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The action of canonical transformations on functions defined
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The effect of an arbitrary canonical transformation on functions defined on the configuration space is defined in such a way that a solution
to the time-independent Hamilton–Jacobi equation is mapped into another solution if the Hamiltonian is invariant under the canonical
transformation.
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Se define el efecto de una transformación cańonica arbitraria sobre funciones definidas en el espacio de configuración en tal forma que una
solucíon de la ecuación de Hamilton–Jacobi independiente del tiempo es enviada en otra solución si la hamiltoniana es invariante bajo la
transformacíon cańonica.
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PACS: 45.20.Jj; 02.20.Qs

1. Introduction

In the Hamiltonian formalism of classical mechanics, the so-
lution to the equations of motion can be obtained with the aid
of the Hamilton–Jacobi (HJ) equation; a complete solution
to the HJ equation is the generating function of a canonical
transformation that relates the original phase space coordi-
nates to a new set of canonical coordinates that are constant in
time (see,e.g., Refs. 1 to 3). The HJ equation is the classical
limit of the Schr̈odinger equation and, therefore, the solutions
to the HJ equation provide the lowest-order part of the semi-
classical approximation for the solutions to the Schrödinger
equation (see,e.g., Ref. 4).

The HJ equation and the Schrödinger equation involve
only the time and one half of the phase space coordinates
(usually a set of coordinates of the configuration space). In
the framework of quantum mechanics, the problem of find-
ing the effect of an arbitrary change of coordinates has been
recognized, and has only been solved in the case of point
transformations or of linear canonical transformations (see,
e.g., Refs. 5, 6, and the references cited therein).

The aim of this paper is to give a natural definition for the
action of a canonical transformation on Hamilton’s character-
istic function (which satisfies the time-independent HJ equa-
tion), or on any function defined on the configuration space.
We show that, in the case of a time-independent Hamiltonian,
this definition has the property that a solution to the HJ equa-
tion is mapped into another solution of the same equation if
the canonical transformation leaves the Hamiltonian invari-
ant.

In Sec. 2 we derive the action of an arbitrary time-
independent canonical transformation on functions defined in
the configuration space, giving some explicit examples. In
Sec. 3, we show that the action of a one-parameter group of
canonical transformations on a function defined in the config-
uration space is determined by a partial differential equation
involving the generating function of the group and that, from
each constant of motion and each solution to the HJ equa-
tion, a one-parameter family of solutions to the HJ equation
can be obtained; that is, each continuous group of canonical
transformations that leave the Hamiltonian invariant allows
one to add one parameter to a given solution of the HJ equa-
tion. Throughout this paper only Hamiltonians that do not
depend explicitly on time are considered.

2. The effect of an arbitrary canonical trans-
formation

We begin by reviewing some elementary facts about canoni-
cal transformations that will be employed in what follows.

Let
q′i = q′i(qj , pj), p′i = p′i(q

j , pj) (1)

be a (time-independent) canonical transformation. Then,
there exists (at least locally) a function,Λ(qj , pj), defined
up to an additive constant, such that

p′idq′i = pidqi + dΛ, (2)

with summation over repeated indices (see,e.g., Refs. 1-3).
When one starts from an arbitrary change of coordinates
in the configuration space of the formq′i=q′i(qj) (or
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point transformation), the elementary definitionpi=∂L/∂q̇i,
whereL is the Lagrangian, implies that this change of coordi-
nates is accompanied by the transformation of the canonical
momenta

p′i =
∂L

∂q̇′i
=

∂L

∂q̇j

∂q̇j

∂q̇′i
= pj

∂qj

∂q′i
(3)

and therefore, in this particular case,

p′idq′i = pidqi, (4)

that is, we can takeΛ = 0.
Under the canonical transformation (1), a given Hamil-

tonian,H(qi, pi), becomes a new Hamiltonian functionH ′

given by

H ′(q′i(qj , pj), p′i(q
j , pj)) = H(qi, pi). (5)

(The HamiltonianH is invariant under the canonical trans-
formation (1) if H ′ = H.) For example, the coordinate
transformation relating(q1, q2, p1, p2) = (z, w, pz, pw) with
(q′1, q′2, p′1, p

′
2) = (x, y, px, py), given by [7]

x = z − pzpw

m2g
, y = w − pz

2

2m2g
,

px = pz, py = pw, (6)

wherem andg are arbitrary nonzero constants, is canonical.
In fact, a straightforward computation gives

pxdx + pydy = pzdz + pwdw + d

(
−pz

2pw

m2g

)

[cf. Eq. (2)]. Under the transformation (6), the Hamiltonian
function

H =
pw

2

2m
+ mgw (7)

is transformed into

p2
y

2m
+ mg

(
y +

p2
x

2m2g

)

=
p2

x + p2
y

2m
+ mgy ≡ H ′(q′i, p′i) (8)

(which corresponds to a particle of massm in a uniform grav-
itational field with acceleration due to gravityg).

