinates that are constant@®ch constant of motion and each solution to the HJ equa-
time (seeg.g, Refs. 1 to 3). The HJ equation is the classicaltion, a one-parameter family of solutions to the HJ equation
limit of the Schidinger equation and, therefore, the solutionscan be obtained; that is, each continuous group of canonical
to the HJ equation provide the lowest-order part of the semitransformations that leave the Hamiltonian invariant allows
classical approximation for the solutions to the $cfinger ~ One to add one parameter to a given solution of the HJ equa-
equation (sees.g, Ref. 4). tion. Throughout this paper only Hamiltonians that do not

The HJ equation and the Séiinger equation involve depend explicitly on time are considered.

only the time and one half of the phase space coordinates
(usually a set of coordinates of the configuration space). 2. The effect of an arbitrary canonical trans-
the framework of quantum mechanics, the problem of find- formation
ing the effect of an arbitrary change of coordinates has been
recognized, and has only been solved in the case of poildve begin by reviewing some elementary facts about canoni-
transformations or of linear canonical transformations (seegal transformations that will be employed in what follows.
e.g, Refs. 5, 6, and the references cited therein). Let . o 4

The aim of this paper is to give a natural definition for the q"=q"(dp;), ;=i\ ps) 1)
action of a canonical transformation on Hamilton’s characterbe a (time-independent) canonical transformation. Then,
istic function (which satisfies the time-independent HJ equathere exists (at least locally) a function(¢’, p;), defined
tion), or on any function defined on the configuration spaceup to an additive constant, such that
We show that, in the case of a time-independent Hamiltonian, 'dd — e+ dA 5
this definition has the property that a solution to the HJ equa- pidg” = pilq’ + dA, )
tion is mapped into another solution of the same equation ifvith summation over repeated indices (seq, Refs. 1-3).
the canonical transformation leaves the Hamiltonian invariszWhen one starts from an arbitrary change of coordinates
ant. in the configuration space of the formi=q"(¢’) (or
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point transformation), the elementary definitiop=0L /04", 2.1. The Hamilton—Jacobi equation
whereL is the Lagrangian, implies that this change of coordi- _
nates is accompanied by the transformation of the canonicAWith any HamiltonianH (¢*, p;), we can associate the (time-

momenta independent) Hamilton—Jacobi (HJ) equation
OL  OL 0¢ ¢’ ow
/o _ g — . i
p; = ¢t g7 9¢" pj aq't ) H (q , 8q73> =F, (12)

and therefore, in this particular case, _ o . .
where E is a constant, which is a, possibly nonlin-

pidg" = pidq’, (4)  ear, first-order partial differential equation (provided that
OH /0p; # 0) for the characteristic functionV (¢*). As is
well known, a complete solution to the HJ equation allows
one to obtain the solution to the equations of motion [1-3].
By replacingp; by 9W/dq" in Eq. (10), wherd¥V is a solu-

that is, we can takd = 0.
Under the canonical transformation (1), a given Hamil-
tonian, H(q', p;), becomes a new Hamiltonian functid#’

given by tion to the HJ equation (11), we obtain
"d (o ) o 1)) = .
H'(¢"(¢’,p5), (¢’ ;) = H(q", pi)- (5) [ owog oMoy oA op, W
(The HamiltonianH is invariant under the canonical trans- ( " 9qi 9g" + 8qi dq't awaqm') =E, (12
formation (1) if H/ = H.) For example, the coordinate
transformation relatingq', ¢, p1, p2) = (2, w, p., p,,) With where it is understood that the partial derivatives are evalu-
(¢, 42,0\, ph) = (z,9,ps, py), given by [7] ated at points such thaf = OW/dq".
5 We now look for a way of relating the solutions to the
= 2— pzpw7 y=w-— L’ HJ equation (11) with those of the HJ equation correspond-
m?g 2m?g ing to the HamiltonianA’, obtained fromH by means of a
Pz = D=, Py = Duws (6)  canonical transformation [see Eq. (5)].