Going back to our preceding discussion, we note that
Eq. (2) implies that

p′i=pj
∂qj

∂q′i
+

∂Λ
∂qj

∂qj

∂q′i
+

∂Λ
∂pj

∂pj

∂q′i
(9)

(which duly reduces to Eq. (3) whenΛ = 0). Hence, Eq. (5)
is equivalent to

H ′
(

q′i, pj
∂qj

∂q′i
+

∂Λ
∂qj

∂qj

∂q′i
+

∂Λ
∂pj

∂pj

∂q′i

)
=H(qi, pi), (10)

where it is understood that theq′i, and the partial derivatives
∂qj/∂q′i, ∂pj/∂q′i on the left-hand side, are expressed in
terms ofqi, pi.

2.1. The Hamilton–Jacobi equation

With any Hamiltonian,H(qi, pi), we can associate the (time-
independent) Hamilton–Jacobi (HJ) equation

H

(
qi,

∂W

∂qi

)
= E, (11)

where E is a constant, which is a, possibly nonlin-
ear, first-order partial differential equation (provided that
∂H/∂pi 6= 0) for the characteristic functionW (qi). As is
well known, a complete solution to the HJ equation allows
one to obtain the solution to the equations of motion [1-3].
By replacingpi by ∂W/∂qi in Eq. (10), whereW is a solu-
tion to the HJ equation (11), we obtain

H ′
(

q′i,
∂W

∂qj

∂qj

∂q′i
+

∂Λ
∂qj

∂qj

∂q′i
+

∂Λ
∂pj

∂pj

∂q′i

)
= E, (12)

where it is understood that the partial derivatives are evalu-
ated at points such thatpi = ∂W/∂qi.

We now look for a way of relating the solutions to the
HJ equation (11) with those of the HJ equation correspond-
ing to the HamiltonianH ′, obtained fromH by means of a
canonical transformation [see Eq. (5)].

Keeping in mind that the characteristic function must de-
pend on the coordinates only, and not on the momenta, we
shall assume that the equations

pi =
∂W

∂qi
, q′i = q′i(qj , pj), (13)

allow us to express theqj in terms of theq′i only [eliminating
thepi from Eqs. (13)]; we define

W ′(q′i) ≡ W (qj(q′i)) + Λ
(
qj(q′i), pj(qk(q′i))

)
, (14)

assuming that the right-hand side is expressed as a function
of theq′i only, with the aid of Eqs. (13) (see the examples be-
low). On the other hand, from Eq. (14), using the elementary
expression for the differential of a function, we obtain

dW ′ =
(

∂W

∂qj
+

∂Λ
∂qj

)(
∂qj

∂q′i
dq′i +

∂qj

∂p′i
dp′i

)

+
∂Λ
∂pj

(
∂pj

∂q′i
dq′i +

∂pj

∂p′i
dp′i

)
,

which must reduce to

dW ′ =
(

∂W

∂qj
+

∂Λ
∂qj

)
∂qj

∂q′i
dq′i +

∂Λ
∂pj

∂pj

∂q′i
dq′i,

on the submanifold defined by Eqs. (13) and, therefore, on
this submanifold,

∂W ′

∂q′i
=

(
∂W

∂qj
+

∂Λ
∂qj

)
∂qj

∂q′i
+

∂Λ
∂pj

∂pj

∂q′i
,
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thus showing that Eq. (12) amounts to

H ′
(

q′i,
∂W ′

∂q′i

)
= E,

in other words,W ′(q′i) is a solution to the HJ equation for
the HamiltonianH ′ [with the same value of the constantE
appearing in Eq. (11)].

As pointed out above, in the special case where one starts
from an arbitrary transformation in the configuration space
(e.g., a translation or a rotation),q′i = q′i(qj), we can as-
sume that the momenta transform according to Eq. (3), with
the functionΛ equal to zero. Then Eq. (14) reduces to

W ′(q′i) = W (qj(q′i)), (15)

i.e., W ′ is obtained fromW by simply expressing the coor-
dinatesqi in terms of theq′i.