Keeping in mind that the characteristic function must de-
wherem andg are arbitrary nonzero constants, is canonical.nend on the coordinates only, and not on the momenta, we

In fact, a straightforward computation gives shall assume that the equations
Pz"Pw
P20 + pyQY = P20z + pulw + < m2g) pi:aiqiv ¢" =4q"(¢,py), (13)
[cf. Eq. (2)]. Under the transformation (6), the Hamiltonian ‘ .
function allow us to express thg in terms of the;"* only [eliminating
- Pu” + mgw 7 thep; from Egs. (13)]; we define
2m
is transformed into W'(q") = W(g’(¢") + A (¢ (¢"),pi(d"(d")), (14)
2 2
p z . . L .
—~ +myg (y + p2 > assuming that the right-hand side is expressed as a function
2m 2m4g

of theg’* only, with the aid of Egs. (13) (see the examples be-

B P2 +pJ o 3 low). On the other hand, from Eq. (14), using the elementary
= o, TMOY= (q", p}) (8) expression for the differential of a function, we obtain
(which corresponds to a particle of massn a uniform grav- j
itational field with acceleration due to gravigy. dw’ = (?9“7/ + gé) <gq/i "+ gq/ dpl>
Going back to our preceding discussion, we note that ¢ ¢
Eq. (2) implies that LY oA ((’)pj dg" 8p] d )
V. o¢’ % Bl N % op; © Op; \ Oq" 8 ]
" 0q" 0g) 9" Op; Og" which must reduce to
(which duly reduces to Eg. (3) whe= 0). Hence, Eq. (5) ,
is equivalent to dw’ = 8—W + % 8qﬂ_ dg't + OA Op T dg'",
¢~ 9¢’ ) 9q" 9p; 9q"

. 0¢8 OA O0¢7 OA Op; ,
/ 17 J _ .
H <q +Pj 3q/i+37j 5@*@ o =H(q",pi), (10) 4 the submanifold defined by Egs. (13) and, therefore, on

. , i o this submanifold,
where it is understood that th¢, and the partial derivatives

d¢’ /0q"*, dp;j/dq" on the left-hand side, are expressed in oW’ (OW 0N\ O¢'  OA Op;
terms ofq’, p;. oq't TQJ + aiqg dq't 87])] g’

Rev. Mex. .56 (2) (2010) 113-117



THE ACTION OF CANONICAL TRANSFORMATIONS ON FUNCTIONS DEFINED ON THE CONFIGURATION SPACE

thus showing that Eqg. (12) amounts to

. oW’
Hl (qmv (9q”> = Ea

in other words,W’(¢'?) is a solution to the HJ equation for
the HamiltonianH’ [with the same value of the constaht
appearing in Eq. (11)].

As pointed out above, in the special case where one starts
from an arbitrary transformation in the configuration space

(e.g, a translation or a rotationy* = ¢'*(¢’), we can as-

115

2.1.2. Example. Particle in a uniform magnetic field

Another example is provided by the (linear) canoni-
cal transformation from(q!,q?, p1,p2)=(u, v, pu,p,) tO
(¢, 4" Py, p3) = (2,9, D2, py), given by [8]

c

= E(pu _pv)v

r=u-+wv, ]

é(v - U),

1
r — 5\ Pu v )y y = 1
P 2(p + po) Py =5, (16)

sume that the momenta transform according to Eq. (3), with

the functionA equal to zero. Then Eq. (14) reduces to
W'(¢") = W(d'(d")),

i.e, W' is obtained fromi¥’ by simply expressing the coor-
dinatesg® in terms of they””.

(15)

2.1.1. Example. Particle in a uniform gravitational field

wheree, B, andc are constants. We have

pmdx + pydy = pudu + PudU +d [%(U - u) (pu - pv)] s

which allows us to identify the functioh. The Hamiltonian

2
mw? 5

U 3
2

_n?

H =
2m

(17)

In the example considered above [Egs. (6)-(8)], the HJ equa-

tion associated with the Hamiltonian (7),

which is the usual one for a one-dimensional harmonic oscil-
lator, is then expressed as

(o

2
8w> +mgw = F,

2m

1 eB \? mw? 2
H=— ( m+cy> +7W

eB \?
om 9 > epE Pt o (18

has the solution 2¢

w

W = :I:/ V2m(E —mgs)ds + F(z),

whereF is an arbitrary function. Choosing(z)=az, where
a is a constant, we find that the equatiops=0W/dq"
amount to

which corresponds to a particle of massand electric charge
e moving on thery-plane under the influence of a magnetic
field B, perpendicular to this plane,df = eB/mc.

One can readily verify that the solutions to the HJ equa-
tion corresponding to the Hamiltonian (17) are of the form

pw = V2m(E — mgw).

(The fact thatz is an ignorable coordinate in the Hamilto-
nian (7) implies thap, is a constant of motion and, there-
fore, F'(z) must depend linearly on.) Then, making use of
Egs. (6), we find that

ar/2m(E — mgw) a?

D2 = &,

W = :i:/\/ 2mE — m2w?s2ds + G(v),

whereG is an arbitrary function. Taking:(v) = av, where
« is a constant, and making use of Egs. (13), (14), and (16),
we obtain

z=x+ m2g ) w=y+ 2m2g B (eByjet )/ (mw)
and recalling that in this casé = —p.2p,,/(m?g), from  W'==+ / V2mE—-m2w?s? ds
Eq. (14) we obtain
y+a?/(2m?g) —&—aa?—l—eQ—Bmy—i (eBy_i_a) \/QmE‘_ (BB:y+a)
W'=+ v 2m(E—mgs)ds ¢ me e ¢

This last expression can be simplified with the aid of the

change of variable = (v2mE — m2w?s? — a)/(mw), in-

tegrating by parts
(o (T o) i B B
==+ 2m(E—mgs)ds+au, W'==F / \/2mE - (e ‘4 a) dz + ax + Z—:I:y.
C C
which is indeed a (complete) solution to the HJ equation cor-

responding to the Hamiltonian (8), as one can readily verify.It may be noticed that this function is not separable.

3 a?\/2m(E—mgw)

m2g

m2g

ta (36—1— ay/2m(E—mgw) >

y+a®/(2m?g)
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and therefore
i of i of
pi(s)dg’(s) ~ (pi(O) — S@qi) (dq (0) +sd )

Op;
of

~ pi(0)dg'(0) + 5 (pap - f)

i.e, A~ s(p;0f/0p; — f) and from Eq. (14) we have

2.1.3. Example. The exchange transformation

As is well known, the transformation
" =p, pi=-q, (19)
is canonical. In fact, one readily verifies that

pidg" = p;idg’ + d(—piq")

. B .
| W (40 + 550 ) = Wi o)
[cf. Eg. (2)]. Anarbitrary Hamiltonian, H (¢*, p;), is trans- pi
formed into JrSGW of sf(j(()) 8W)
H'(q",p}) = H(~p},q") 9q" Op; T 9 )

On the other hand, to first order in

[see Eg. (5)] and from a given solutiol/, of the HJ equa-

tion (11) one obtains a solution to the HJ equation W <qi(0) n 53;) ~ (4 (0) + 83812?/ g}{
aW’ ? (2
H ( ,pi) =K (20) , oW of
Op; ~W'(q* — L
WG O) + 5% g
given by [see Eq. (14)] hence, taking into account that the initial conditigg) are
) OW arbitrary,
W (pi) = W(q') - qla—qi, (21)

; . . OW
W'(q") =~W(q') —sf (qja 8q1> .

where it is understood that th¢ appearing on the right- _ _ _ , _

hand side are eliminated in favor of tpeby means of [see Thus, denoting by¥’ (¢, s) the functioni?’(q") obtained by