2.1.1. Example. Particle in a uniform gravitational field

In the example considered above [Eqs. (6)-(8)], the HJ equa-
tion associated with the Hamiltonian (7),

1
2m

(
∂W

∂w

)2

+ mgw = E,

has the solution

W = ±
w∫ √

2m(E −mgs) ds + F (z),

whereF is an arbitrary function. ChoosingF (z)=αz, where
α is a constant, we find that the equationspi=∂W/∂qi

amount to

pz = α, pw =
√

2m(E −mgw).

(The fact thatz is an ignorable coordinate in the Hamilto-
nian (7) implies thatpz is a constant of motion and, there-
fore,F (z) must depend linearly onz.) Then, making use of
Eqs. (6), we find that

z = x +
α
√

2m(E −mgw)
m2g

, w = y +
α2

2m2g

and recalling that in this caseΛ = −pz
2pw/(m2g), from

Eq. (14) we obtain

W ′=±
y+α2/(2m2g)∫ √

2m(E−mgs)ds

+α

(
x+

α
√

2m(E−mgw)
m2g

)
−α2

√
2m(E−mgw)

m2g

= ±
y+α2/(2m2g)∫ √

2m(E−mgs)ds+αx,

which is indeed a (complete) solution to the HJ equation cor-
responding to the Hamiltonian (8), as one can readily verify.

2.1.2. Example. Particle in a uniform magnetic field

Another example is provided by the (linear) canoni-
cal transformation from(q1, q2, p1, p2)=(u, v, pu, pv) to
(q′1, q′2, p′1, p

′
2) = (x, y, px, py), given by [8]

x = u + v, y =
c

eB
(pu − pv),

px =
1
2
(pu + pv), py =

eB

2c
(v − u), (16)

wheree, B, andc are constants. We have

pxdx + pydy = pudu + pvdv + d
[
1
2 (v − u)(pu − pv)

]
,

which allows us to identify the functionΛ. The Hamiltonian

H =
pu

2

2m
+

mω2

2
u2, (17)

which is the usual one for a one-dimensional harmonic oscil-
lator, is then expressed as

H=
1

2m

(
px+

eB

2c
y

)2

+
mω2

2
c2

e2B2

(
py−eB

2c
x

)2

, (18)

which corresponds to a particle of massm and electric charge
e moving on thexy-plane under the influence of a magnetic
field B, perpendicular to this plane, ifω = eB/mc.

One can readily verify that the solutions to the HJ equa-
tion corresponding to the Hamiltonian (17) are of the form

W = ±
u∫ √

2mE −m2ω2s2 ds + G(v),

whereG is an arbitrary function. TakingG(v) = αv, where
α is a constant, and making use of Eqs. (13), (14), and (16),
we obtain

W ′=±

√
2mE−(eBy/c+α)2/(mω)∫ √

2mE−m2ω2s2 ds

+αx+
eB

2c
xy− 1

mω

(
eBy

c
+α

) √
2mE−

(
eBy

c
+α

)
.

This last expression can be simplified with the aid of the
change of variablez = (

√
2mE −m2ω2s2 − α)/(mω), in-

tegrating by parts

W ′ = ∓
y∫ √

2mE −
(

eBz

c
+ α

)
dz + αx +

eB

2c
xy.

It may be noticed that this function is not separable.
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2.1.3. Example. The exchange transformation

As is well known, the transformation

q′i = pi, p′i = −qi, (19)

is canonical. In fact, one readily verifies that

p′idq′i = pidqi + d(−piq
i)

[cf. Eq. (2)]. An arbitrary Hamiltonian,H(qi, pi), is trans-
formed into

H ′(q′i, p′i) = H(−p′i, q
′i)

[see Eq. (5)] and from a given solution,W , of the HJ equa-
tion (11) one obtains a solution to the HJ equation

H

(
−∂W ′

∂pi
, pi

)
= E (20)

given by [see Eq. (14)]

W ′(pi) = W (qi)− qi ∂W

∂qi
, (21)

where it is understood that theqi appearing on the right-
hand side are eliminated in favor of thepi by means of [see
Eq. (13)]

pi =
∂W

∂qi
.

Thus, in this case,W ′ is obtained fromW by making use
of the Legendre transformation. (This result is the analog of
the well-known fact that, in quantum mechanics, the relation
between the wave function in momentum space and the wave
function in the configuration space is given by the Fourier
transform.)

3. One-parameter groups of canonical trans-
formations

As is well known, the differentiable functions defined on
the phase space generate one-parameter groups of canonical
transformations. In particular, the canonical transformations
generated by a constant of motion map a solution to the equa-
tions of motion into other solutions, with the same value of
the Hamiltonian.