Eq. (13)] the transformation/* = ¢'(s), p; = pi(s), whereq'(s),
oW p;i(s) is the solution to Egs. (22), from the last equation we
pi= g obtain the partial differential equation
Thus, in this casel’ is obtained fromi¥’ by making use ow _f (qi 3W) (23)
of the Legendre transformation. (This result is the analog of 0s " aqt )’

the well-known fact that, in quantum mechanics, the relationyhich defines the action of the one-parameter group of
between the wave function in momentum space and the wavganonical transformations generated ppn a functioniv’,
function in the configuration space is given by the Fouriergefined on the configuration space.

transform.) Thus, from each constant of motion and a particular so-
lution to the HJ equation, we obtain a one-parameter family
of solutions to the HJ equation with a fixed valueof(al-
though, in some cases, these transformations only add a con-
stant tolW; see the example below).

3. One-parameter groups of canonical trans-
formations

As is well known, the differentiable functions defined on 5
the phase space generate one-parameter groups of canonical
transformations. In particular, the canonical transformationg\ very simple example is given by the HJ equation for a free
generated by a constant of motion map a solution to the equawarticle in thexy plane. Takingd = (p,% + p,2)/2m, the
tions of motion into other solutions, with the same value ofHJ equation reads

the Hamiltonian. 9 9

The one-parameter group of canonical transformations 1 <8W> + (‘9W>
defined by a differentiable functiofi(¢, p;) is given by the 2m |\ Ox dy
solution of the system of ordinary differential equations
dg' _ of dp; of

ds  Op;’ ds  9q¢i (22)

Example. Free particle in the plane

—E (24)

and a particular solution is given by
Wo = V2mFE x. (25)

Since H is invariant under rigid rotations, according to the

Hence, to first order in the parameter

s of
Op; ’

of

q'(s) ~q'(0) + oG

pils) = pi(0) = s

discussion above [see Eq. (15)], the images of (25) under the
rotations about the origin,

W = V2mE (xcoss+ ysins) (26)
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form a one-parameter family of solutions of (24) which is, in4. Concluding remarks

fact, acompletesolution to Eq. (24). (One can readily verify

that the function (26) satisfies Eq. (23) with the constant ofThe general expressions (13) and (14), as well as the ex-
motion f = xp, — yp<.) amples given in Sec. 2, show that the effect of an arbitrary

On the other handf = p, is also a constant of motion, canonical transformation on functions defined on the con-
and the corresponding solution to Eq. (23), witl given by  figuration space is somewhat involved, contrasting with the
Eq. (25), is justV = v2mE (z — s), that is,Wy + const. rather trivial effect of a point transformation [Eq. (15)].

I_t should b_e clear _that Eqg. (23) defines a one-parameter As we have shown, under a one-parameter group of
family of functions defined on the configuration space, startzanonical transformations that leave the Hamiltonian invari-
ing from any functioni¥y(q*) (not necessarily the character- ant, a particular solution to the HJ equation is transformed
istic function), with an arbitrary functiofi(¢', p;) (nNotneces-  jnto another solution containing an additional parameter.
sarily a constant of motion). For instance, choosing px,  Hence, expression (14) allows us to add several parameters at
Eq. (23) yieldsiW(q',s) = Wo(q',...,¢" =s,...,4"), i the same time, making use of a group of canonical transfor-
accordance with the fact thaj, generates translations along mations that leave the Hamiltonian invariant, if the dimension
theg* direction. of the group is greater than 1.

_Eq;atlorr:j (23) ?reﬂ:heﬂ:amlltg)_ﬂ enqu;tlongéf (r)ng takes A Lie group of canonical transformations must have some
f = H, ands = t (the time). en, Eq. (23) reduces representation on the functions defined on the configuration

?(;?et;lrie;(eqeegdent HJ equation for the principal funCtIOnspace, and the nature of this representation deserves a sepa-

rate, detailed study.
95 _ gy 98
o o)

whose solution is given by the well-known relation bet"Vee”ACknOWIedgments
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