The one-parameter group of canonical transformations
defined by a differentiable functionf(qi, pi) is given by the
solution of the system of ordinary differential equations

dqi

ds
=

∂f

∂pi
,

dpi

ds
= − ∂f

∂qi
. (22)

Hence, to first order in the parameters,

qi(s) ' qi(0) + s
∂f

∂pi
, pi(s) ' pi(0)− s

∂f

∂qi
,

and therefore

pi(s)dqi(s) '
(

pi(0)− s
∂f

∂qi

)(
dqi(0) + s d

∂f

∂pi

)

' pi(0)dqi(0) + s d

(
pi

∂f

∂pi
− f

)

i.e., Λ ' s
(
pi∂f/∂pi − f

)
and from Eq. (14) we have

W ′
(

qi(0) + s
∂f

∂pi

)
' W (qi(0))

+ s
∂W

∂qi

∂f

∂pi
− sf

(
qj(0),

∂W

∂qj

)
.

On the other hand, to first order ins,

W ′
(

qi(0) + s
∂f

∂pi

)
' W ′(qi(0)) + s

∂W ′

∂qi

∂f

∂pi

' W ′(qi(0)) + s
∂W

∂qi

∂f

∂pi

hence, taking into account that the initial conditionsqi(0) are
arbitrary,

W ′(qi) ' W (qi)− sf

(
qj ,

∂W

∂qj

)
.

Thus, denoting byW (qi, s) the functionW ′(qi) obtained by
the transformationq′i = qi(s), p′i = pi(s), whereqi(s),
pi(s) is the solution to Eqs. (22), from the last equation we
obtain the partial differential equation

∂W

∂s
= −f

(
qi,

∂W

∂qi

)
, (23)

which defines the action of the one-parameter group of
canonical transformations generated byf on a functionW ,
defined on the configuration space.

Thus, from each constant of motion and a particular so-
lution to the HJ equation, we obtain a one-parameter family
of solutions to the HJ equation with a fixed value ofE (al-
though, in some cases, these transformations only add a con-
stant toW ; see the example below).

3.1. Example. Free particle in the plane

A very simple example is given by the HJ equation for a free
particle in thexy plane. TakingH = (px

2 + py
2)/2m, the

HJ equation reads

1
2m

[(
∂W

∂x

)2

+
(

∂W

∂y

)2
]

= E (24)

and a particular solution is given by

W0 =
√

2mE x. (25)

SinceH is invariant under rigid rotations, according to the
discussion above [see Eq. (15)], the images of (25) under the
rotations about the origin,

W =
√

2mE (x cos s + y sin s) (26)
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form a one-parameter family of solutions of (24) which is, in
fact, acompletesolution to Eq. (24). (One can readily verify
that the function (26) satisfies Eq. (23) with the constant of
motionf = xpy − ypx.)

On the other hand,f = px is also a constant of motion,
and the corresponding solution to Eq. (23), withW0 given by
Eq. (25), is justW =

√
2mE (x− s), that is,W0 + const.

It should be clear that Eq. (23) defines a one-parameter
family of functions defined on the configuration space, start-
ing from any functionW0(qi) (not necessarily the character-
istic function), with an arbitrary functionf(qi, pi) (not neces-
sarily a constant of motion). For instance, choosingf = pk,
Eq. (23) yieldsW (qi, s) = W0(q1, . . . , qk − s, . . . , qn), in
accordance with the fact thatpk generates translations along
theqk direction.

Equations (22) are the Hamilton equations if one takes
f = H, and s = t (the time). Then, Eq. (23) reduces
to the time-dependent HJ equation for the principal function
S(qi, t) ≡ W (qi, t),

∂S

∂t
= −H

(
qi,

∂S

∂qi

)
,

whose solution is given by the well-known relation between
the principal function,S, and the characteristic function,W ,
in the cases considered here, where the Hamiltonians do not
depend explicitly on the time,

S(qi, t) = W (qi)− Et.

4. Concluding remarks

The general expressions (13) and (14), as well as the ex-
amples given in Sec. 2, show that the effect of an arbitrary
canonical transformation on functions defined on the con-
figuration space is somewhat involved, contrasting with the
rather trivial effect of a point transformation [Eq. (15)].

As we have shown, under a one-parameter group of
canonical transformations that leave the Hamiltonian invari-
ant, a particular solution to the HJ equation is transformed
into another solution containing an additional parameter.
Hence, expression (14) allows us to add several parameters at
the same time, making use of a group of canonical transfor-
mations that leave the Hamiltonian invariant, if the dimension
of the group is greater than 1.

A Lie group of canonical transformations must have some
representation on the functions defined on the configuration
space, and the nature of this representation deserves a sepa-
rate, detailed study.
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